饲料果胶对瘤胃微生物菌群结构和微生物蛋白合成影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果胶为一类天然高分子化合物,属结构性碳水化合物。苜蓿、羊草、玉米秸以及稻秸等粗饲料中均含有果胶,但以苗蓿中最为丰富。果胶与淀粉虽然同属非纤维性碳水化合物,但发酵特性差异较大。迄今为止有关果胶影响瘤胃发酵、微生物蛋白合成的报道不多,而对果胶影响瘤胃微生物群落结构以及果胶降解菌这类功能微生物的研究与认知更加有限。本研究首先探索的苜蓿日粮与玉米秸日粮下奶牛瘤胃中的差异微生物菌种或菌群,并建立果胶分解菌检测的分子技术,从而获取更多的果胶降解菌信息;然后以湖羊为模式动物,系统研究了以玉米秸为粗饲料的日粮中补充添加果胶对瘤胃发酵、微生物蛋白合成以及微生物菌群结构的影响。
     一、果胶对瘤胃微生物菌群的影响及果胶菌检测
     1.饲喂不同果胶含量日粮对奶牛徽生物菌群的影响。本试验检测了苜蓿、玉米秸以及羊草三种粗饲料中的果胶含量,依次为9.3%,2.8%和3.7%(干物质基础)。通过454焦磷酸测序技术分析苜蓿日粮与玉米秸日粮下奶牛瘤胃液中的微生物16S rRNA基因,发现Selenomonas和Treponema菌属包括菌株T.saccharophilum是苜蓿日粮下的特有菌群,Selenomonas ruminantium的比例在苜蓿日粮中也有高于玉米秸日粮的趋势,分析发现T. saccharophilum与S.ruminantium都是降解果胶、淀粉的微生物。
     2.不同果胶含量粗饲料组合对瘤胃微生物分布的影响。为了验证测序发现的微生物差异是由日粮中果胶或/和淀粉含量差异引起的,本试验分别对苜蓿、玉米秸、果胶、淀粉以及秸秆与果胶、淀粉的组合为底物的体外发酵液中微生物菌群进行PCR-DGGE分析,发现玉米秸与果胶组合的DGGE条带分布与苜蓿组相似度由67.5%增加至72%,而玉米秸与淀粉组合后与苜蓿条带相似度从67.5%降至65%,从微生物学角度证实了果胶是秸秆与苜蓿的重要差异养分之一。对差异条带克隆测序发现了与T. saccharophilum相似度为99%的克隆,进一步证实该菌对果胶降解的特异性。Real-time分析还发现整个Treponema菌属(密螺旋菌菌属)在以淀粉为底物的条件下数量大大降低,而果胶的添加显著促进该菌属的生长(P<0.05),提示了以T. saccharophilum为代表的Treponema菌属都与果胶降解密切相关。而S. ruminantium在果胶或淀粉为底物的发酵液中丰度差异不显著。
     3.果胶分解菌T. saccharophilum实时定量方法构建与体内外丰度检测。由于迄今缺乏准确、可靠的检测方法,T. saccharophilum在瘤胃中的数量未知。因此,本研究设计了能够特异性扩增T. saccharophilum16S rRNA基因的引物,验证结果表明引物灵敏、可靠,可以应用于未来瘤胃生态研究。利用设计的引物进一步从体外、体内角度检测了T. saccharophilum与不同果胶含量粗饲料的关系。体外结果表明T. saccharophilum在苜蓿以及添加果胶的底物中丰度显著高于玉米秸、羊草以及淀粉为底物(P<0.05)时,而淀粉不支持该菌的生长;体内结果表明T. saccharophilum在苜蓿日粮饲喂的奶牛瘤胃中显著高于羊草、玉米秸以及稻草秸日粮(P<0.05)。通过对比瘤胃其他细菌的丰度发现,T. saccharophilum在瘤胃中的相对丰度较高,提示了这个菌在瘤胃中重要性,并可能扩展今后与瘤胃中的果胶代谢相关的研究。
     二、果胶对湖羊生产性能、瘤胃发酵和微生物菌群结构的影响
     1.果胶对体外瘤胃发酵参数与微生物蛋白合成的影响。为了评估果胶与淀粉对瘤胃发酵的影响,首先进行了体外发酵,以700mg的玉米秸与150mg豆粕为底物的基础上设置4个处理:(1)淀粉150mg+果胶Omg(Pe0),(2)淀粉100mg+果胶50mg (Pe50),(3)淀粉50mg+果胶100mg (Pe100),(4)淀粉Omg+果胶150mg (Pe150)。结果表明,果胶体外发酵速率显著高于淀粉(P<0.05),尤其是6h前的早期发酵,此外24h总产气量果胶也显著高于淀粉(P<0.05)。果胶为底物的发酵属于乙酸型,而淀粉发酵属于丙酸型,本试验中乙丙比随着果胶的增加而线性增加。Pe0与Pe50的pH值低于Pe100和Pe150(P<0.05),P150的MCP产量显著高于Pe0(P<0.05),提示果胶可优化发酵速率、pH等瘤胃发酵参数,并促进微生物蛋白合成。
