典型生物及其碳酸酐酶在岩溶生态系统中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国家虽然已将推进“西南岩溶地区石漠化综合治理”列为重要目标,但目前对石
    漠化形成以及良性生态恢复的机理研究滞后于国家目标。本文选择代表西南不同类
    型岩溶生态系统的重庆金佛山、六盘水米苏嘎、广西弄拉、桂林岩溶试验场等四个
    岩溶区,研究比较土壤微生物和酶活性特征,探讨其与岩溶环境的相关性及生态作
    用,同时研究碳酸酐酶在岩溶生态环境中的分布,探明其稳定性,并探索微生物碳
    酸酐酶活性表达的环境条件以及微生物碳酸酐酶与岩溶生态系统元素迁移之间的关
    系。本文研究成果将为揭示土壤微生物和土壤酶在岩溶生态系统中的作用,以及碳
    酸酐酶在自然界风化作用中的地位及其岩溶生态效应提供科学依据,并为岩溶石漠
    化综合治理提供科学支撑。
     首先研究比较西南不同类型岩溶生态系统土壤微生物的数量、分布和组成,结
    果表明其与具有不同地形和植被条件的岩溶生态系统的特性高度相关。在考察的几
    种岩溶生态系统中, 代表石漠化生态环境的六盘水米苏嘎的微生物数量最低。以岩溶
    试验场为例,研究不同地貌部位的微生物生理群数量分布和土壤酶活性的时空特征
    及其与土壤肥力因子的关系,结果表明洼地和垭口土壤水解酶类活性较高,与这两
    个地貌部位微生物生理群数量较多的结果相对应,同时,土壤微生物数量和土壤水
    解酶类活性一般与不同地貌部位的土壤有机质、全氮、有效氮、速效磷之间呈显著
    或极显著正相关, 这既说明土壤微生物数量或土壤酶活性可作为评价岩溶土壤肥力
    水平的重要指标之一,而且也为不同地貌部位的土地利用方式提供了一定的理论依
    据。
     对能加速石灰岩溶解的碳酸酐酶的来源及分布进行了研究,发现碳酸酐酶不仅
    广泛存在于西南岩溶区的植物(包括植物新鲜叶片和枯落叶)和微生物中,而且广
    泛存在于自然岩溶土壤环境中。根据土壤碳酸酐酶活性呈现明显的垂直分布和季节
    变化以及植物根际附近土壤碳酸酐酶活性较高的结果,认为植物根系及土壤微生物
    是土壤碳酸酐酶的主要来源。通过监测不同季节典型岩溶生态系统土壤中的碳酸酐
    酶活性,探明了碳酸酐酶在岩溶土壤环境中的相对稳定,为进一步深入研究碳酸酐
    ★ 国家自然科学基金重大研究计划项目(No.90202016),国家自然科学基金面上项目
    (No.40152002),国家自然科学基金青年基金项目(No.40302034)及国土资源部岩溶动力学开放研
    究实验室资助项目
     I
    
    
    酶与岩溶生态系统脆弱程度的相关性奠定了基础。
     通过室内模拟实验研究了植物碳酸酐酶以及微生物胞外碳酸酐酶的稳定性,结
    果表明,植物碳酸酐酶和微生物胞外碳酸酐酶均具有良好的热稳定性,钙、镁、锌、
    钴等岩溶环境主要金属离子和SO4 、H2PO4 、NO3 、NO2 、Cl-、Br-、I-等几种阴离
     2- - - -
    子分别对碳酸酐酶活性有一定的影响,但在一定离子浓度范围内酶活性基本稳定。
    同时,以从西南岩溶生态系统土壤中分离出的细菌GLRT102Ca为代表,研究了微生
    物胞外碳酸酐酶活性表达的环境条件,结果表明岩溶环境中的土壤微生物能够表达
    胞外碳酸酐酶活性,活性高低则因岩溶环境条件(如温度、pH以及金属离子和阴离
    子的种类和浓度等)的不同而不同。
     不同微生物和不同温度处理条件下的土柱模拟试验表明,有微生物作用的土柱
    的Ca2+和Mg2+的总淋失量都大于对照(P<0.01),说明微生物对岩溶系统的Ca、Mg元
    素迁移具有较大促进作用,同时温度的影响也比较大,较高的温度环境有利于Ca、
    Mg元素的迁移。扫描电镜显示埋入经微生物处理土柱的试片表面较对照(未埋入土
    柱和埋入灭菌土柱的试片)有明显侵蚀现象。另一方面,各处理的淋出液中均检测
    出不同程度的碳酸酐酶活性,说明土柱中的微生物产生了胞外碳酸酐酶并被淋出。
    相关分析表明淋出液中碳酸酐酶活性与Ca2+总淋失量关系密切,呈显著正相关,说明
    碳酸酐酶是影响Ca2+淋失的主要因素之一。此外通过微生物离体模拟溶蚀试验,进一
    步证明了微生物胞外碳酸酐酶对石灰岩溶蚀的显著驱动作用,碳酸酐酶粗酶液体系
    对石灰岩溶解释放的Ca2+量分别是碳酸酐酶活性受抑制体系的2.4倍和双蒸水体系的
    11.73倍。
     综上所述,土壤微生物数量和土壤酶活性可作为西南岩溶生态系统脆弱程度的
    评价指标。本文弄清了能加速灰岩溶解速率的碳酸酐酶的来源与分布,探明了碳酸
    酐酶在岩溶生态环境中的稳定性,以及岩溶土壤典型微生物表达胞外碳酸酐酶活性
    的环境条件,为研究碳酸酐酶的岩溶作用机理奠定了基础,同时,也为进一步从碳
    酸酐酶的分子多态性角度探索岩溶地质环境的演变提供了新思路。室内模拟试验发
    现微生物胞外碳酸酐酶是岩溶动力系统的重要驱动力,这对于阐明微生物碳酸酐酶
    在岩溶作用及元素迁移中的地位具有重要意义。
One of the important national object is to promote comprehensive treatment of rocky
    desertification in karst regions of Southwest China. However, studies on mechanisms of
    rocky desertification formation and ecological rehabilitation are lagged behind the national
    object. Four karst areas including Jinfu Mountain in Chongqing, Misuga in Liu Panshui,
    Nongla in Guangxi and the Guilin Yaji Karst Experimental Site in Guangxi, were selected
    as representing different types of karst ecosystem in this thesis. Through analyzing
    characteristics of soil microorganisms and enzyme activities, their relationship with karst
    environment and their ecological effects would be discussed. At the same time, the
    distribution and stability of carbonic anhydrase in karst environment were
    investigated.The environmental factors in expressing extracellular activities of microbial
    carbonic anhydrase, and its relationship with element migration in karst ecosystem were
    explored. The results in this thesis will provide scientific bases for opening out the roles of
    soil microorganism and enzymes in karst ecosystem, and the roles of carbonic anhydrase
    in natural weathering and its karst ecological effects. The results in this thesis will also
    help to provide scientific support for comprehensive treatment of rocky desertification.
     The comparative study on the amount, distribution and composition of soil
    microorganisms in different types of karst ecosystem of Southwest China was conducted.
    The results showed that the amount, distribution and composition of soil microorganisms
    correlated highly with characteristics of the karst ecosystems, including their different
    geochemical environments and vegetation. Of the four kinds of karst ecosystems
    investigated, the amount of soil microorganism at Misuga in Liu Panshui representing
    environment of rock desertification was the lowest. Exemplified by the Yaji Karst
    Experimental Site, the distribution of soil microbial physiological community as well as
    the seasonal and spatial characteristics of soil enzyme activities at different
    ★ Jointly supported by the Major Research Plan of the National Natural Science Foundation
    (No.90202016), the General Program of the National Natural Science Foundation (No.40152002), the
    Youth Foundation Program of the National Natural Science Foundation (No.40302034), and the Karst
    Dynamics Laboratory, Ministry of Land and Resources
     III
    
