镉砷在水稻体内的积累及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,土壤污染成为全球性的环境问题,重金属的复合污染问题已经引起国内外学者的普遍关注。水稻是中国乃至全亚洲国家的主要粮食作物,Cd、As又易于在水稻籽粒中积累,然而,对重金属在水稻体内吸收转运的机理及元素间的相互作用仍存在较多的争议。本研究综合土培、水培和砂培等培养条件,以水稻为试验材料,较为系统的研究了在不同培养条件下Cd、As胁迫对水稻生长的影响、Cd、As在水稻体内的相互作用及吸收分配,通过添加硅、钙肥来减少Cd、As向水稻地上部特别是籽粒中的转运,结合透射电镜观察Cd、As胁迫下水稻根部细胞的亚细胞结构和重金属沉积情况,探索影响Cd、As向水稻地上部转运的生物学机制。主要研究结果如下:
     1经Cd、As单一及复合污染处理后,水稻生长受到严重的影响,在As浓度为4 mg·L~(-1),Cd浓度为0.5 mg·L~(-1)时,苗期水稻根的生物量为对照的51.7%;茎叶的生物量为对照的42.6%。而且4 mg·L~(-1)As的单一和复合处理对株高、穗长、千粒重、每穗实粒数和产量等农艺性状的影响也极为显著(p<0.01)。Cd、As之间存在拮抗作用,As减少了水稻对Cd的吸收。随着As浓度的增加,植株的根部、茎叶、糙米和谷壳中的Cd含量呈降低趋势。
     2增加营养液中的亚铁离子浓度缓解了4 mg·L~(-1)水平的As处理对水稻茎叶生长的抑制。与单一Cd、As污染相比,在Cd、As复合污染条件下,增加水稻根表铁的富集,与0 mg·L~(-1)Fe~(2+)水平相比,50 mg·L~(-1)水平的茎叶干物重提高了19.4%。Fe~(2+)减少了水稻对Cd的吸收,在50 mg·L~(-1)Fe~(2+)水平时,茎叶中的Cd浓度为0 mg·L~(-1)Fe~(2+)水平的16.7%。同时,Fe~(2+)减少了水稻对As的吸收,在30 mg·L~(-1) Fe~(2+)和50 mg·L~(-1) Fe.(2+)水平时茎叶的As含量分别为0 mg·L~(-1) Fe~(2+)水平的59.2%和52.2%。
     3比较淹水、饱和含水量、75%饱和含水量三种不同水分处理对Cd、As交互下水稻茎叶和根部Cd、As含量影响发现,在淹水时水稻各部位的Cd、As含量较低。
     4 Cd、As单一胁迫显著影响了水稻在红壤上的生长发育,降低了水稻的生物量,而Cd与As共同作用时则表现为拮抗作用,与单一Cd、As处理相比,复合处理的水稻叶片SOD和POD酶活性升高,GSH和ASA含量也显著增加,在水稻成熟期,汕优63和武育粳3两个水稻品种的稻谷产量都增加,同时,复合污染处理显著降低了水稻茎叶和籽粒对Cd、As的富集,茎叶处理之间差异显著。
     5红壤中添加了碳酸钙和硅酸钠以后,促进了苗期水稻的生长,尤其在处理后20天和40天时生物量增加显著,而且水稻根部和地上部对Cd、As的吸收减少。同时,碳酸钙和硅酸钠处理增加了两个水稻品种的株高、穗长、每穗的实粒数和千粒重,但高量的碳酸钙和硅酸钠减少了两个水稻品种的有效分蘖数,不利于水稻的干物质积累。添加碳酸钙和硅酸钠处理显著降低了两个水稻品种茎叶、根、糙米和谷壳的Cd含量(P<0.05),同时,各部分的As含量也呈降低趋势,且随着添加量的增加,降低幅度显著。
     6水稻幼苗加硅处理增加了Cd、As胁迫下水稻根部SOD、POD和PPO三种酶的活性,在50μM As处理水平下,加硅处理水稻根的SOD、POD和PPO的活性分别比不加硅处理增加了60.7%、49.8%和19.2%;在100μM As处理水平分别提高了21.9、21.8%和22.6%。水稻加硅缓解了Cd、As胁迫对光合作用产生的抑制,减少了Cd、As胁迫造成的根细胞的细胞死亡程度,缓解了Cd、As胁迫造成细胞器的损伤。在Cd、As胁迫的细胞壁上,还观察到分布较为规律的颗粒沉积。
Recently,soil contamination with heavy metals has become a global problem.With the complexity of the sources of contamination,heavy metal contamination has aroused the widespread concern of scholars at home and abroad.Rice is the main food crop in China and even in Asia and is easy to accumulate heavy metals such as cadmium and arsenic in its grain.However,information is still sacnt and even controversial on the absorption and transportation of heavy metals in plant and the interactions between the metals.A series of experiments with rice were conducted to study the interaction between cadmium and arsenic,the effect of cadmium and arsenic stress on the plant growth,cadmium and arsenic absorption and partitioning,effect of calcium carbonate and sodium silicate on mitigating cadmium and arsenic stresses.In addition,transmission electron microscopy(TEM) was used to analyze root ultrastructure and distribution pattern of cadmium and arsenic in organs and organelles.The results obtained were presented as follows.
     1.Single and combined cadmium and arsenic treatment decreased the rice biomass.The root and shoots dry mass of rice seedlings were 42.6%and 51.7%of the control, respectively.Under 4 mg·L~(-1) As stress the rice height,spike length,1000-grain weight, and grains per panicle were significantly decreased.Significant interaction was observed between Cd and As.As concentrations in roots,shoots,chaff and brown rice decreased significantly with increasing of Cd concentrations in nutrient solution. Moreover,increasing As concentration in the solution significantly reduced Cd concentration.
     2.There are some interactions among Cd,As and iron.Appropriate iron nutrient supply had a beneficial influence on Cd and/or As stressed rice plant.The data indicated that the combined treatment with Cd and As significantly increased the iron concentration on the root surface.The Cd and As concentrations in roots and shoots were decreased in the treatment with 30 mg Fe~(2+)·L~(-1) compared with the control,while the Cd and As concentrations in roots and shoots increased slowly in the treatment with 50 mg Fe~(2+)·L~(-1).Addition of 50 mg Fe~(2+)·L~(-1) increased the shoot dry mass by 19.4%in comparison with non-Fe~(2+)treatment.Cd concentration of 50 mg Fe~(2+)·L~(-1) treatment in rice shoots was 16.7%ofnon-Fe~(2+) treatment.Moreover,As concentration office shoots at 30 and 50 mg Fe~(2+)·L~(-1) level were 59.2%and 52.2%of the control,respectively.