     2.果胶对湖羊生长性能和瘤胃发酵的影响。为了深入研究果胶对反刍动物生产性能的影响,本试验选取45只健康无病的7月龄公湖羊,按照随机区组设计和同栏大小相近原则,根据体重分为5个处理:基础日粮(精粗比50:50的全混合日粮)为对照组(Ctrl),在基础日粮上分别添加2.5%和5%果胶的低果胶日粮(PeL)和高果胶日粮(PeH),分别添加2.5%和5%淀粉的低淀粉日粮(StL)和高淀粉日粮(StH)。结果发现,添加果胶可以增加采食量,而添加淀粉则线性降低采食量(P<0.05)。日粮PeH的MCP产量在各组中最高(P<0.05),且果胶的添加对MCP的生成有线性增加效应(P<0.01),而淀粉的添加则对MCP产量具有曲线降低效应,即高淀粉日粮反而抑制了MCP的合成。果胶添加线性增加日增重(P<0.05), PeH在各组中日增重最高(P<0.05),与其MCP合成量一致。此外,饲喂Pe日粮可显著降低血清中甘油三脂(TG)水平(P<0.05)。这些结果表明,与淀粉相比,添加果胶有助于瘤胃微生物蛋白合成,改善湖羊的生产性能。
     3.果胶对湖羊瘤胃微生物菌群结构的影响。为了深入研究与果胶降解相关的瘤胃细菌,采用Real-time以及Miseq高通量测序,深度分析上述试验中各组日粮下湖羊瘤胃微生物菌群分布情况。经过菌门、菌科、菌属以及OTU水平的多重比较分析,证实日粮中添加果胶形成的微生物分布与对照或淀粉处理组有显著差异。实时定量结果表明,瘤胃已知的典型微生物中除了Treponema以及Tsaccharophilum被果胶富集,多数菌偏好淀粉利用。然而,通过高通量测序发现,果胶的添加主要富集了厚壁菌门的微生物成员,这些相关微生物多数为未培养或者尚未有特异引物能够准确定量的微生物,包括该门类下梭菌纲下的Mogibacteriaceae科和Lachnospiraceae (毛螺菌科)以及Erysipelotrichi(产芽胞菌纲)下产芽胞菌科的成员。其中毛螺菌科下Butyrivibrio(丁酸弧菌属)、Coprococcus(粪球菌属)、Moryella以及一未分类属,产芽胞菌科下Holdemania(霍尔德曼氏菌属)、L7A_E11以及Bulleidia属都表现出显著的果胶特异性。
     综上所述,作为结构性碳水化合物的日粮果胶,其营养效果优于淀粉,能促进瘤胃微生物蛋白合成,进而提高动物生产性能。日粮果胶还可促进瘤胃中Treponema菌属、厚壁菌门微生物的生长,提示这些菌群可能是高果胶含量日粮下参与微生物蛋白生成的关键菌群。
Pectin is a natural complex polysaccharides and one of the major components of the primary cell wall of plants, thus it is a structural carbohydrate present in plant feedstuffs of ruminants. Pectins commonly exist in fiber feeds such as alfalfa hays, Chinese wild rye, corn stover and rice straw, with alfalfa especially rich in pectin content. Pectin and starch belong to non-fibrous carbohydrate but with remarkable different fermentation characteristics. Up to date, there seems to be very few studies focused on the effect of pectin on ruminal microbial structure and the knowledge of pectinolytic bacteria in the rumen is very limited. Therefore, the objectives of this study were to evaluate effects of pectin on ruminal fermentation and microbial protein pply and especially, to explore the microbial species and group associated with pectin-rich diets. This study contained two parts. In the first part, specific bacterial species or group associated with pectin-rich alfalfa diet compared in the rumen of (?)y cows was explored and quantitative assay method of specific pectinolytic species was developed. In the second part, the effects of pectin supplementation on rumen fermentation, microbial protein supply and microbial structure in the rumen of Hu sheep was systematically investigated.