    
    geomorphological locations and their relationship with soil fertility factors were
    investigated. The results indicated that there were higher activities of soil hydrolase in
    Depression and Saddle, which were consistent with the result of more amount of soil
    microbial physiological community in these two geomorphological locations. Moreover,
    the amount of soil microorganisms and soil enzyme activities correlated highly with soil
    nutrients such as soil organic matter, total nitrogen, available nitrogen, and available
    phosphorus in different geomorphological locations. These results illuminated that the
    amount of soil microorganisms and soil enzyme activities could not only be made as the
    important indicators in evaluating karst soil fertility level, but also provide a certain
    theoretical base for land use in different geomorphological locations.
     The origin and distribution of carbonic anhydrase, which could accelerate limestone
    dissolution, were explored. It was found that carbonic anhydrase activity could be detected
    widespread not only in plants (including plant fresh leaves and litters) and microorganisms
    from karst ecosystems of Southwest China, but also in natural karst soil environments.
    Moreover, the variation of carbonic anhydrase activity in soils with season was almost in
    accordance with seasonal changes in the quantities of soil microorganisms in karst
    ecosystems, and that higher carbonic anhydrase activities could be detected in soils of plant
    rhizosphere. These facts implied that plant roots and soil microorganisms serve as
    important source
引文
[1] 袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展, 2001,
     16(4): 461~ 466.
    [2] Yuan D. The carbon cycle in karst. Z Geomorph N F, 1997,108: 91~102
    [3] 吴应科,毕于远,郭纯清. 西南岩溶区岩溶基本特征与资源、环境、社会、经
     济综述. 中国岩溶,1998,17(2): 141~150
    [4] Sweeting M M. Karst in China, its geomorphology and environment. Berlin:
     Springer Verlag, 1995. 265
    [5] 袁道先等著. 中国岩溶动力系统.北京:地质出版社,2002. 1~7
    [6] 潘根兴,曹建华. 表层带岩溶作用:以土壤为媒介的地球表层生态系统过程—
     —以桂林峰丛洼地岩溶系统为例.中国岩溶,1999, 18(4): 287~295
    [7] Anderson J M. Ecology for the Environmental Sciences: Biosphere, Ecosystems and
     Man. London: Edward Amold Ltd. 1981
    [8] Gary M, McAfee J R, Wolf C L. Glossary of Geology. Washington D C: American
     Geological Institute, 1973. 805
    [9] Yuan Daoxian. On the Karst Ecosystem. Acta Geologica Sinica, 2001, 75(3):
     336~338
    [10] 曾群望,杨双兰,高宏光等著. 云南生物地质环境研究. 昆明:云南科技出版
     社,2001
    [11] 袁道先.“岩溶作用与碳循环”研究进展. 地球科学进展,1999,14(5): 425~432
    [12] Yuan Daoxian. IGCP448: World Correlation of Karst Ecosystem. Episodes, 2000,
     23(4): 285~286
    [13] Tuyet D. Characteristics of karst ecosystems of Vietnam and their vulnerability to
     human impact. Acta Geologica Sinica, 2001,75: 325~329
    [14] Tuyet D, Quyet D X. Some initial data on karstic ecosystem in Vietnam—Example
     of Cuc Phuong National Park. In: Yuan Daoxian, Zhang Cheng (Eds). Karst
     Processes and the Carbon Cycle. Beijing: Geological Publishing House, 2002.
     187~190
    [15] Zhang Cheng, Yuan Daoxian, Jiang Zhongcheng, et al. Characteristics of karst
     ecosystem in South China and strategy for sustainable resources development. In:
     Yuan Daoxian, Zhang Cheng (Eds). Karst Processes and the Carbon Cycle. Beijing:
     112
    
    
    Geological Publishing House, 2002. 200~207
    [16] Zhang Cheng, Yao Changhong, Guo Fang (Eds). IGCP448 Newsletter. Guilin:
     Karst Dynamics Laboratory, 2001
    [17] Zhang Cheng,Yuan Daoxian. New development of IGCP 448 “World
     Correlation of Karst Ecosystem (2000-2004)”. Episodes, 2001, 24(4): 279~280
    [18] Jiang Z C, Zhang D D. Labile content of elements in karst environments and its
     effects to vegetation in South China—a case study in Nongla, Guangxi. Newsletter,
     2003: 58~67
    [19] 殷鸿福,谢树成,周修高.微生物成矿作用的新进展和新动向.地学前缘, 1994,
     1(3/4): 148~156
    [20] Golubic S, Krumbein W, Schneider J. The carbon cycle. In Carr N G, Whitton B A
     eds. The Biology of Cyanobacteria. Blachwell Scientific Publications Ltd, 1978.
     29~42
    [21] Krumbein W E, Dyer B D. This planet is alive——weathering and biology, a
     multi-factted problem. In Drever J I ed. The Chemistry of Weathering. Series C.
     Mathematical and Physical Sciences, 1984. Vol.149: 143~173
    [22] 王福星,曹建华,黄俊发等. 生物岩溶. 北京:地质出版社,1993. 61~62
    [23] Jones R J. Aspects of the biological weathering of limestone pavements. Proceedings
     Geologists Association, 1965, 76: 421~433
    [24] Folk R L, Roberts H H, Moore C H. Black phytokarst from hell, Cayman Islands,
     British West Indies. Geol. Soc. Amer. Bull., 1973, 84: 2351~2360
    [25] Bull P A, Laverty M. Observations on phytokarst. Zeitschrift fur Geomorphologie.
     NF., 1982, 26: 437~457
    [26] Stoddart D R. Discriptive reef terminology. In: Stoddart D R ed. Coral reefs research
     methods. Paris: UNESCO, 1978
    [27] Palmer A Sn. Geomorphic interpretation of karst features. In: La Fleur R G ed.
     Groundwater as a geomorphological agent. Boston: Allen & Unwin, 1984.
     193~209
    [28] Schneider J. Biological and inorganic factors in the destruction of limestone coasts.
     Contr. Sedimentology, 1976, 6: 112
    [29] Schneider J. carbonate construction and decomposion by epilithic and endolithic
     113
    