     3.A sand culture experiment was carried out to investigate the effect of water regimes on Cd and As uptake and rice growth.The results indicated that the flooding treatment decreased the Cd and As concentrations in roots and shoots compared with the treatment with moisture content of 75%sand water capacity.
     4.Two contrasting rice(Oryza sativa L.) cultivars,i.e.Wuyujing3 and Shanyou63,were grown in red soil to study the toxicity of As and Cd(individually or in combination) on rice seedlings.Results showed that both As and Cd treatments decreased root biomass and shoot biomass compared with the corresponding controls(neither Cd nor As treatment).However,the treatment with As significantly mitigated the Cd-induced inhibition of shoot growth for SY63,root and growth for WYJ3.Both As and Cd exposures significantly decreased the SOD and POD activities,GSH and AsA levels, while the As plus Cd treatment mitigated the decreasing effect compared with Cd treatment alone(p<0.05).The As plus Cd treatment significantly decreased As or Cd levels both in roots and in shoots compared with the As treatment alone,or Cd treatment alone,respectively.The very similar trend was also found in Cd and As contents of different organs office at the maturity stage(p<0.05).
     5.A pot experiment was conducted to study the effect of sodium silicate and calcium carbonate on Cd and As uptake by rice grown in a red soil experimentally contaminated with Cd and As.The results showed that addition of silicate or carbonate signifcantly increased the plant height,panicle length,1000-grain weight,and grains per panicle compared with the treatment with Cd and As alone.However,application of sodium silicate and calcium carbonate at higher rates significantly decreased the number of effective tillers and Cd and As contents of different organs office at the maturity stage.
     6.Silicon treatment increased the SOD and POD activities,biomass production,and the net photosynthetic rate in rice grown hydroponically with Cd or As stress.Silicon increased SOD,POD and PPO activities in rice roots exposure at 50μmol·L~(-1) As by 60.7%,49.8%and 19.2%,respectively compared with non silicon treatments. Transmission Electron Microscope(TEM) analysis showed:that serious untrastructural damage was observed in rice roots treated with 50μmol·L~(-1) Cd or 100μmol·L~(-1) As individually.Plasmolysis,concentrated cytoplasm,ambiguity of organelle were all symptoms of root cells under heavy metal stress.Some vacuole and irregular thickening cell wall were found on the stressed cells.And there existed some different granules in these cell walls.
引文
[1]曹仁林,贾晓葵,张建顺.镉污染水稻土防治研究[J].天津农林科技.1999,6:12-17.
    [2]蔡保松,陈同斌,廖晓勇,谢华,肖细元,雷梅,张国平.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报.2004,24(4):711-717.
    [3]蔡德龙,陈常友,小林均.硅肥对水稻镉吸收影响初探[J].地域研究与开发.2000,19(4):69-71.
    [4]陈保冬.丛枝菌根减轻宿主植物锌、镉毒害机理研究[D].北京:中国农业大学博士论文.2002.
    [5]陈宏,陈玉成,杨学春.化学添加剂对土壤和莴笋中重金属残留量的影响实验[J].农业工程学报,2005,21(7):120-123.
    [6]陈怀满.土壤-植物系统中的重金属污染[M].北京:北京出版社,1996.
    [7]陈怀满.土壤中Cd、P、Zn含量对水稻产量和植株中矿物浓度的影响[J].土壤学报,1985,22(1):85-92.
    [8]陈翠芳,钟继洪,李淑仪.施硅对白菜地上部吸收重金属镉的抑制效应[J].农业资源与环境科学.2007,23(1):144-147.
    [9]陈平,等.硅和砷对水稻植株生长的影响[A].王永锐.水稻文集[C].广州:中山大学出版社.1999.17-21.
    [10]陈素华,孙铁珩,周启星,吴国平.微生物与重金属间的相互作用及其应用研究[J].应用生态学报.2002,13(2):239-242.
    [11]陈涛,吴燕玉,张学询,孔庆新.1980.张士灌区镉土改良和水稻镉污染防治研究[J].环境科学.1(5):7-11.
    [12]陈同斌.重金属对土壤的污染[J].金属世界.1999,3:10-11.
    [13]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报.2002,47(3):207-210.
    [14]陈晓婷,王果,梁志超,华村章,方玲.钙镁磷肥和硅肥对Cd、Pb、Zn污染土壤上小白菜生长和元素吸收的影响[J].福建农林太学学报.2002,31(1):109-112.
    [15]慈敦伟,姜东,戴廷波,荆奇,曹卫星.镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J].麦类作物学报.2005,25(5):88-91.
    [16]崔德杰.硅钾肥对不同水分条件下冬小麦光合作用日变化的影响[J].土壤通报.1999,30(1):38-39.
    [17]杜道灯,李应学,戴碧琼.砷对水稻生长和残留影响的实验研究[J].环境科学与技术.1987,(3):11-13.
    [18]段桂兰,王利红,陈玉,徐玉新,孟祥燕,朱永官.水稻砷污染健康风险与砷代谢机制的研究[J]. 农业环境科学学报.2007,26(2):430-435.
    [19]段学军,闵航.Cd胁迫下稻田土壤生物活性与酶活性综合研究[J].农业环境科学学报,2004,23(3):422-427.
    [20]段学军,闵航.镉对稻田土壤典型微生物种[J].生态环境.2005,14(6):865-869.
    [21]傅显华,吴启堂.不同物料对作物吸收镉铅的影响[J].农业环境保护,1995,14(4):145-149.
    [22]杜彩琼,林克惠.硅素营养研究进展[J].云南农业大学学报.2002,17(2):192-196.
    [23]杜心,朱永官,刘文菊,赵晓松.汞、砷复合污染对水稻生长及吸收汞、砷的影响[J].生态毒理学报.2006,1(2):160-164.
    [24]高柳青,杨树杰.硅对小麦吸收镉锌的影响及其生理效应[J].农业环境科学,2004,20(5):246-249.
    [25]格鲁德夫SN.重金属和砷污染土壤的微生物净化[J].国外金属矿选矿,1999,10:4042
    [26]谷巍,施国新,张超英.Hg~(2+)、Cd~(2+)和Cu~(2+)对菹草光合系统及保护酶系统的毒害作用[J].植物生理与分子生物学学报,2002,28:69-74.
    [27]顾明华,黎晓峰.硅对减轻水稻的铝胁迫效应及其机理研究[J].植物营养与肥料学报,2002,8(3):360-366.
    [28]郭观林,周启星.土壤-植物系统复合污染研究进展[J].应用生态学报,2003,14(5):823-828.
    [29]郭明,陈红军,王春蕾.4种农药对土壤脱氢酶活性的影响[J].环境化学,2000,19(6):523-527.