     1. Effects of dietary pectin on ruminal bacteria and detection of pectinolytic bacteria
     1.1Effects of dietary pectin content on bacterial group in the rumen of dairy cows. The yields of chemical-extracted pectin from alfalfa hay, corn stover and (?)se wild rye were determined to be9.3,2.8and3.7%, respectively. With454pyrosequencing method, the abundance of Selenomonas, Treponema and T. saccharophilum were found to be significant higher in the rumen of dairy cows fed on alfalfa hay as main forage source compared to those fed on corn stover. Pure culture based studies demonstrated that these species are soluble carbohydrates fermenters.
     1.2Effects of combination of pectin with different feeds on the distribution of ruminal bacteria. To evaluate whether Selenomonas and Treponema are pectinolytic bacteria, in vitro rumen fermentation was conducted using alfalfa, corn stover, pectin, corn starch or their combination as the substrates. The cluster analysis of DGGE banding patterns showed that combination of corn stover with pectin as the substrate resulted in the band patterns being closely grouped with those of alfalfa. On the contrary, combinations of corn stover with starch diverted the pattern away from alfalfa. It is indicated from a microbial ecological aspect that pectin is one of the important nutritional differences that exist between corn stover and alfalfa. The specific bands associated with pectin-rich treatments were identified to be dominated by the members of Treponema genus, with one clone showing99%similarity with T. saccharophilum. Real-time PCR analysis demonstrated that the growth of Treponema genus was remarkably supported by inclusion of pectin but not starch, highlighting their specific ability to degrade pectin. However, the relative abundances of S. ruminantium were not significantly different between the fermentation fluids with pectin and starch as substrate.
     1.3Development a real-time PCR assay targeting at the ruminal pectinolytic T. saccharophilum to access its abundance in both in vitro and in vivo. Due to lack of a reliable and accurate detection method, the abundance of T. saccharophilum in the rumen has not been well determined. Thus, the specific primers targeting at the16S rRNA gene of T. saccharophilum was developed in the present study and the specificity and accuracy of the primers was confirmed, which might also be used in further ruminal ecological studies. The results obtained in the present study clearly demonstrate that quantification of T. saccharophilum in vivo and in vitro is possible by real-time PCR using our designed primers. In vitro results showed that the population of T. saccharophilum was significantly higher with alfalfa or pectin as substrates than with corn stover or Chinese wild rye (P<0.05). However, addition of starch did not support the growth of T. saccharophilum. Similarly, the in vivo results also showed that the relative abundance of T. saccharophilum in the rumen of cows fed alfalfa hay diet was significantly higher (P<0.05) than those in the rumen of cows fed the diet containing Chinese wild rye, corn stover or rice straw. The population of T. saccharophilum species, particularly with alfalfa diet, is comparable or even higher than those of other common rumen bacterial species. The relatively high proportion of T. saccharophilum in the rumen might expand our knowledge of the importance of this bacterium in the rumen, especially for pectin digestion.
     2. Effects of pectin on production performance, rumen fermentation and microbial structure in the rumen of Hu sheep
     2.1Effects of pectin on rumen fermentation parameters and microbial protein synthesis in vitro. An in vitro fermentation was conducted to investigate the effects of pectin and starch on ruminal fermentation. With700mg corn stover and150mg soybean meal as basic substrates, the following treatments were used:(1)150mg corn starch+0mg pectin (PeO),(2)100mg corn starch+50mg pectin (Pe50),(3)50mg corn starch+100mg pectin (Pe100), and (4)0mg corn starch+150mg pectin (Pel50). The rate of gas production increased with the increasing ratio of pectin, with highest value in Pe100and Pe150and lowest in Pe0(P<0.05), especially during the early fermentation before6h. Total gas production in24h was significantly higher with Pe100and Pe150compared to PeO and Pe50. Substituting pectin for starch linearly increased the ratios of acetate to propionate. The pH of fermentation fluid increased with the increasing pectin ratio, significantly lower in PeO and Pe50than in e100or Pe150(P<0.05). The MCP production was highest in Pe150and lowest in Pe0(P<0.05). The results obtained here indicated that inclusion of pectin optimized the fermentation rate, environmental pH and further promoted the MCP production.