    
    micro-organisms in salt and freshwater. In: Flugel E ed. Fossil Algae. Berlin &
     NewYork: Springer-Verlag, 1977. 248~260
    [30] 施奈德.J., 1977. 咸水和淡水中石面微生物和石内微生物对碳酸盐岩地构成与
     分解. 化石藻类(中译本),科学出版社,1984. 201~210
    [31] Viles H A. Biokarst: review and prospect. Progress in Physical Geography, 1984, 8:
     523~542
    [32] Viles H A. Organisms and karst geomorphology. In: Viles H A. Ed.
     Biogeomorphology. Oxford: Basil Blackwell, 1988. 319~350
    [33] 王福星,曹建华,江利登等. 岩溶洞穴叠层石. 古生物学报,1994,33(2):
     172~179
    [34] 王福星,曹建华,黄俊发. 初论藻类生物岩溶作用. 桂林工学院学报,1995,
     15(2): 149~156
    [35] 王福星,曹建华. 广西弄岗自然保护区生物岩溶显微形态之发育特征(英文).
     中国岩溶, 1996,15(1~2): 58~64
    [36] 王福星,曹建华,黄俊发. 洞穴弱光带的生物岩溶. 中国岩溶,1998,17(1):
     41~48
    [37] 张捷, 李升峰,陈舒泛. 石灰岩表面溶针孔的初步研究——以川西北九寨沟、
     南斯拉夫第那尔喀斯特区域为例. 中国岩溶,10(2): 151~160
    [38] 张捷.地衣喀斯特侵蚀作用的初步研究.地理学报. 1993, 48(5): 437~446
    [39] 张捷.喀斯特侵蚀过程中藻类作用的微形态研究.地理学报,1993,48(3):235~243
    [40] 张捷, 李升峰,周游游. 细菌、真菌对喀斯特作用的影响研究及其意义. 中国岩
     溶,16(4): 362~369
    [41] 张捷, 包浩生. 生物喀斯特及其微型态研究. 地球科学进展,1995,10(5):
     457~463
    [42] 曹建华. 岩溶土壤系统中生物作用与有机碳转移对 CaCO3-CO2-H2O 体系的调
     节与控制[博士学位论文]. 南京农业大学博士学位论文, 2001
    [43] 曹建华,袁道先等. 岩溶动力系统中的生物作用机理初探. 地学前缘, 2001, 8(1):
     203~209
    [44] 曹建华,袁道先.石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义.地球化
     学,1999,28(3): 248~255
    [45] Cao Jianhua, Wang Fuxing. Reform of carbonate rock subsurface by crustose lichens
     114
    
    
    and their environmental significance. Acta Geologica Sinica. 1998, 72(1): 94~99
    [46] Crowther J. A comparision of the rock table and water hardness methods for
     determining chemical erosion rates on Karst surface. Annual Geomorphology,
     1983, 27(1): 55~64
    [47] Song Linhua, Liang Fuyuan. Distribution of CO2 in Soil Air Affected by Vegetation
     in the Shilin National Park. Acta Geologica Sinica, 75(3): 288~293
    [48] 袁道先,蔡桂鸿. 岩溶环境学. 重庆出版社,1988
    [49] 曹建华,潘根兴,袁道先等. 桂林岩溶洼地生态系统中大气 CO2 动态及环境意
     义. 地质论评, 1999,45(1): 105~111
    [50] Crowther J. Ecological observations in tropical karst terrain, West Malaysia: Ⅲ.
     Dynamics of the vegetation-soil- bedrock system. Journal of Biogeography, 1987,14:
     157~164
    [51] Berner R A. The rise of plants and their effect on weathering and atmospheric CO2.
     Science, 276: 544~546
    [52] 李彬,袁道先.岩溶区碳循环与大气 CO2 源汇关系———以贵州岩溶区为例.袁
     道先,谢云鹤.岩溶与人类生存、环境、资源和灾害.广西师范大学出版社,1996.
     64~ 70.
    [53] May E, Lewis F J, Pereira S et al. Miocrobial deterioration of building stone.
     Biodeterioration Abstracts, 1993, 7(2):109~123
    [54] Koestler R J, Charola A E, Wypski M, et al. Proc. 5th Int. congress on deterioration
     and conservation of stone, Vol. 2. Ed. G Felix, Presses Polytechniques Romandes,
     Lausanne, 1985. 617~626
    [55] Ollier C.Weathering. London: Longman,1984. 56
    [56] Kellerman K F, Smith N R. Baterial precipitation of calcium carbonate. Journal of
     the Washington Academy of Sciences, 1914, 4: 400~402
    [57] Greenfield L J. Metabolism and concentration of calcium and magnesium and
     precipitation of calcium carbonate by a marine bacteria. Annals of the New York
     Academy of Sciences, 1963, 109: 25~45
    [58] Krumbein W E. Photolithotropic and chemoorganotrophic activity of bacteria and
     algae as related of beach rock formation and degradation. Geomicrobiology Journal,
     1979, 1: 139~203
    [59] Andreo B, Carrasco F, Linan C, et al. Epigenic CO2 controlling the drip water
     115
    