    [30]何俊瑜.水稻突变体对镉敏感的生理生化及籽粒中镉积累的基因性差异[D].博士论文.2006,93-97.
    [31]和文祥,朱铭义,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):139-142
    [32]华珞,白铃玉,韦东普,陈世宝.有机肥-镉-锌交互作用对土壤镉锌形态和小麦生长的影响[J].中国环境科学,2002,22(4):346-350.
    [33]黄益宗,朱永官,黄凤堂,姚章恒.镉和铁及其交互作用对植物生长的影响[J].生态环境2004,13(3):406-409.
    [34]胡瑞芝,方水娇,陈桂秋.硅对杂交水稻生理指标及产量的影响[J].湖南农业大学学报(自然科学版),2001,27(5):335-338.
    [35]胡钟胜,章钢娅,王广志等.修复剂对烟草吸收污染土壤中砷的改良[J].土壤.2006,38(2):200-205.
    [36]金银龙,梁超轲,何公里,等.中国地方性砷中毒分布调查(总报告)[J].卫生研究,2003,32(6):519-540.
    [37]康立娟,李香丹,刘景华,张秀燕.砂壤水稻土添加砷对水稻生长发育和残留的研究[J].吉林农业大学学报.1996,18(3):58-61.
    [38]孔祥生,郭秀璞,张妙霞.镉胁迫对玉米幼苗生长及生理生化的影响[J].华中农业大学学报,1999,18(2):111-113.
    [39]李典友,陆亦农.土壤中砷污染的危害和防治对策研究[J].新疆师范大学学报(自然科学版).2005,24(4):89-91.
    [40]李建东,顾红,高永刚,等.石灰对重金属铅影响玉米生长的抑制效应研究[J].生态环境,2006,15(2):312-314.
    [41]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001.
    [42]李花粉,张福锁,毛达如.小麦根表铁氧化物及植物铁载体对植物吸收镉的影响[J].中国环境科学,1997,17(5):433-436.
    [43]李元,王焕校,吴玉树.镉、铁及其复合污染对烟草生理的影响[J].环境科学学报,1990,10(4):494-500.
    [44]李坤权,刘建国,陆小龙,等.水稻不同品种对镉吸收及分配的差异[J].农业环境科学学报,2003,22:529-532.
    [45]李正,杭悦字,周义峰,等.何首乌块根中砷、镉、汞和铅含量的检测及其富集特性[J].植物资源与环境学报,2005,14(2):54-55.
    [46]林舜华,陈章龙,陈清朗.汞镉对水稻叶片光合作用的影响[J].环境科学学报,1981,1(4):324-329.
    [47]林琦,陈怀满,郑春荣,陈英旭.根际和非根际土中铅、镉行为及交互作用的研究[J].浙江大学学报(农业与生命科学版)2000,26(5):527-532.
    [48]廖晓勇,肖细元,陈同斌.砂培条件下施加钙、砷对蜈蚣草吸收砷、磷和钙的影响[J].生态学报.2003,23(10):2057-2065.
    [49]梁晶,徐仁扣,赵安珍,谭文峰.砷酸根促进红壤吸附Cd(Ⅱ)的机制[J].环境化学.2007,26(4):483-486.
    [50]梁满中,谭周镃,陈良碧,等.干旱胁迫对水稻水分利用率的影响[J].生命科学研究.2000,4(4):351-355.
    [51]梁永超,丁瑞兴,刘谦.硅对大麦耐盐性影响及其机制[J],中国农业科学,1999,32(6):75-83.
    [52]刘更令等,土壤中砷对植物生长的影响--南方“砷毒田”的研究[J].中国农业科学.1985,18(4):9-16.
    [53]刘侯俊,胡向白,张俊伶,张福锁.水稻根表铁膜吸附镉及植株吸收镉的动态[J].应用生态学报.2007,18(2):425-430.
    [54]刘敏超,李花粉,夏立江,杨林书.不同基因型水稻吸镉差异及其与根表铁氧化物胶膜的关系[J].2000,20(5):592-596.
    [55]刘敏超,李花粉,夏立江,杨林书.根表铁锰氧化物胶膜对不同品种水稻吸镉的影响[J].生态 学报.2001,21(4):598-602.
    [56]刘树堂,韩效国,东先旺,王维华,钟红梅.硅对冬小麦抗逆性影响的研究[J].莱阳农学院学报.1997,14(1):21-25.
    [57]刘文菊,张西科,张福锁.根表铁氧化物和缺铁根分泌物对水稻吸收镉的影响[J].土壤学报.1999,36(4):463-469.
    [58]刘逸浓,杨居荣,马太和.农业与环境[M].化学工业出版社.1992,218-255.
    [59]罗虹,刘鹏,宋小敏.重金属镉、铜、镍复合污染对土壤酶活性的影响[J].水土保持学报.2006,20(2):94-121.
    [60]罗立新,孙铁珩,靳月华.Cd胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学.1998,18(1):72-75.
    [61]罗立新.Cd对小麦细胞膜脂过氧化的效应[J].河南科学,1999,17(增刊):47-49.
    [62]马成仓,李清芳,束良佐,等.硅对玉米种子萌发和幼苗生长作用机制初探[J].作物学报.2002,28(5):665-669.
    [63]Okuda,Tsugoshi Hiriguehi.硅对减轻水稻锰毒的作用[J].土壤学进展,1990,4:48-51
    [64]彭鸣,王焕校,吴玉树.镉、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构的变化[J].中国环境科学.1991,11:426-431.
    [65]秦淑琴,黄庆辉.硅对水稻吸收镉的影响[J].塔里木农垦大学学报.1996,8(2):17-20
    [66]邱立萍.砷污染危害及治理技术[J].新疆环境保护.1999,21(3):15-19.
    [67]秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报。1994,14:46-50.
    [68]秦淑琴,黄庆辉.硅对水稻吸收镉的影响[J].塔里木农垦大学学报.1996,8(2):17-20
    [69]任军.全国玉米高产栽培技术学术研讨会论文集[C].北京:科学出版社,1998.251-255.
    [70]单长卷,吴雪平,刘遵春.水分胁迫对冬小麦水分生理特性和产量构成三因素的影响[J].江苏农业学报.2008,24(1):11-16.
    [71]宋丽莉,王春林,董永春.水稻干旱动态模拟及干旱损失评估.应用气象学报[J].2001,12(2):226-233.
    [72]史锟,张福锁,刘学军,张旭东.不同时期施铁对水稻根表铁胶膜中铁镉含量及根系含镉量的影响[J].农业环境科学学报[J].2004,23(1):6-12.