     2.2Effects of pectin on production performance and rumen fermentation of Hu sheep. To evaluate the effects of pectin on animal growth,45male sheep were divided into five groups of nine animals each, and randomly assigned to five dietary treatments with supplementation of0,2.5and5%pectin or corn starch, respectively, to a basal diet consisted of corn stover and concentrate mixture (50:50, DM basis). Dry matter intake was increased quadratically or decreased linearly with the increasing level of pectin or starch, respectively. Increasing level of pectin led to a linear increase (P<0.05) in microbial protein synthesis and daily weight gain, with highest values at5%pectin among all treatments (P<0.05). The TG levels in the serum of sheep fed with pectin diets were significant lower compared to control diet and starch diets (P<0.05).
     2.3Effects of pectin on the bacterial structure in the rumen of Hu sheep. To obtain a deep understanding of ruminal bacteria involved in pectin digestion, Illumina MiSeq sequencing platform were used to generate large-scale16S rRNA gene sequencing data from genomic DNA of ruminal bacteria associated with the above experimental diets in section2.2. Multi-comparison on phylum, family, genus and OTU level demonstrated that the distribution patterns of bacteria among diets Ctrl, Pe and St were significantly different. Real-time PCR quantification showed that, besides Treponema genus and T. saccharophilum, most of typical rumen bacteria were higher when starch was supplemented. However, with high-throughput sequencing technology, it is found that the majority of bacteria groups that enriched by pectin were remain uncultured or not well studied, most of them belonging to Firmicutes, including Mogibacteriaceae, Lachnospiraceae and Erysipelotrichi. Genus such as Butyrivibrio, Copromccus, Moryella, Holdemania, L7A_E11and Bulleidia were all associated with pectin digestion to a different extent.
     In summary, compared to starch, pectin is a more desirable carbohydrate, which could promote the rumen MCP synthesis and thus improve the growth performance of ruminants. The growth of ruminal bacteria Treponema and Firmicutes were enhanced by pectin, indicating that they may play an important role in microbial protein synthesis under a pectin-rich diet. A better understanding of microbial populations that accompany dietary differences will expand our knowledge of ecological importance of bacteria in the rumen and may further lead to beneficial strategies to improve ruminant production performance.
引文
1. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR-induced sequence artifacts and bias:insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 71 (12):8966-8969.
    2. Alamouti AA, Alikhani M, Ghorbani GR, Zebeli Q (2009) Effects of inclusion of neutral detergent soluble fibre sources in diets varying in forage particle size on feed intake, digestive processes, and performance of mid-lactation Holstein cows. Anim Feed Sci & Technol 154 (1-2):9-23.
    3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215 (3):403-410.
    4. Anil MH, Forbes JM (1980) Feeding in sheep during intraportal infusions of short-chain fatty acids and the effect of liver denervation. J Physiol 298:407-414.
    5. Ariza P, Bach A, Stern MD, Hall MB (2001) Effects of carbohydrates from citrus pulp and hominy feed on microbial fermentation in continuous culture. J Anim Sci 79(10):2713-2718.
    6. Bekele AZ, Koike S, Kobayashi Y (2010) Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol Lett 305 (1):49-57.
    7. Bekele AZ, Koike S, Kobayashi Y (2011) Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis. FEMS Microbiol Lett 316 (1):51-60.
    8. Bodas R, Giraldez FJ, L6pez S, Rodriguez AB, Mantecon AR (2007) Inclusion of sugar beet pulp in cereal-based diets for fattening lambs. Small Ruminant Res 71 (1):250-254.
    9. Bondi AA (1987) Animal nutrition. John Wiley & Sons Ltd., Chichester, UK.
    10. Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 106 (6):1948-1953.
    11. Bryant MP (1973) Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed Proc 32 (7):1809-1813.
    12. Bryant MP, Small N (1956) Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle. J Bacteriol 72 (1):22-26.
    13. Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, Bauer N, Kononoff PJ, Nisbet DJ (2010) Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 88 (12):3977-3983.
    14. Cai SC, Li JB, Hu FZ, Zhang KG, Luo YM, Janto B, Boissy R, Ehrlich G, Dong XZ (2010) Cellulosilyticum ruminicola a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate-borne fibrolytic enzymes. Appl Environ Microbiol 76:3818-3824
    15. Chen Y, Penner GB, Li M, Oba M, Guan LL (2011) Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet. Appl Environ Microbiol 77 (16):5770-5781. doi:10.1128/AEM.00375-11
    16. Cotta MA (1992) Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Appl Environ Microbiol 58 (1):48-54
    17. Denman SE, McSweeney CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the 18.rumen. FEMS Microbiol Ecol 58 (3):572-582.