    
    chemistry and speleothem growth in a Mediterranean Karst Area(Nerja Cave,
     Southern Spain). In: Yuan Daoxian, Zhang Cheng. Eds. Karst Processes and the
     Carbon Cycle. Beijing: Geological Publishing House, 2002. 51~64
    [60] Xu Shengyou, He Shiyi. The CO2 regime of soil profile and its drive to dissolution
     of carbonate rock. In: Yuan Daoxian, Zhang Cheng. Eds. Karst Processes and the
     Carbon Cycle. Beijing: Geological Publishing House, 2002. 83~89
    [61] Krawczyk W E, Pulina M. C. Contribution of CO2 to processes of chemical
     denudation of carbonate rocks. In: Yuan Daoxian, Zhang Cheng. Eds. Karst
     Processes and the Carbon Cycle. Beijing: Geological Publishing House, 2002. 82
    [62] Jakucs L. Morphogenetics of karst region. Bristol: Adam Hilger,1977.109~150
    [63] 服部勉.微生物生态入门. 谭惠慈,吴人坚译.上海: 复旦大学出版社,1988.
     43~46
    [64] Chafetz H S, Folk R L.Travertines: Depositional morphology and the bacterially
     controlled consituents. J.of Sed. Petrology, 1984, 54:129~131
    [65] Danin A, Garty J. Distribution of cyanobacteria and lichens on hillsides of the Negev
     Highlands and their impacts on biogenic weathering. Zeitschrift fur Geomorphologie,
     1983, 27(4): 423~444
    [66] 张捷,李升峰,陈舒泛等.南京梁代石刻微侵蚀研究.地理学报,1994,49(5):
     418~428
    [67] 曹建华,潘根兴,袁道先.不同植物凋落物对土壤有机碳淋失的影响及岩溶效
     应.第四纪研究,2000,20(4): 359~366
    [68] 周运超,潘根兴,张平究等.添加有机物料对岩溶系统中碳转移及灰岩溶蚀的影
     响研究.中国岩溶,2002,21(3): 153~158
    [69] Susan A, W, William J U. The effect of organic acids on plagioclase dissolution rate
     and stoichiometry.Geochim Cosmochim Acta, 1992, 57: 2725~2736
    [70] AD 麦克拉伦,GH 波得森,J 斯库舍斯等著(闵九康,关松萌,王维敏等译).土壤
     生物化学.北京:农业出版社,1984. 81~95
    [71] 曹建华,潘根兴,袁道先.柠檬酸对石灰岩溶蚀动力模拟及岩溶意义. 中国岩
     溶,2001,20(1): 1~4
    [72] Liu, Z H, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in
     H2O-CO2 solutions in turbulent flow:the role of the diffusion boundary layer and the
     116
    
    
    slow reaction H2O+CO2?H++HCO3 . Geochimica et Cosmochimica Acta, 1997, 61,
     -
     2879~2889
    [73] 刘再华, Dreybrodt W. 不同 CO2 分压条件下的白云岩溶解动力学机理.中国科学
     (B 辑), 2001, 31(4): 377~384
    [74] 刘再华.碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气 CO2 沉降中的意义.
     地球学报, 2001,22(5): 477~480
    [75] 关松荫.土壤酶及其研究法.北京:农业出版社,1986
    [76] Meldrum N N, Roughton F J W. Carbonic anhydrase: its preparation and properties.
     Nature, 1933, 80: 113~142
    [77] Veitch F P, Blankenship L C. Carbonic anhydrase activity in bacteria. Nature, 1963,
     197: 76~77
    [78] Badger M R, Price G D. The role of carbonic anhydrase in photosynthesis. Annu Rev
     Plant Physiol Plant Mol Biol, 1994, 45: 369~392
    [79] Henry R P. Multiple roles of carbonic anhydrase in cellular transport and metabolism.
     Annu Rev Physiol, 1996, 58: 523~538
    [80] Hewett-Emmett D, Tashian R E. Functional diversity, conservation and convergence
     in the evolution of the α-,β- and γ-carbonic anhydrase gene families. Mol
     Phylogenet Evol, 1996, 5: 50~77
    [81] Mitsuhashi S, Mizushima T, Yamashita E, et al. X-ray structure of β-carbonic
     anhydrase from the red alga Porphyridium purpureum reveals a novel catalytic site
     for CO2 hydration. J Biol Chem, 2000, 275: 5521~5526
    [82] Alber B E, Ferry J G. A carbonic anhydrase from the archaeon Methanosarcina
     thermophila. Proc Natl Acad Sci USA, 1994, 91: 6909~6913
    [83] Smith K S, Jakubzick C, Whittam T S, et al. Carbonic anhydrase is an ancient
     enzyme widespread in prokaryotes. Proc Natl Acad Sci USA, 1999, 96:
     15184~15189
    [84] Hiltonen T, Karlsson J, Palmqvist K, et al. Purification and characterization of an
     intracellular carbonic anhydrase from the unicellular green alga Coccomyxa. Planta,
     1995, 195: 345~351
    [85] Strop P, Smith K S, Iverson T M, et al. Crystal structure of the ‘cab’type beta class
     117
    
    
    Methanobacterium thermoautotrophicum. J Biol Chem, 2001, 276: 10299~10305
    [86] Tripp B C, Smith K, Ferry J G. Carbonic anhydrase: new insights for an ancient
     enzyme. J Biol Chem, 2001, 276: 48615~48618
    [87] Smith K S, Cosper N J, Stalhandske C, et al. Structural characterization of a
     Methanoarchael beta-carbonic anhydrase. J Bacteriol, 2000, 182: 6605~6613
    [88] Cronk J D, Endrizzi J A, Cronk M R, et al. Crystal structure of E.coli alpha-carbonic
     anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci, 2001, 10:
     911~922
    [89] Jiang W, Gupta D. Structure of the carbonic anhydrase Ⅵ (CA6) gene: evidence for
     two distinct groups within the α-CA gene family. Biochem J, 1999, 344: 385~390
    [90] Kimber M S, Pai E F. The active site architecture of Pisum sativum beta-carbonic
     anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J, 2000, 19:
     1407~1418
    [91] Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacol Ther, 1997,
     74:1~20
    [92] Northrop DB, Simpson FB. Kinetics of enzymes with isomechanisms: britton
     induced transport catalyzed by bovine carbonic anhydrase Ⅱ , measured by
     rapid-flow mass spectrometry. Arch Biochem Biophys, 1998, 352: 288~292
    [93] Graham D, Reed M L, Patterson B D, et al. Chemical properties, distribution, and
     physiology of plant and algal carbonic anhydrases. Ann N Y Acad Sci, 1984, 429:
     222~237
    [94] Kisiel W, Graf G.. Purification and characterization of carbonic anhydrase from
     Pisum sativum. Phytochemistry, 1972, 11: 113~117
    [95] Atkins C A. Occurrence and some properties of carbonic anhydrase from legume
     root nodules. Phytochemistry, 1974, 13: 93~98
    [96] Atkins C A, Patterson B D, Graham D. Plant carbonic anhydrases. Plant Physiol,
     1972, 50: 218~223
    [97] Everson R G, Slack C R. Distribution of carbonic anhydrase in relation to the C4
     pathway of photosynthesis. Phytochemistry, 1968, 7: 581~584
    [98] Poincelot R P. Intracellular distribution of carbonic anhydrase in spinach leaves.
     Biochim Biophys Acta,1972,258: 637~642
     118
    