    [73]孙艳,徐伟君,范爱丽.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J].应用生态学报.2006,17:399-402.
    [74]孙约兵,周启星,任丽萍.镉超富集植物球果蔊菜对镉.砷复合污染的反应及其吸收积累特征[J].2007,28(6):1355-1360.
    [75]腾应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环 境,2002,11(1):85-89.
    [76]韦朝阳,陈同斌,黄泽春,张学青.大叶井口边草--一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.
    [77]王国荃,吴顺华.地方性砷中毒的研究进展[J].新疆医科大学学报,2004,27(1):18-20.
    [78]王焕校.污染生态学基础[M].云南大学出版社,昆明.1990.
    [79]王济,王世杰.土壤中重金属环境污染元素的来源及作物效应[J].贵州师范大学学报(自然科学版)1996,(2):113-120.
    [80]王敬华,赵伦山,吴悦斌.山西山阴--应县一带砷中毒区砷的环境地球化学研究成果[J].现代地质.1998,2(2):243-248.
    [81]王凯荣.Cd对不同基因型水稻生长毒害影响的比较研究[J].农村生态环境.1996,12:18-23.
    [82]王利军,李家承,刘允芬.高温干旱胁迫下水杨酸和钙对柑橘光合作用和叶绿素荧光的影响[J].中国农学通报.2003,6:185-18.
    [83]王芸,张建辉,赵晓军.污灌农田土壤镉污染状况及分布特征研究[J].中国环境监测.2007,23(5):71-74.
    [84]吴启堂,陈卢,王广寿.水稻不同品种对Cd吸收累积的差异和机理研究[J].生态学报.1999,19:104-107.
    [85]吴燕玉,陈涛,李书鼎等.张士灌区镉污染综合防治技术的研究[J].中国环境科学.1985,5(3):1-7.
    [86]席玉英,郭栋生,宋玉仙,陈杰.钙、锌对玉米幼苗吸收镉、铅的影响[J].山西大学学报,1994,17(1):101-103.
    [87]夏增禄.中国上壤环境容量[M].北京:地展出版社,1992.
    [88]肖玲,梁圈社,王清华.砷对小麦种子萌发影响的探讨.西北农业大学学报[J],1998,26(6):56-60.
    [89]肖玲.砷对小麦种子萌发酶活性及呼吸强度影响的研究[J].陕西环境,1999,6(4):22-24.
    [90]小山雄生.土壤作物系的举动[J].(日)土壤肥料学杂志.1975;46(11):491-502.
    [91]谢正苗,廖敏,黄昌勇.砷污染对植物和人体健康的影响及防治对策[J].广东微量元素科学,1997,4(7):17-21.
    [92]许嘉琳,杨居荣,荆红卫.砷污染土壤的作于效应及其影响因素[J].土壤.1996,2:85-89.
    [93]徐勤松,施国新,郝怀庆.Cd、Cr(Ⅵ)单一及复合污染对菹草叶绿素含量和抗氧化酶系统的影响[J].广西植物.2001,21(1):87-90.
    [94]徐明岗,张青,曾希柏.改良剂对黄泥土镉锌复合污染修复效应与机理研究[J].环境科学.2007,28(6):1361-1366.
    [95]熊如意,宋卫锋.环境砷污染及其治理技术发展趋势[J].广东化工.2007,34(175):92-94.
    [96]严重玲,洪业汤,付舜珍,方重华,雷基祥,沈芹.Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报.1997,17(5):488-492.
    [97]杨超光,豆虎,梁永超,娄运生.硅对土壤外源镉活性和玉米吸收镉的影响[J].中国农业科学.2005,38(1):116-121.
    [98]杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报.1991,8:26-29.
    [99]杨丹慧,许春辉,王可玢,戴云玲.镉离子对菠菜叶绿体色素蛋白质复合物及激发能分配的影响[J].植物学报(英文版).1990,32(3):198-204.
    [100]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570.
    [101]杨居荣,贺建群,张国祥,毛显强.农作物对Cd毒害的耐性机理探讨[J].应用生态学报,1995,6(1):87-91.
    [102]杨居荣等.砷对土壤微生物及土壤生化活性的影响[J].土壤,1996;28(2):101-109.
    [103]杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志,1994,15(6):20-26.
    [104]杨居荣,鲍子平,张素芹.镉、铅在植物内的分布及其可溶性结合形态[J].中国环境科学.1993,13:263-268.
    [105]杨景辉.土壤污染与防治[M].北京:科学技术出版社,1995.
    [106]杨科璧,中国农田土壤重金属污染与其植物修复研究[J].世界农业.2007,340:60-63
    [107]杨志敏,郑绍建,胡霭堂.不同磷水平和介质pH对玉米和小麦镉积累的影响[J].南京农业大学学报.1999,22(1):46-50.
    [108]衣纯真,等.水稻根表及其自由空间的铁氧化物对吸收镉的影响[J].北京农业大学学报.1994,20(4):375-379
    [109]易建春,汪模辉,李锡坤.土壤中镉的污染及治理[J].广东微量元素科学.2006,13(9):1-15.
    [110]俞芸芸,朱克寅.Cd胁迫下油菜土壤生物活性和酶活性的研究[J].绍兴文理学院学报.2006,26(7):44-48.
    [111]张翠珍,邵长泉,孟凯,泉维洁,侯晓芳,邹强.小麦吸硅特点及效果的研究[J].山东农业科学.1998(4):29-31
    [112]张潮海,华村章,邓汉龙,等.水稻对污染土壤中镐、铅、铜、锌的富集规律的探讨[J].福建农业学报.2003,18(3):47-150.
    [113]张格丽.国内外农业铜污染研究现状及其发展趋势分析[J].农业环境保护.1997.16(3):114-117.
    [114]张光辉.1997.镉的生物危害效应与水分变化的关系[J].西安地质学院学报.19(3):61-66.
    [115]张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应[J].土壤.1996,28(2):64-68.
    [116]张慧,党志,姚丽贤,易筱筠,杨琛.镉芘单一污染和复合污染对土壤微生物生态效应的 影响[J].农业环境科学学报.2007,26(6):2225-2230.
    [117]张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报.2006,32(1):1-8.
    [118]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报.2000,20(3):514-523.
    [119]张金彪.镉对草莓的毒害及机理和调控研究[D].福建农林大学,2001
    [120]张敬锁,李花粉.2002.不同土层镉污染状况对水稻吸收镉的影响[J].农业环境保护.21(3):221-224.
    [121]张素芹,杨居荣.农作物对镉铅砷的吸收和运输--伤流及根系外渗分析.农业环境保护.1992,11(4):171-175.