    18. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26 (3):297-302. doi:10.2307/1932409
    19. Dijkstra J, Boer H, Van Bruchem J, Bruining M, Tamminga S (1993) Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume. Br J Nutr 69 (2):385-396.
    20. Felsenstein J (1985) Confidence limits on phylogenies:an approach using the bootstrap. Evolution 39:783-791.
    21. Feng P, Hoover WH, Miller TK, Blauwiekel R (1993) Interactions of fiber and nonstructural carbohydrates on lactation and ruminal function. J Dairy Sci 76 (5):1324-1333.
    22. Flint HJ, Bisset J (1990) Genetic diversity in Selenmonas ruminantium isolated from the rumen. FEMS Microbiol Lett 73 (4):351-359.
    23. Fondevila M, Dehority BA (1994) Degradation and utilization of forage hemicellulose by rumen bacteria, singly in coculture or added sequentially. J Appl Bacteriol 77 (5):541-548
    24. Frape D & Jones A (1995) Chronic and postprandial responses of plasma insulin, glucose and lipids in volunteers given dietary fibre supplements. Brit J Nutr73: 733-751.
    25. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237-264.
    26. Gradel CM, Dehority BA (1972) Fermentation of isolated pectin and pectin from intact forages by pure cultures of rumen bacteria. Appl Microbiol 23 (2):332-340.
    27. Hall MB, Larson CC, Wilcox CJ (2010) Carbohydrate source and protein degradability alter lactation, ruminal, and blood measures. J Dairy Sci 93 (1):311-322.
    28. Hatfield RD, Weimer PJ (1995) Degradation characteristics of isolated and in situ cell wall lucerne pectic polysaccharides by mixed ruminal microbes. J Sci Food Agr 69(2):185-196.
    29. Heinrichova K, Wojciechowicz M, Ziolecki A (1989) The pectinolytic enzyme of Selenomonas ruminantium. J Appl Microbiol 66 (2):169-174.
    30. Henning P, Steyn D, Meissner H (1993) Effect of synchronization of energy and nitrogen supply on ruminal characteristics and microbial growth. J Anim Sci 71 (9):2516-2528.
    31. Herrera-Saldana RE, Huber JT, Poore MH (1990) Dry Matter, Crude Protein, and Starch Degradability of Five Cereal Grains. J Dairy Sci 73 (9):2386-2393.
    32. Hoover WH, Stokes SR (1991) Balancing Carbohydrates and Proteins for Optimum Rumen Microbial Yield. Journal of Dairy Science 74 (10):3630-3644.
    33. Hugenholtz P, Tyson GW (2008) Microbiology:Metagenomics. Nature 455 (7212):481-483.
    34. Hume I (1970) Synthesis of microbial protein in the rumen. III.The effect of dietary protein. Australian J Agr Res 21 (2):305-314.
    35. Huws SA, Lee MRF, Muetzel SM, Scott MB, Wallace RJ, Scollan ND (2010) Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol Lett 73 (2):396-407.
    36. Inoue K, Rinat S, Makino K (2002) Simple method for removing lead ion using orange juice residue. Journal of the Japan Society of Waste Management Experts 13 (4):216-224.
    37. Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes:A review. Process Biochem 40(9):2931-2944
    38. Jensen CD, Haskell W & Whittam JH (1997) Long-term effects of water-soluble dietary fiber in the management of hypercholesterolemia in healthy men and women. The American journal of cardiology 79:34-37.
    39. Keys A, Grande F & Anderson JT (1961) Fiber and pectin in the diet and serum cholesterol concentration in man. Proc Soc Exp Biol Med 106:555-558.
    40. Khafipour E, Li S, Plaizier JC, Krause DO (2009) Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl Environ Microbiol 75 (22):7115-7124.
    41. Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76 (1):49-63.
    42. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111-120.
    43. Klieve AV, Hennessy D, Ouwerkerk D, Forster RJ, Mackie RI, Attwood GT (2003) Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J Appl Microbiol 95 (3):621-630.
    44. Kocherginskaya SA, Aminov RI, White BA (2001) Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe 7 (3):119-134.
    45. Koike S, Kobayashi Y (2001) Development and use of competitive PCR assays for the rumen cellulolytic bacteria:Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 204 (2):361-366
    46. Koike S, Yabuki H, Kobayashi Y (2007) Validation and application of real-time polymerase chain reaction assays for representative rumen bacteria. Anim Sci J 78 (2):135-141.