    
    [99] Stemler A. Carbonic anhydrase associated with thylakoids and photosystem II
     particles from maize. Biochim Biophys Acta, 1986, 850: 97~107
    [100]Kimpel D L, Togasaki R K, Miyachi S. Carbonic anhydrase in Chlamydomonas
     reinhardtii Ⅰ. Localization. Plant Cell Physiol, 1983, 24: 255~259
    [101]Katzman G L, Carlson J, Marcus Y, et al. Carbonic anhydrase activity in isolated
     chloroplasts of wild-type and high-CO2 dependent mutant of Chlamydomonas
     reinhardtii as studied by a new assay. Plant Physiol, 1994, 105: 1197~1202
    [102]Soltes-Rak E, Mulligan M E, Coleman J R. Identification and characterization of a
     gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bacteriol,
     1997, 179: 769~774
    [103]Smith D R, Doucette-Stamm L A, Deloughery C, et al. Complete genome sequence
     of Methanobacterium thermoautotrophicum deltaH: functional analysis and
     comparative genomics. J Bacteriol, 1997, 179: 7135~7155
    [104]Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol,
     1990, 215: 403~410
    [105]Price G D, Badger M R, Bassett M E, et al. Involvement of plasmalemmasomes and
     carbonic anhydrase in photosynthetic utilization of bicarbonate in Chara corallina.
     Aust J Plant Physiol, 1985, 12: 241~256
    [106]Hatch M D,Burnell J N. Carbonic anhydrase activity in leaves and its role in the
     first step of C4 photosynthesis. Plant Physiol, 1990, 93: 380~383
    [107]Fridlyand L E. Models of CO2 concentrating mechanisms in microalgae taking into
     account cell and chloroplast structure. BioSystems, 1997, 44: 41~57
    [108]Badger M R, Price G D. The role of carbonic anhydrase in the photosynthesis.
     Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45:
     369~392
    [109]Ananyev G, Wydrzynski T, Renger G, et al. Transient peroxide formation by the
     manganese-containing, redox-active donor side of photosystem Ⅱupon inhibition of
     O2 evolution with lauroylcholine chloride, Biochim Biophys Acta, 1992, 1100:
     303~311
    [110]Maria M M, Stemler A. Oxidation-reduction potential dependence of photosystemⅡ
     carbonic anhydrase in maize thylakoids. Biochemistry, 1994, 33: 4432~4438
     119
    
    
    [111]Braus-Stromeyer S A, Schnappauf G, Braus G H, et al. Carbonic anhydrase in
     Acetobacterium woodii and other acetogenic bacteria. J Bacteriol, 1997, 179:
     7197~7200
    [112]Mukhopadhyay B, Stoddard S F, Wolfe R S. Purification, regulation, and molecular
     and biochemical characterization of pyruvate carboxylase from Methanobacterium
     thermoautotrophicum strain deltaH, J Biol Chem, 1998, 273: 5155~5166
    [113]Smith, K S, Ferry, J G. Prokaryotic carbonic anhydrases. FEMS Microbiology
     Reviews, 2000,24, 335~366
    [114]Pocker Y, Meany JE. The catalytic versatility of carbonic anhydrase from
     erythrocytes: the enzyme-catalyzed hydration of acetaldehyde. J Am Chem Soc.
     1965, 87: 1809~1811
    [115]Pocker Y, Stone JT. The catalytic versatility of erythrocyte carbonic anhydrase: the
     enzyme-catalyzed hydrolysis of ρ-nitrophenyl acetate. J Am Chem Soc, 1965, 87;
     5497~5498
    [116]Henkart P. Guidotti G, Edsall JT. Catalysis of the hydrolysis of
     1-fluro-2,4-dinitrobenzene by carbonic anhydrase. J Biol Chem, 1968, 243:
     2447~2449
    [117]Tu C K, Thomas H G, Wynns G C, et al. Hydrolysis of 4-nitrophenyl acetate
     catalyzed by carbonic anhydrase Ⅲ from bovine skeletal muscle. J Biol Chem,
     1986, 261: 10100~10103
    [118]Kaiser E T, Lo K W. The carbonic anhydrase catalyzed hydrolysis of
     2-hydroxy-5-nitro-ω-toluenesulfonic acid sultone. J Am Chem Soc, 1969, 91:
     4912~4918
    [119]Pullan L M, Noltmann E A. Specific arginine modification at the phosphatase site of
     muscle carbonic anhydrase. Biochemistry, 1985, 24: 635~640
    [119]Tarafdar J C, Meena S C, Kathju S. Influence of straw size on activity and biomass
     of soil microorganisms during decomposition. Eur. J. Soil Biol., 2001, 37: 157~160
    [120]李阜棣. 当代土壤微生物学的活跃研究领域. 土壤学报,1993,30(3): 229~236
    [121]Sarathchandra S U, Ghani A, Yeates G W. Effect of nitrogen and phosphate
     fertilisers on microbial and nematode diversity in pasture soils. Soil Biology &
     Biochemistry, 2001, 33: 953~964
     120
    
    
    [122]Jenkinson D S, Ladd J N. Microbial biomass in soil:measurement and turnover. In:
     Powl E A, Ladd J N. Eds. Soil Biochemistry, Vol. 5, Dekker, New York,1981.
     415~471
    [123]Blagodatsky S A, Richter O. Microbial growth in soil and nitrogen turnover: a
     theoretical model considering the activity state of microorganisms. Soil Biol.
     Biochem., 1998, 30: 1743~1755
    [124]Ajwa H A, Dell C J, Rice C W. Changes in enzyme activities and microbial biomass
     of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biology
     and Biochemistry, 1999, 31: 769~777
    [125]许光辉, 郑洪元. 土壤微生物分析方法手册. 北京: 农业出版社, 1986
    [126]周礼恺.土壤酶学.北京: 科学出版社,1987
    [127]陈思凤.土壤肥力物质基础及其调控.北京:科学出版社,1990
    [128]张鼎华,杨玉盛,邹双全.林木套种砂仁土壤微生物区系及其生化特性和土壤肥
     力变化的研究.林业科学,1988,24(4): 258~265
    [129]Dick R P. Soil enzyme activities as indicators of soil quality.In: Doran J W,
     Coleman D C, Bezdicek D F, et al.(Eds.), Defining Soil Quality for a Sustainable
     Environment. American Society of Agronomy, Madison, WI, 1994. 107~124
    [130]蒋忠诚. 广西弄拉峰丛石山生态重建经验及生态农业结构优化. 广西科学,
     2001, 8(4): 308~312
    [131]袁道先,戴爱德,蔡五田等.中国南方裸露型岩溶峰丛山区岩溶水系统及其数
     学模型的研究-以桂林丫吉村为例.桂林:广西师范大学出版社,1996.3~7
    [132]龚子同. 中国土壤系统分类:理论·方法·实践. 科学出版社,1999. 537~607
    [133]鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社,2000
    [134]中国科学院南京土壤研究所编著. 土壤微生物研究法. 北京:科学出版社,1985
    [135]Holt J G. Bergey’s Manual of Determinative Bacteriology . Baltimore: Williams and
     Wilkins,1994
    [136]Zak D R, Tilman D, Parmenter R R, et al. Plant production and soil microorganisms
     in late-successional ecosystems: a continental-scale study. Ecology 1994,75:
     2333~2347
    [137]蒋忠诚.广西弄拉白云岩环境元素的岩溶地球化学迁移. 中国岩溶,1997,16(4):
     304~312
     121
    