    [122]张莉,周康.贵州省土壤重金属污染现状与对策[J].贵州农业科学.2005,33(5):114-115.
    [123]张丽娜,宗良纲,付世景,沈振国水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响[J].安全与环境学报.2006,6(5):49-52.
    [124]张青,李菊梅,徐明岗,宋正国,周世伟.改良剂对复合污染红壤中镉锌有效性的影响及机理[J].农业环境科学学报.2006,25(4):861-865.
    [125]张晓熹,罗泉达,郑瑞生,等.石灰对重金属污染土壤上镉形态及芥菜镉吸收的影响[J].福建农业学报.2003,18(3):151-154.
    [126]张西科,等.根表铁氧化物胶膜对水稻吸收Zn的影响[J].应用生态学报,1996,7(3):262-266
    [127]张西科,张福锁,毛达如.植物根表铁、锰氧化物胶膜及其在植物营养中的作用[J].土壤学进展.1995,23(6):1-8.
    [128]朱云集,王晨阳,马元喜,等.砷胁迫对小麦根系生长及活性氧代谢的影响.生态学报.2000,20(4):707-710.
    [129]赵春燕,孙军德,宁伟,何瀛,崔晓晶.重金属对土壤微生物酶活性的影响[J].土壤通报.2001,32(2):93-95.
    [130]赵磊,黄益宗,朱永官,李靖,砷、矾与镉交互作用及其对土壤吸附镉的影响[J].环境化学.2004,23(4)409-412.
    [131]赵维钧.砷污染对水稻的影响[J].云南环境科学.1998,17(3):17-19.
    [132]赵小虎,刘文清,张冲等.蔬菜种植前施用石灰对土壤中有效态重金属含量的影响[J].广东农业科学.2007,7:47-60.
    [133]曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防冶对策[J].云南农业大学学报.2005,20(3):360-365.
    [134]仲维功,杨杰,陈志德等.水稻品种及其器官对土壤重金属元素Pb、Cd、Hg、As积累 的差异[J].江苏农业学报.2006,22(4):331-338.
    [135]周建华,王永锐.硅营养缓解水稻幼苗Cd、Cr毒害的生理研究[J].应用与环境生物学报.1999,5(1):11-15
    [136]周礼恺,张志明,曹承锦,等.土壤的重金属污染与土壤酶活性[J].环境科学学报,1985,5(2):176-183.
    [137]周启星.复合污染生态学[M].北京:中国环境科学出版社,1995.
    [138]周启星,黄国宏.环境生物地球化学及全球环境变化[M].北京:科学出版社,2000.
    [139]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [140]宗良纲,丁园.土壤重金属(Cu、Zn、Cd)复合污染的研究现状[J].农业环境保护,2001,20(2):126-128.
    [141]Abedin M J,Feldmann J,and Meharg A A.Uptake kinetics of arsenic species in rice plants[J].Plant Physiology,2002,128(3):1120-1128.
    [142]Arao T,Ae N.Genotypic variation in cadmium levels of rice grain[J].Soil Sci Plant Nutri.2003,49:473-479.
    [143]Asher,C.J.,Reay,P.F.,Arsenic uptake by barley hordeum-vulgare cultivar zephyr seedlings[J].J.Plant Physiol.1979,6:459-466.
    [144]Athur E,Crews H,Morgan C.Optimizing plant genetic strategies for minimizing environmental contamination in the food chain[J].Inter J Phytoremed.2000,2:1-21.
    [145]Barcelo J,Guevara P,Poschenrieder C.Silicon amelioration of alumium toxicity in teosinte(Zea mays L.ssp.Mexicana)[J].Plant Soil,1993,154:245-255.
    [146]Bardgett RD,Speir TW,Ross DJ,Yeates GW,Kettles HA.Impact of pasture contamination by Copper,Chromium,and Arsenic timber preservative on soil microbial properties and nematodes[J].Bio.Fert.Soils.1994,18:71-79.
    [147]Beffa R,Martin HV,Pilet PE.In vitro oxidation of indoleacetic acid by soluble auxin-oxidase and peroxidases from maize root.Plant Physiol,1990,94:485-491.
    [148]Glenn A.Barry,Peter J.Chudek,Errol K.Best,Philip W.Moody.Estimating sludge application rates to land based on heavymetal and phosphorus sorption characteristics of soil [J].Water Research,1995,29(9):2031-2034.
    [149]Bingham FT,Page AL,Mahler RJ.Cadmium availability to rice in sludge-amended soil under "flood" and "non-flood"culture[J].Soil Sci.Soc.Am.J.1976,40:715-719.
    [150]Bisessar S.Effects of heavy metals on microorganisms in soils near a secondary Lead smelter[J].Wat.Air Soil Poll.1982,17:305-308.
    [151]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal Biochem,1976,72:248-254.
    [152]Brown S,Chaney R,Hallfrisch J,Ryan JA,Berti WR.In Situ Soil treatment to reduce the phyto-and bioavailability of lead,zinc,and cadmium[J].J.Environ.Qual.2004,33:522-531.
    [153]Carbonell-Barrachina A A,Bufl6-Carbonell F,Mataix-Beneyto J.Effect of sodium arsenite and sodium chloride on bean plant nutrition(macronutrients)[J].Journal of Plant Nutrition,1997,20:1617-1633.
    [154]Catherine Lapierre,Brigitte Pollet,Michel Petit-Conil.Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-Methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping[J].Plant Physiology.1999,119:153-163.
    [155]Chaoui A,Mazhoudi S,Ghorbal MH,Ferjani E E.Cadmiumand zinc induction oflipid peroxidation and effects on antioxidant enzyme activities in bean[J].Plant Sci,1997,127:139-147.
    [156]Chen H M,Zheng C R,C Tu,Shen Z.G.Chemical methods and phytoreme-diation of soil contaminated with heavy metals[J].Chemosphere,2000,41:229-234.
    [157]Chen Z,Zhu Y G,Liu W J,Meharg,Andy A.Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice(Oryza sativa L.) roots[J].New Phytol.2005,165:91-97.
    [158]Chen Z X,Silva H,Klessig DF.Active oxygen species in the induction of plant systematic acquired resistance by salicylic acid[J].Science.1993,262:1883-1886.
    [159]Cheng GW,Breen PJ.Activity ofphenylalanine ammonia-lyase(PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit[J].J Am Soc Hort Sci.1991,116:865-869.
    [160]Cheng SF,Hseu ZY,In-Situ.Immobilization of cadmium and lead by different amendments in two contaminated soils[J].Water,Air,and soil Pollution.2002,140:73-81
    [161]Cho UH,Park JO.Mercury-induced oxidative stress in tomato seedlings[J].Plant Sci,2000,156:1-9.