    47. Koubala BB, Kansci G, Mbome LI, Crepeau MJ, Thibault JF, Ralet MC (2008) Effect of extraction conditions on some physicochemical characteristics of pectins from "Amelioree" and "Mango" mango peels. Food Hydrocolloid 22 (7):1345-1351.
    48. Lan Y, Wang Q, Cole JR, Rosen GL (2012) Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS One 7(3):e32491.
    49. Langhout D, Schutte J, Van Leeuwen P, Wiebenga J & Tamminga S (1999) Effect of dietary high-and low-methylated citrus pectin on the activity of the ileal microflora and morphology of the small intestinal wall of broiler chicks. Brit Poultry Sci 40:340-347.
    50. Lattimer JM, Haub MD (2010) Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients 2 (12):1266-1289.
    51. Lee HJ, Jung JY, Oh YK, Lee SS, Madsen EL, Jeon CO (2012) Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and (1) H nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 78 (17):5983-5993.
    52. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S, Holmes E, Tang H, Zhao G, Nicholson JK, Li L, Zhao L (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105(6):2117-2122.
    53. Li M, Zhou M, Adamowicz E, Basarab JA, Guan LL (2012) Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis. Vet Microbiol 155 (1):72-80.
    54. Li T, Li S, Dong Y, Zhu R, Liu Y (2014) Antioxidant activity of penta-oligogalacturonide, isolated from haw pectin, suppresses triglyceride synthesis in mice fed with a high-fat diet. Food Chem 145:335-341.
    55. Liu XC, Zhang Y, Yang M, Wang ZY, Lv WZ (2007) Analysis of bacterial community structures in two sewage treatment plants with different sludge properties and treatment performance by nested PCR-DGGE method. J Environ Sci 19 (1):60-66
    56. Lykos T, Varga GA, Casper D (1997) Varying Degradation Rates of Total Nonstructural Carbohydrates:Effects on Ruminal Fermentation, Blood Metabolites, and Milk Production and Composition in High Producing Holstein Cows. J Dairy Sci 80 (12):3341-3355.
    57. Mahjoubi E, Amanlou H, Zahmatkesh D, Ghelich Khan M, Aghaziarati N (2009) Use of beet pulp as a replacement for barley grain to manage body condition score in over-conditioned late lactation cows. Anim Feed Sci & Technol 153 (1-2):60-67.
    58. Marounek M, Bartos S, Brezina P (1985) Factors Influencing the production of volatile fatty acids from hemicellulose, pectin and starch by mixed culture of rumen microorganisms. Zeitschrift fur Tierphysiologie Tierernahrung und Futtermittelkunde 53 (1-5):50-58.
    59. McCartney L, Knox JP (2002) Regulation of pectic polysaccharide domains in relation to cell development and cell properties in the pea testa. J Exp Bot 53 (369):707-713.
    60. McCormick ME, Redfearn DD, Ward JD, Blouin DC (2001) Effect of protein source and soluble carbohydrate addition on rumen fermentation and lactation performance of Holstein cows. J Dairy Sci 84 (7):1686-1697.
    61. McKee JS, Harrison PC, Riskowski GL (1997) Effects of supplemental ascorbic acid on the energy conversion of broiler chicks during heat stress and feed withdrawal. Poult Sci 76 (9):1278-1286.
    62. Mertens DR (2002) Nutritional implications of fiber and carbohydrate characteristics of corn silage and alfalfa hay. California Animal Nutrition Conf Fresno, CA:94-107
    63. Mina B, Lima J, Koa S, Leeb KG, Leec SH, Lee S (2011) Environmentally Friendly Preparation of Pectins from Agricultural Byproducts and their structural/rheological characterization. Bioresource Technol 102 (4).
    64. Morgan JL, Darling AE, Eisen JA (2010) Metagenomic sequencing of an in vitro-simulated microbial community. PLoS One 5 (4):el0209.
    65. Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB (2010) Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy 34 (1):67-74.
    66. Nelson KE, Zinder SH, Hance I, Burr P, Odongo D, Wasawo D, Odenyo A, Bishop R (2003) Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract:insights into an unexplored niche. Environ Microbiol5(11):1212-1220.