    
    [138]Black J G. Microbiology principles and applications (3rd ed). Prentice Hall, Upper
     Saddle River, New Jersey, 1996. 147~148
    [139]蒋忠诚. 论南方岩溶山区生态环境的元素有效态. 中国岩溶,2000, 19(2):
     123~128
    [140]Kahindi J H P, Woomer P, George T, et al. Agricultural intensification, soil
     biodiversity and ecosystem function in the tropics: the role of nitrogen-fixing
     bacteria. Applied Soil Ecology, 1997, 6: 55~76
    [141]李阜棣,喻子牛,何绍江. 农业微生物学实验技术. 北京:中国农业科技出版
     社,1996. 122~127
    [142](日) 土壤微生物研究会编. 土壤微生物实验法. 北京:科技出版社,1983
    [143]张成娥, 陈小莉, 郑粉莉. 子午岭林区不同环境土壤微生物生物量与肥力关系
     研究. 生态学报,1998,18(2): 218~222
    [144]黄韶华,王正荣,周华荣等. 新疆荒漠区土壤微生物与土壤环境关系的初步探
     讨. 新疆环境保护,1997,19(1): 81~84
    [145]龙健, 黄昌勇, 腾应等. 我国南方红壤矿山复垦土壤的微生物特征研究. 水土
     保持学报, 2002, 16 (2): 126~132
    [146]Fang W, Peng S L. Development of species diversity in the restoration process of
     establishing a tropical man-made forest ecosystem in China. Forestry Ecology and
     Management, 1997, 99: 185~196
    [147]蒋忠诚. 峰丛石山的岩溶作用及生态环境元素迁移典型研究[博士学位论文].
     北京:中国地质科学院研究生部,1997
    [148]张成娥,陈小利.林地砍伐开垦对土壤酶活性及养分的影响. 生态学杂志, 1998,
     17(6): 18~21
    [149]张银龙, 林鹏. 秋茄红树林土壤酶活性时空动态. 厦门大学学报(自然科学版),
     1999, 38(1): 129~136
    [150]杨万勤,钟章成,韩玉萍. 缙云山森林土壤酶活性的分布特征、季节动态及其与
     四川大头茶的关系研究. 西南师范大学学报(自然科学版),1999, 24(3):
     318~324
    [151]连玉武,张其水.林地土壤酶活性季节动态.厦门大学学报(自然科学版),1989,
     28(6): 662~666
     122
    
    
    [152] 关松荫 , 沈桂 琴 , 孟昭鹏等 . 我国主要土壤剖面酶活性状况 . 土壤学
     报,1984,21(4): 368~381
    [153]DuxburyJ M, Tate R L. The effect of soil depth and crop cover on enzymatic
     activities in Pahokee muck. Soil Sci. Soc. Amer. J., 1981, 45: 322~328
    [154]Pancholy S K, Rice E L. Soil enzymes in relation to old field succession: Amylase,
     cellulase, invertase, dehydrogenase and urease. Soil Sci. Soc. Amer. Proc., 1973, 37:
     47~50
    [155]麦克垃伦 A D(闵九康, 关松荫译).土壤生物化学.北京:农业出版社,1984
    [156]袁道先,蒋忠诚. IGCP379“岩溶作用与碳循环”在中国的研究进展. 水文地质
     工程地质,2000, (1): 49~51
    [157]Brownell P F, Bielig L M, Grof C P L. Increased carbonic anhydrase activity in
     leaves of sodium-deficient C4 plants. Australian Journal of Plant Physiology, 1991,
     18: 589~592
    [158]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin
     phenol reagent. The Journal of Biological Chemistry, 1951,193: 265~275
    [159]牟金明, 宋日, 姜亦梅等. 不同作物根茬还田对土壤酶活性的影响. 吉林农业
     大学学报, 1997, 19(4):65~69
    [160]潘根兴,曹建华,何师意等. 岩溶土壤系统对空气 CO2 的吸收及其对陆地系统碳
     汇的意义——以桂林丫吉村岩溶试验场的野外观测和模拟实验为例. 地学前缘,
     2000,7(4): 580~587
    [161]何师意,潘根兴,曹建华等. 表层岩溶生态系统碳循环特征研究. 第四纪研究,
     2000, 20(4): 384~390
    [162]Lane T W, Morel F M M. Regulation of carbonic anhydrase expression by zinc,
     cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant
     Physiol , 2000, 123: 345~352
    [163]Pronina N A, Allakhverdiev S I, Kupriyanova E V, et al. Carbonic anhydrase in
     subchloroplast particles of pea plants. Russ J Plant Physiol, 2002, 49: 303~310
    [164]Lu Y K, Stemler A J. Extrinsic photosystem II carbonic anhydrase in maize
     mesophyll Chloroplasts. Plant Physiol, 2002, 128: 643~649
    [165]Furla P, Allemand D, Orsenigo M N. Involvement of H1-ATPase and carbonic
     anhydrase in inorganic carbon uptake for endosymbiont photosynthesis. Am J Physiol
     Regulatory Integrative Comp Physiol, 2000, 278: R870~R881
     123
    