    [162]Chlopecka A,Adriano D C.Influence of zeolite,apatite and Fe-oxide on Cd and Pb uptake by crops[J].The Science of Total Environment.1997,207(2-3):195-206.
    [163]Cho UH,Park JO.Mercury-induced oxidative stress in tomato seedlings[J].Plant Sci.2000,156:1-9.
    [164]Cohen C K,Foxtc,Garwin D F,Garvin,and Leon V.Kochian.The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants[J].Plant Physiology.1998,116:1063-1072.
    [165]Cullen WR,Reimer KJ.Arsenic speciafion in the environment[J].Chem.Rev.1989,89:713-764.
    [166]Das P,Samantaray S,Rout GR.Studies on cadmium toxicity in plants:a review[J].Environ Pollut.1997,98:29-36
    [167]Dat J,Vandenabeele S,Vranová E,Van Montagu M,Inzé D,Van Breusegem F.Dual action of the active oxygen species during plant stress responses[J].Cell.Mol.Life Sci.2000,57:779-795.
    [168]Dally H,Hartwig A.Induction and repair inhibition of oxidative DNA damage by nickel(11) and cadmiurn(11) in mammalian cells[J].Carcinogenesis.1997,18:1021-1026.
    [169]Dhankher O P,Li Y,Rosen B P,Jin Shi,David Salt,Julie F.Senecoff,Nupur A.Sashti,Richard B.Meagher Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression[J].Nat Biotechnol,2000,20:1140-1145.
    [170]Di Toppi LS,Gabbrielli R.Response to cadmium in higher plants[J].Environ Exp Bot.1999,41:105-130
    [171]Epstein E,Silicon Annu Rev.Plant Physiol[J].Plant Mol Biol.1999,50:641-664.
    [172]Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis[J].Annu Review of Plant Physiology.1982,33:317 - 345
    [173]Fayiga Abioye O,Ma Lena Q,Cao Xinde,Rathinasabapathi B.Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.[J].Environmental Pllution,2004,132(2):289-296.
    [174]Foyer C H,Noctor G.Oxidant and antioxidant signaling in plants:a reevaluation of the concept of oxidative stress in a physiological context[J].Plant Cell Environ.2005,28:1066-1071.
    [175]Foyer C H,Lopez-DelgadoH,Dat J F.Hydrogen peroxide and glutathione-associated mechanism of acclamatory stress tolerance and signaling[J].Physiol Plant.1997,100:241-254.
    [176]Frankenberger WT,Losi ME.Applications of bioremediation in the cleanup of heavy metals and metalloids.In:Skipper HD,Turxo RF.eds.Bioremediation[J].SSSA Special Publication 43.Soil Sci.Soc.Am.J.Madison,WI.1995,173-210
    [177]Galvez L,Clark R B,Gourley L M,Maranville J W.Silicon interaction with manganese and aluminum toxicity in sorghums[J].Journal of Plant Nutrition.1987,10:1139-1147.
    [178]Gallego SM,Benavides MP,Tomaro ML.Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress[J].Plant Sci.1996,121,151-159.
    [179]Giannopolitis CN,Ries SK.Superoxide dismutase in higher plants.Plant Physiol.1977,59:309-314.
    [180]Grant,C.A.,Buckley,W.T.,Bailey,L.D.,Selles,F.Cadmium accumulation in crops [J].Canad.J.Plant Sci.1998,78:1-17.
    [181]Gupta D.K.Tohoyama H.,M.Joho,M.Inouhe,Possible roles of phytochelations and glutathione metabolism in cadmium tolerance in chickpea roots[J].J.Plant Res.2002,115:429-437.
    [182]Hardiman R T,Jacoby B.Absorption and translocation of Cd in bush beans(Phaseolus vulgaris)[J].Physiol Plant,1984,61:470-474.
    [183]Hagemeyer J,Kahle H,Breckle SW,Waisel Y.Cadmium in Fagus sylvatica L.trees and seedlings:leaching,uptake and interconnection with transpiration[J].Water Air and Soil Pollution,1986,29:347-359.
    [184]Handreck K A.Growth of ferns in soil less media,as affected by pH,iron and calcium/magnesium ratio[J].Scientia Horticulturae,1992,50:115-126.
    [185]Hao X Z,Zhou D M,Wang Y J,Cang L,Chen H M.Effects of different amendments on ryegrass growth in copper mine tailings[J].Pedersphere,2003,13(4):299-308.
    [186]He Q S,Singh B R.Crop uptake of cadmium from phosphorus fertilizers:1 Yield and cadmium content[J].Water Air SoilPollu.1994,74:251-265.
    [187]Heath RL,Packer L.Photoperoxidation in isolated chloroplast I.Kinetics and stoichemistry of fatty acid peroxidation[J].Arch Biochem Biophys,1968,25:189-198.
    [188]Hissin P J,Hilf R.A fluorometric method for determination of oxidized and reduced glutathione in tissues[J].Anal Biochem,1976,74:214-226.
    [189]Innelli MA,Pietmi R,Fiore L,Petrilli L,Massacci A.Antioxidant response to cadmium in Phragmites anstrals plants[J].Plant Physiol Biochem.2002,40:977-982.
    [190]Ito A,Takachi T,Aizawa J,Umita T.Chemical and biological removal of arsenic from sewage sludge[J].Water Sci Technol,2001,44:59-64.
    [191]Iwasski K,Matsumura A.Effect of silicon on alleviation of manganese toxicity in pumpkin(Cucurbita moschata Duch cv.Shintosa)[J].Soil Sci Plant Nutr,1999,45:909-920.
    [192]IARC,Cadmium and cadmium compounds IARC Monogr.Ewal.Carcinog.Risks Hum.1993,119-237.
    [193]Jiang H.M.,Yang J.C.,Zhang J.F.Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress[J].Environmental Pollution.2007,147:750-756.
    [194]Jiang H.M.,Yang J.C.,Zhang J.F.Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress[J].Environmental Pollution.2007,147,750-756.
    [195]Joner E J,Leywal C.Uptake of ~(109)Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza form soil amended with high and low concentrations of cadmium [J].New Physiol.1997,135:352-360.
    [196]Kawada T,Suzuki S.A review on the cadmium content of rice,daily cadmium intake,and accumulation in the kidneys[J].J Occup Health 40.1998,264-269.
    [197]Kidd PS,Llugany M,Poschenrieder C,Gunse B,Barcelo J.The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize(Zea mays L.)[J].J Exp Bot,2001,52:1339-1352.
    [198]Kim Y C,Kim K Y,Park K W,Seo T C.Influence of silicate application on the sucrose synthetic enzyme activity of tomato in perlitemedia culture[J].Journal of the Korean Society forHorticulture,2003,44(2):172-176.