    67. Nocek JE, Russell JB (1988) Protein and Energy as an Integrated System. Relationship of Ruminal Protein and Carbohydrate Availability to Microbial Synthesis and Milk Production. J Dairy Sci 71 (8):2070-2107.
    68. Palmer GH & Dixon DG (1966) Effect of pectin dose on serum cholesterol levels. Am J Clin Nutr 18:437-442.
    69. Paster BJ, Canale-Parola E (1985) Treponema saccharophilum sp. nov., a large pectinolytic spirochete from the bovine rumen. Appl Environ Microbiol 50 (2):212-219.
    70. Paster BJ, Dewhirst FE, Weisburg WG, Tordoff LA, Fraser GJ, Hespell RB, Stanton TB, Zablen L, Mandelco L, Woese CR (1991) Phylogenetic analysis of the spirochetes. J Bacteriol 173 (19):6101-6109
    71. Piknova M, Guczynska W, Miltko R, Javorsky P, Kasperowicz A, Michalowski T, Pristas P (2008) Treponema zioleckii sp. nov., a novel fructan-utilizing species of rumen treponemes. FEMS Microbiol Lett 289 (2):166-172.
    72. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64 (10):3724-3730.
    73. Poulsen M, Jensen BB, Engberg RM (2012) The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid. Anaerobe 18 (1):83-90.
    74. Ridley BL, O'Neill MA, Mohnen D (2001) Pectins:structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57 (6):929-967.
    75. Rooke J, Lee N, Armstrong D (1987) The effects of intraruminal infusions of urea, casein, glucose syrup and a mixture of casein and glucose syrup on nitrogen digestion in the rumen of cattle receiving grass-silage diets. Brit J Nutr 57(01):89-98.
    76. Rotger A, Ferret A, Manteca X, de la Torre JR, Calsamiglia S (2006) Effects of dietary nonstructural carbohydrates and protein sources on feeding behavior of tethered heifers fed high-concentrate diets. J Anim Sci 84 (5):1197-1204.
    77. Russell JB, Sniffen CJ, Van Soest PJ (1983) Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. J Dairy Sci 66 (4):763-775.
    78. Russell JB, O'Connor JD, Fox DG, Van Soest PJ, Sniffen CJ (1992) A net carbohydrate and protein system for evaluating cattle diets:I. Ruminal fermentation. J Anim Sci 70 (11):3551-3561.
    79. Rychlik W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res 17 (21):8543-8551.
    80. Saitou N, Nei M (1987) The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 (4):406-425.
    81. SAS Institute (2000) SAS User's Guide:Statistics. Version 8.01. SAS Inst. Inc., Cary, NC.
    82. Satter LD, Slyter LL (1974) Effect of ammonia concentration of rumen microbial protein production in vitro. Br J Nutr 32 (2):199-208.
    83. Shannon CE & Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
    84. Shen JS, Chai Z, Song LJ, Liu JX, Wu YM (2012) Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J Dairy Sci 95 (10):5978-5984.
    85. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26 (10):1135-1145.
    86. Shinkai T, Ueki T, Kobayashi Y (2010) Detection and identification of rumen bacteria constituting a fibrolytic consortium dominated by Fibrobacter succinogenes. Anim Sci J 81 (1):72-79.
    87. Shinohara K, Ohashi Y, Kawasumi K, Terada A, Fujisawa T (2010) Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe 16 (5):510-515.
    88. Sinclair K, Sinclair L, Robinson J (2000) Nitrogen metabolism and fertility in cattle:I. Adaptive changes in intake and metabolism to diets differing in their rate of energy and nitrogen release in the rumen. J Anim Sci 78 (10):2659-2669.
    89. Sinclair LA, Garnsworth PC, Newbold JR, Buttery PJ (1993) Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. J Agr Sci 120 (02):251-263.
    90. Sikorova L, Piknova M, Javorsky P, Guczynska W, Kasperowicz A, Michalowski T, Pristas P (2010) Variability of treponemes in the rumen of ruminants. Folia Microbiol (Praha) 55 (4):376-378.
    91. Stanton TB, Canale-Parola E (1980) Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch Microbiol 127:145-156
    92. Stephen AM (1983) Other plant polysaccha-rides. The Polysaccharides, Vol.2, pp.97-193. Academic Press, New York London.
    93. Stevenson TT, Darvill AG, Albersheim P (1988) Structural features of the plant cell-wall polysaccharide rhamnogalacturonan-II. Carbohydrate Res,182(2): 207-226.
    94. Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75 (1):165-174.33.