    
    [166]Kump L R, Brantley S L, Arthur M A. Chemical weathering, atmospheric CO2 , and
     climate. Annu Rev Earth Planet Sci, 2000, 28: 611~617
    [167]Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2
     sink. Environ Geol, 2000, 39: 1053~1058
    [168]Park Y I, Karlsson J, Rojdestvenski I, et al. Role of a novel photosystem Ⅱ
     -associated carbonic anhydrase in photosynthetic carbon assimilation in
     Chlamydonomas reinhardtii. FEBS letters, 1999, 444:102~105
    [169]侯和胜.几种底栖海藻的碳酸酐酶活性及其对光合作用的影响. 海洋与湖泊,
     1997, 28:193~198
    [170]Johansson J M, Forsman C. Kinetics Studies of Pea Carbonic Anhydrase. Eur J
     Biochem, 1993, 218: 439~446
    [171]Atkins C, Smith P, Mann A, et al. Localization of carbonic anhydrase in legume
     nodules. Plant, Cell & Environment, 2001, 24: 317~320
    [172]王夔主编. 生命科学中的微量元素.中国计量出版社, 1996. 582~584
    [173]刘云娜, 谈夫.一价阴离子对碳酸酐酶热致构像变化的影响.化学通报, 1997, (6):
     39~40
    [174]郭敏亮, 高煜珠. 植物的碳酸酐酶. 植物生理学通讯, 1989, (3): 75~80
    [175]Pocker Y, Bjorkquist L, Bjorkquist D W. Zinc(II) and cobalt(II) bovine carbonic
     anhydrases. Comparative studies and esterase activity. Biochemistry, 1977, 16 (18):
     3967~3973
    [176]曹建华,袁道先,潘根兴.岩溶生态系统中的土壤.地球科学进展,2003, 18(1):
     37~44
    [177]杨继镐,汪柄根,唐俊.广西南部林地土壤与适生树种.北京:中国林业出版社,
     1995. 24~83
    [178]Lane T W and Morel F M M.Regulation of Carbonic Anhydrase Expression by Zinc,
     Cobalt, and Carbon Dioxide in the Marine Diatom Thalassiosira weissflogii. Plant
     Physiology, 2000, 123: 345~352
    [179]毛连山, 宋向阳, 勇强等. 培养温度对里氏木霉合成木聚糖酶和纤维素酶的影
     响. 林产化学与工业, 2003, 23(1): 67~70
    [180]Janette P E, John R C. Regulation of periplasmic carbonic anhydrase expression in
     Chlamydomonas reinhardtii by acetate and pH. Plant Physiology, 1994,
     124
    
    
    106:103~108
    [181]王富芳,李路,刘尚义等. 作物必须微量元素及其生理功能.作物杂志,1994, (4):
     34~36
    [182]Ohki K. Zinc concentration in soybean as related to growth, photosynthesis, and
     carbonic anhydrase activity. Crop Sci, 1978, 18(1-2):79~82
    [183]Sasaki H, Hirse T, Watanabe Y, et al. Carbonic anhydrase activity and CO2- transfer
     resistance in Zn- deficient rice leaves. Plant Physiol, 1998, 118: 929~934
    [184]Pandey N, Sharma C P. Carbonic anhydrase activity and stomatal morphology
     associated with zinc deficiency-induced changes in FABA bean. Phytomorphology,
     2000, 50(3,4): 261~265.
    [185]董文轩,沈隽,孟繁静. 锌铜处理对苹果属植物叶内CA活性的影响.果树科学,
     1995, 12(1):10~14
    [186]陈雄文,戴新宾,张荣铣. pH值和氮素对莱氏衣藻(Chlamydomonas reinhardtii)
     胞外碳酸酐酶活性的影响. 南京农业大学学报,2000, 23(1): 27~29
    [187]蒋忠诚. 岩溶动力系统中的元素迁移. 地理学报,1999,54(5): 438~ 444
    [188]蒋忠诚. 中国南方表层岩溶系统的碳循环及其生态效应. 第四纪研究,2000,
     20(4): 315~324
    [189]H.马斯纳著,曹一平等译. 高等植物的矿质营养. 北京农业大学出版社,1985
    [190]韦启潘,陈鸿昭,吴志东等. 广西弄岗自然保护区石灰土的地球化学特征. 土
     壤学报,1983,20(1): 30~42
    [191]温琰茂,曾水泉,潘树荣等. 中国东部石灰岩土壤元素含量分异规律研究. 地
     理科学,1994,14(1): 16~21
    [192]Jiang Z C, Zhang D D. Labile content of elements in karst environments and its
     effects to vegetation in South China——a case study in Nongla,Guangxi.
     Newsletter, 2003: 58~67
    [193]季宏兵,欧阳自远,王世杰等.白云岩风化剖面的元素地球化学特征及其对上陆
     壳平均化学组成的意义——以黔北新蒲剖面为例.中国科学(D辑),1999, 29(6):
     504~513
    [194]王世杰,季宏兵,孙承兴.贵州平坝县白云岩风化壳中稀土元素分布特征之初
     125
    
    
    步研究. 地质科学, 2001, 36(4): 474~480
    [195]孙承兴,王世杰,季宏兵. 碳酸盐岩风化成土过程中 REE 超常富集及 Ce 强烈
     亏损的地球化学机理. 地球化学, 2002, 31(2): 119~128
    [196]Hongbing Ji, Shijie Wang, Ziyuan Ouyang, et al. Geochemistry of red residua
     underlying dolomites in karst terrains of Yunnan - Guizhou Plateau I. The
     formation of the Pingba profile. Chemical Geology, 2004, 203: 1 ~ 27
    [197]Hongbing Ji, Shijie Wang, Ziyuan Ouyang, et al.Geochemistry of red residua
     underlying dolomites in karst terrains of Yunnan-Guizhou Plateau II. The mobility
     of rare earth elements during weathering. Chemical Geology, 2004, 203: 29~50
    [198]卫迦,杨立铮,孙晋玉等. 碳酸盐岩成土的元素迁移及其对烤烟的影响. 中国岩
     溶, 1997, 16(1): 49~56
    [199]曾群望,杨双兰著. 云烟生产的土壤地质背景. 昆明:云南科技出版社, 1993
    [200]熊尚发,丁仲礼,刘东生. 南方红土元素迁移特征及其古环境意义.土壤学报,
     2001,38(1): 25~31
    [201]Lee J S, Chon H T, Kim K W. Migration and dispersion of trace element in the
     rock-soil-plant system in areas underlain by black shales and slates of the Okchon
     Zone, Korea. Journal of Geochemical Exploration, 1998, 65: 61~78
    [202]彭训才. 岩石中钾的分布特征带及对地球化学元素迁移机理的探讨.地质地球
     化学.1999,27(1): 63~68
    [203]李长生. 生物地球化学的概念与方法──DNDC 模型的发展.第四纪研究.2001,
     21(2): 89~100
    [204]Ledin M. Accumulation of metals by microorganisms — processes and importance
     for soil systems. Earth-Science Reviews, 2000, 51: 1~31
    [205]Sarathchandra S U, Ghani A, Yeates G W, et al. Effect of nitrogen and phosphate
     fertilisers on microbial and nematode diversity in pasture soils. Soil Biology &
     Biochemistry, 2001, 33: 953~964
    [206]Gestel M V, Merckx R, Vlassak K. Spatial distribution of microbial biomass in
     microaggregates of a silty-loam soil and the relation with the resistance of
     microorganisms to soil drying. Siol Biol Biochem, 1996, 28: 503~510
    [207]Lamontagne S, Schiff S L. Response of soil microorganisms to an elevated nitrate
     input in an open Pinus banksiana – Cladina forest. Forest Ecology and
     126
    