    [199]Kim Sang Gyu,Kim L,Ki Woo Park Eun Woo.Silicon-induced cell wall fortification of rice leaves:a possible cellular mechanism of enhance to blast[J].Phytopathology,2002,92(10):1095-1103.
    [200]Kitagish.Heavymetal pollution in soil of Japan[M].Jokyo:Japan scientific societies press,1981.81-91.
    [201]Klocke A.Soil contamination by heavy metals.Proceedings of International Workshop on Risk Assessment of Contaminated Soil.Deventer[J].Netherlands.1986,42-54.
    [202]Kristopher AB,Choi JW,O'Connell AP,Schuch W,Lewis NG,Bolwell GP.A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification.Phytochemistry[J].2003,64:163-176.
    [203]Krupa-Z,Siedleka A,Mathis P.Cd/Fe interaction and its effects on photosynthetic capacity of primary bean leaves[A].In:Proceedings of the Xth International Photosynthesis Congress[C].Netherlands:Kluwer Academic Publishers.1995,4:621-624.
    [204]Laparra J M,Velez D,Barbera R,Farre R.Montoro R.Bioavailability of inorganic arsenic in cooked rice:practical aspects for human health risk assessments[J].J Agric Food Chem,2005,53(22):8829-8833.
    [205]Law MY,Charles SA,Halliwell B.Glutathione and ascorbic acid in spinach(Spinacia oleracea) chloroplasts,the effect of hydrogen peroxide and of paraquat[J].Biochemistry-US.1983,210:899-903.
    [206]Lee Tse Ming,Lai Hung Yu,Chen Zueng Sang.Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils[J].Chemosphere.2004,57:1459-1471.
    [207]Lee J S,Park JH,Han K S.Effects of potassium silicate on growth,photosynthesis and inorganic ion absorption in cucumber hydroponics[J].Journal of theKorean Society of Horticultural Science,2000,41(5):480-484.
    [208]Liang Y C,Wong J W C,Wei L.Silicon-mediated enhancement of cadmium tolerance in maize(Zea mays L.) grown in cadmium contaminated soil[J].Chemosphere.2005,58(4):475-484.
    [209]Liang Y C,Chen Q,Liu Q.,Zhang W.H.Ding R.X.Exogenous silicon(Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.)[J].Journal of Plant Physiology.2003,160:1157.
    [210]Liang Y C,Yang C,Shi H.Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum[J].Journal of Plant Nutrition.2001,24(2):1-15.
    [211]Ma J F,Takahash I.Soil Fertilizer and Plant Silicon Research in Japan[M].Elsevier.2002.
    [212]Ma J F.Role of silicon in enhancingthe resistance of plants tobiotic and abiotic stresses [J].Soil Sci Plant Nutr.2004,50:11-18.
    [213]Ma L Q,Komar K M,Tu C,Zhang W H,Cai Y,Elizabeth D.Kermelley.A fern that hyperaccumulates arsenic[J].Nature.2001,409:579.
    [214]Matin A R,Masscheleyn P H,Patrick W HJ.The influence of chemical form and concentration of arsenic in rice growth and tissue arsenic concentration[J].Plant and Soil.1992,139:175-183.
    [215]Maliszewska W,Dec S,Wierzbicka H,Wozniakowska A.The influence of various heavy metal compounds on the development and activity of soil micro-organisms[J].Environ.Pollut.Ser.A.1985,37:195-215.
    [216]McGrath S P,Zhao F J,Lombi E.Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils[J].Plant and Soil.2001,232(1-2):207-214.
    [217]Meharg A.A.,and J Hartley-Whitaker.Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J].New Phytol.2002,154:29-43.
    [218]Meharg AA,Macnair M R.An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L[J].New Phytologist.1990,116(1):29-35.
    [219]Meharg AA,Naylor J,Macnair MR.Phosphorus nutrition of arsenate-tolerant and nontolerant phenotypes of velvet grass[J].Journal of Environment Quality.1994,23(2):234-238.
    [220]Misbahuddin M.Consumption ofarsenic through cooked rice[J].Lancet.2003,361(9355):435-436.
    [221]Mittler R,Vanderauwera S,Gollery M,Van Breusegem F.Reactive oxygen gene network of plants[J].Trends Plant Sci.2004,9:490-496.
    [222]Morita S,Kaminaka H,Masumrra T,Tamaka K.1999.Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress signaling[J].Plant Cell Physiol,40:417-422.
    [223]Mylona Photini V.,Polidoros Alexios N.and Scandalios John G.Modulation of antioxidant responses by arsenic in maize[J].Free Radical Biology and Medicine.1998,25:576-585.
    [224]Narwal R P.Cadminm-zinc interaction in maize grown on sewer water irrigated soil[J].Arid Soil Research and Rehabilitation.1993,7:125-131.
    [225]Neumann D,Zur Nieden U.Silicon and heavy metal tolerance of higher plants[J].Phytochemistry.2001,56:685-692.
    [226]Nenmann D,Nieden Z U.Silicon and heavymetal tolerance ofhigher plants[J].Phytochemistry.2001,56:685-692.
    [227]Nishzonoh,Ichikawa H,Suzuki,Ishii F.The role of the root cell wall in the heavy metal of Athyrium yokoseense[J].Plant Soil.1987,101:15-20.
    [228]Olah A F,Mueller W C.Ultrastructural localization of oxidative and peroxidative activities in carrot suspension cell culture.Protoplasma,1981,106:231-248.
    [229]Otte M L,Rozema J,Koster L,Haarsma M S and Broekman R A.Iron plaque on roots of astertripolium L.interaction with zinc uptake[J].New Phytol.1989,111:309-317.
    [230]Ouzounidou G,Moustakas M,Eleftheriou EP.Physiological and ultrastructural effects of cadmium on wheat(Triticum aestivum L.) leaves[J].Archives of Environmental Contamination and Toxicology.1997,32(2):154-160.
    [231]Pilon-Smits E.Phytoremediation[J].Annu Rev Plant Biol,2005,56:15-39.
    [232]Piqueras A,Olmos E,Martinez-solano J R,Hellin E.Cd-induced oxidative burst in tobacco BY2 cells:time course,subcellular location and antioxidant response[J].Free Radic Res.1999,31:S33-S38.
    [233]Pizzocaro F,Torreggiani D,Gilardi G.Inhibition of apple polyphenoloxidase(PPO) by ascorbic Acid, citric Acid, and sodium Chloride. J Food Process Pres. 1993, 17: 21-30.
    [234] Prasad M N V. Cadmium toxicity and tolerance in vascular plant [J]. Envir.Exper. Botany,1995, 35(4): 525-545.