    95. Stewart CS, Flint HJ, Bryant MP (1997) The rumen bacteria. In:Hobson PN, Stewart CS (eds) The rumen microbial ecosystem.2nd edn. Blackie Academic & Professional, London, pp 10-72 Storm E,(?)rskov E (1984) The nutritive value of rumen micro-organisms in ruminants. Br J Nutr 52:613-620.
    97. Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, Benno Y (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67 (6):2766-2774.
    98. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24 (8):1596-1599.
    99. Theod^rou MK, Williamsa BA, Dhanoaa MS, McAllana AB, Franceb J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci & Technol 48 (3-4):185-197.
    100. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 (22):4673-4680.
    101.Tremblay GF, Michaud R, Belanger G, McRae KB, Petit HV (2000) In vitro ruminal undegradable proteins of alfalfa cultivars. Can J Plant Sci 80 (2):315-325.
    102. Van Soest PJ (1995) What constitutes alfalfa quality:New considerations. In Proc 25th Natl Alfalfa Symposium, Liverpool, NY:1-15
    103. Voelker JA, Allen MS (2003) Pelleted Beet Pulp Substituted for High-Moisture Corn:3. Effects on Ruminal Fermentation, pH, and Microbial Protein Efficiency in Lactating Dairy Cows. J Dairy Sci 86 (11):3562-3570.
    104. Watanabe K, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44 (3):253-262
    105. Wang Y, Qian P-Y (2009) Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS ONE4(10):e7401.
    106. Welch JG, Hooper AP (1993) Ingestion of feed and water. The ruminant animal digestive physiology and nutrition. Prospect Heights, Illinois:Waveland Press, Inc,p:108-116.
    107. Wu Z, Satter LD (2000) Milk production during the complete lactation of dairy cows fed diets containing different amounts of protein. J Dairy Sci 83 (5):1042-1051.
    108. Yu B, Tsai C-C, Hsu J-C & Chiou P-S (1998) Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydrases of domestic geese. Brit Poultry Sci 39:560-56
    109. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36 (5):808-812.
    110. Yuan P, Meng K, Wang Y, Luo H, Huang H, Shi P, Bai Y, Yang P, Yao B (2012) Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem. PLoS One 7 (7):e40940.
    111. Zened A, Combes S, Cauquil L, Mariette J, Klopp C, Bouchez O, Troegeler-Meynadier A, Enjalbert F (2013) Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplem. FEMS Microbiol Ecol 83 (2):504-514.
    112. Zhao XH, Liu CJ, Liu Y, Li CY, Yao JH (2012) Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. J Anim Physiol An N 97(6):1161-1169.
    113. Zhou M, Hernandez-Sanabria E, Guan LL (2010) Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient. Appl Environ Microbiol 76(12):3776-3786.
    114. Zhu W, Fu Y, Wang B, Wang C, Ye JA, Wu YM, Liu JX (2013) Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows. J Dairy Sci 96(3):1727-1734.
    115. Ziolecki A, Guczynska W, Wojciechowicz M (1992) Some rumen bacteria degrading fructan. Lett Appl Microbiol 15 (6):244-247.
    116. Ziolecki A, Tomerska H, Wojciechowicz M (1972) Pectinolytic activity of rumen streptococci. Acta Microbiol Pol A 4 (4):183-187.
    117.谭翔文.果胶对生长猪消化代谢和血糖,血氨的影响.2002.湖南农业大学.
    118.郭艳丽,李发弟,郝正里.2006.果胶在动物营养中的研究进展.中国畜牧兽医.33(1):10-12.
    119.薛长湖,张永勤,李兆杰.2005.果胶及果胶酶研究进展.食品与生物技术学报.24(6):94-99.
    120.何洁,刘秉钺.2004.果胶的提取.黑龙江造纸.
    121.李树聪,王加启,王吉峰.2004.日粮精粗比对泌乳奶牛瘤胃微生物及小肠可吸收氨基酸组成的影响.北京:中国畜牧兽医学会学术年会暨第五届全国畜牧兽医青年科技工作者学术研讨会论文集,427-432.
    122.李亚学.2011.添加维生素B12与钴对体外瘤胃发酵的影响及其机理研究.浙江大学硕士毕业论文.
    123.吴厚玖,焦必林,王华.柑桔皮渣发酵饲料中间试验研究[J].中国饲料,1997(17):37--39.
    124.制浆造纸手册(第一分册).1987.北京:中国轻工业出版社,170-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700