    
    Management, 2000, 137: 13~22
    [208]Joergensen R G, Scheu S. Response of soil microorganisms to the addition of
     carbon, nitrogen and phosphorus in a forest Rendzina. Soil Biology and
     Biochemistry, 1999, 31: 859~866
    [209]van Aarle I M, Soderstrom B, Olsson P A. Growth and interactions of arbuscular
     mycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biology &
     Biochemistry, 2003, 35:1557~1564
    [210]Agnelli A, Ugolini F C, Corti G,et al. Microbial biomass-C and basal respiration of
     fine earth and highly altered rock fragments of two forest soils. Soil Biology &
     Biochemistry 2001, 33: 613~620
    [211]Newman D K, Banfield J F. Geomicrobiology: how molecular-scale interactions
     underpin biogeochemical systems. Science, 2002, 296: 1071~1076
    [212]王彦辉.酸化森林生态系统对环境变化的响应. 北京:华文出版社, 2001. 181
    [213]Cabrera M L, Kissel D E. Potential mineralizable nitrogen in disturbed and
     undisturbed soil samples. Soil Sci Soc Am J, 1988a, 52: 1010~1015
    [214]James L C, Kennedy D A, Nagel T. Soil response to acid deposition, Wind River
     Mountains, Wyoming: Ⅱ. Column leaching studies. Soil Sci Soc Am J, 1991, 55:
     1433~1439
    [215]Stroo H F, Alexander M. Avaiable nitrogen and nitrogen cycling in forest soils
     exposed to simulated acid rain. Soil Sci Soc Am J, 1986, 50:110~114
    [216]Hodson M E, Langan S J. A long-term soil leaching column experiment
     investigating the effect of variable sulphate loads on soil solution and soil drainage
     chemistry. Environmental Pollution 1999, 104: 11~19
    [217]Wagai R, Sollins P. Biodegradation and regeneration of water-soluble carbon in a
     forest soil: leaching column study. Biol Feril Soils, 2002, 35:18~26
    [218]Griessbach E F C, Copin A, Deleu R , et al. Mobility of a siliconepolyether studied
     by leaching experiments through disturbed and undisturbed soil columns. The
     Science of the Total Environment, 1998, 221: 159~169
    [219]Bajracharya K, Barry D A. Analysis of one-dimensional multispecies transport
     experiments in laboratory soil columns. Environmental International, 1995, 21:
     687~691
     127
    
    
    [220]Li Z, Shuman L M. Mobility of Zn, Cd and Pb in soils as affected by poultry litter
     extract-Ⅰ. Leaching in soil columns. Environmental Pollution, 1997, 95: 219~226
    [221]Starrett S K, Christian N E, Austin T A. Comparing dispersivities and soil chloride
     concentrations of turfgrass-covered undisturbed and disturbed soil columns. Journal
     of Hydrology, 1996, 180: 21~29
    [222]Chen Y X, Zhu G W, Tian G M, et al. Phosphorus and copper leaching from redged
     sediment applied on a sandy loam soil: column study. Chemosphere, 2003, 53: 179~
     1187
    [223]Zambo L. The experimental examination of microbial origin corrosion aggressivity
     of Karst Soils. Acta Carsologica, 1998, XXVⅡ/1, 261~275
    [224] 潘根兴,藤永忠.土壤-灰岩岩溶系统中水文地球化学动力学过程模拟及其意
     义.地球化学,2000,29(3): 272~276
    [225]Banfield J F, Barker W W, Welch S A, et al. Biological impact on mineral
     dissolution: Application of the lichen model to understanding mineral weathering in
     the rhizosphere. Proc. Natl. Acad. Sci. USA, 1999, 96: 3404~3411
    [226]Dreybrodt W, Lauckner J, Liu Z, et al. The kinetics of the reaction H2O+CO2→
     HCO-3+H+ as one of the rate limiting steps for the dissolution of calcite in the system
     H2O-CO2-CaCO3. Geochim Cosmochim Acta, 1996, 60: 3375~3381
    [227]Andersson S, Nilsson S I. Influence of pH and temperature on microbial activity,
     substrate availability of soil-solution bacteria and leaching of dissolved organic
     carbon in a mor humus. Soil Biology & Biochemistry, 2001, 33: 1181~1191
    [228]Nedwell D B. Effect of low temperature on microbial growth: lowered affinity for
     substrates limits growth at low temperature. FEMS Microbiology Ecology, 1999, 30:
     101~111
    [229]Gardini F, Martuscelli M, Caruso M C, et al. Effects of pH, temperature and NaCl
     concentration on the growth kinetics, proteolytic activity and biogenic amine
     production of Enterococcus faecalis. International Journal of Food Microbiology,
     2001, 64:105~117
    [230]Chen T H, Hashimato A G. Effects of pH and substrate: inoculum ratio on batch
     methane fermentation. Bioresource Technology, 1996, 56:179~186
    [231]Beyenal H, Tanyolac A. A combined growth model of Zoogloea ramigera
     128
    
    
    including multisubstrate, pH, and agitation effects. Enzyme Microb. Technol., 1997,
     21: 74~78
    [232]Ellis S, Howe M T, Goulding K W T. Carbon and nitrogen dynamics in a grassland
     soil with varying pH: effect of pH on the denitrification potential and dynamics of
     the reduction enzymes. Soil Biology & Biochemistry, 1998, 30: 359~367
    [233]Marschner P, Marino W, Lieberei R. Seasonal effects on microorganisms in the
     rhizosphere of two tropical plants in a polyculture agroforestry system in Central
     Amazonia, Brazil. Biol Fertil Soils, 2002, 35: 68~71
    [234]袁道先. 现代岩溶学与地球变化研究. 地学前缘,1997,4 (1):17~25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700