    [235] Raes Jeroen,Rohde Antje,Christensen Jqrgen Hoist, Wan de Peer Y, Boerjan W.Genome-wide characterization of the lignification toolbox in arabidopsis[J].Plant Physiology.2003, 133: 1051-1071.
    [236] Rogers L A, Dubos C, Cullis I F, Surman C, Poole M, Willment J, Mansfield S D,Campbell M M. Light, the circadian clock, and sugar perception in the control of lignin biosynthesis [J].Journal of Experimental Botany. 2005, 56(416): 1651-1663.
    [237] Rogalla H, Rmheld V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L [J].Plant Cell Environ. 2002,25:549-555.
    [238] Romero-Puertas MC, Mc Carthy I, Sandalio LM, Palma, J.M.; Corpas. Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes [J]. Free Rad Res, 1999, 31: S25-S31.
    [239] Root R A, MILLER R J, KOEPPE D E. Uptake of cadmium: its toxicity, and effect on the iron ratio in hydroponically grown corn [J].J Environ Qual. 1975,4 (4): 473-476.
    [240] Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot.1999,41:105-130.
    
    [241] Sadig, M.et al. Water, Air and Soil Pollution, 1983,20(4):369-377.
    [242] Salin ML. Toxic oxygen species and protective systems of the chloroplasts [J]. Physiol Plant, 1988,72:681-689.
    [243] Sch(?)tzend(?)bel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content,and differentiation in scots pine roots [J]. Plant Physiol. 2001, 127: 887-898.
    [244] Shaw B P. Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings ofPhaseolus aureus [J]. Biologia Plantarum. 1995,37: 587-596.
    [245] Singh BP.Cadmium and fluoride uptake by oats and rapefrom phosphorus fertilizers in two different soils [J].NorwegianJ.Agric.Sci.1990,4: 239-250.
    [246] Simon S, Le T P.A bacterial view of the periodic table: genes and proteins for toxic inorganic ions[J].J Ind Microbiol Biotechnol. 2005,32: 587-605.
    [247] Smith S E and Read DJ. Mycorrhizal Symbiosis [M].2~(nd) edition.Academic Press, London.1997, 126-160.
    
    [248] Somashekaraiah B V, Padmaja K, Prasad A R K. Phytotoxicity of cadmium ions on germinating seedlings of mung bean(Phaseolus vulgaris ) involvement of lipid peroxides in chlorophyll degradation[J].Physiol Plant.1992,85:85-89.
    [249]Sparrow,L.A.,Salardini,A.A.Bishop,A.C.Field studies of cadmium in potatoes (Solanum tuberosum L.).Ⅱ.Responseof cvv.Russet and Kennebec to two double superphophates of different cadmium concentration[J].Aust.J.Agric.Res.1993,44:855-861.
    [250]Su G X,An Z F,Zhang W H,Liu Y L.Light promotes the synthesis of lignin through the production of H_2O_2 mediated by diamine oxidases in soybean hypocotyls[J].Plant Physiol.2005,162:1297-1303.
    [251]Sun Q.,Wang X.R.,Ding S.M.,Yuan X.F.,2005.Effects of interactions between cadmium and zinc on phytochelation and glutathione production in wheat(Triticum aestivum L),Environ.Toxicol.20,195-201.
    [252]Tabatabai MA.Effects of trace elements on urease activity in soils[J].Soil Biol.Biochem.1977,9:9-13.
    [253]Taylor GJ,Crowder AA.Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants.American Journal of Botany.1983,70:1254-1257.
    [254]Trivedi S,Endei L.Effects of cadmium and.lead on the accumulation of Ca~(2+)and K~+on the influx and translocation of K+in wheat of low and high K~+statue[J].Physiologic Plant.1992,(84):94-100.
    [255]Van Assche F,Clijsters H.Effects of metals on enzyme activity in plants[J].Plant Cell Environ.1990,13:195-206.
    [256]Vanghn Kevin C.,Duke Stephen O.Tentoxin-induced loss of plastidic polyphenol oxidase [J].Physiol.Plant 1981,53:421-428.
    [257]Vaughn.K.C.and Duke.S.O.Tissue localization ofpolyphenol oxidase in Sorghum[J].Protoplasma.1981,108:319-327.
    [258]Vaughn.K.C.and Duke.S.O.Function of polyphenol oxidase in higher plants[J].Physiol Plant.1984,60:106-112.
    [259]Vaughn K C,et al.Polyphenol oxidase:the chloroplast oxidase with no,established function[J].Physiol Plant.1988,72:659-665.
    [260]Wang J R,Zhao F J,Meharg A A,Raab A,Feldmann Joerg,McGrath Steve P.Mechanisms of arsenic hyperaccumulation in Pteris vittata:uptake kinetics,interactions with phosphate and arsenic speciation[J].Plant physiology.2002,130:1552-1561.
    [261]Wang KR.Tolerance of cultivated plants to cadmium and their utilization in polluted farmland soils(in Chinese,with English abstract)[J].Acta Biotechnol.2002,22:189-98.
    [262]Weigel HJ and Jager HJ.Subcellular distribution and chemical form of cadmium in bean plant[J].Plant Physiol.1980,65:480-482.
    [263]Wu F B,Zhang GE.Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings[J].Bull Environ Contam Toxicol.2002,69,219-27.
    [264]Xie Z M,Huang C Y,He Z L.Chemical equilibria of arsenic in soils[J].Advances in Environmental Science.1998,6(1):22-37.
    [265]Xie Z M,.Huang C Y.Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil[J].Communications in Soil Science and Plant Analysis.1998,29(15):2471-2477.
    [266]Xu Y.H.,Tsunenori Nkajima,akira ohki.Adsorption and removal of arsenic(V) from drinking water by aluminium-loaded shirasu-zeolite[J].Journal of hazardous materials.2002,B92:275-287.
    [267]Yang XE,Long XX,Ye ZQ,Ni WZ,He ZL,Calvert DV,Stoffella PJ.Cadmium uptake and accumulation in the zinc-hyperaccumulating species Sedum alfredii Hance[J].Plant and Soil.2004,259:181-189.
    [268]Ye Z,Baker A J M,Wong M-H,Zinc,Willis Arthur J.lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface[J].Aquatic Botany.1998,61:55-67.
    [269]Zhang G H.Relation between biological harmfulness of cadmium and water variation.Journal of Xi'an College of Geology[J].1997,19(3):61-66.
    [270]Zhou Q X,Gao Z M.Compound Contamination and Secondary Ecological Effects of Cd and As in Soil-alfalfa Ecosystems[J].Journal of Environment Science.1994,6(3):330-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700