含裂纹损伤船舶结构的剩余极限强度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶结构强度是反映船舶结构安全性能的一项重要指标,是船舶结构设计、建造和使用过程中最主要的考查因素之一。板和加筋板作为船舶结构最基本的结构形式,其强度评估显得尤为重要。结构存在的缺陷以及使用过程中复杂载荷形式的影响,使得结构的强度会显著降低,甚至导致结构的破坏。所以正确评估受损船舶结构的剩余极限强度具有较高的研究价值和工程实用价值。
     裂纹是最为常见的一种损伤缺陷,然而,由于含裂纹结构应力分布的复杂性以及剩余强度影响参数的多样性,其极限强度的评估方法与完整结构强度的评估方法有所不同。目前,这方面的系统研究较少,以分析裂纹问题为目的的断裂力学理论还具有一定的局限性,并且研究结果很难直接应用到工程上。船舶结构剩余强度的研究作为一个新的研究领域,它目前仍处于发展阶段,进一步研究各种损伤形式对结构极限承载能力的影响规律,建立合理的结构损伤分析模型是船舶与结构强度研究的重要方向。
     本文的目的是综合分析当前含裂纹结构剩余强度研究的概况,对双向拉伸载荷作用下的含裂纹的船舶结构的剩余极限强度的评估方法做一较为深入系统的研究,综合考察复杂载荷作用下裂纹缺陷以及载荷形式对船舶结构剩余极限强度的影响,给出带裂纹构件的极限强度评估方法;同时在考虑了船舶结构存在的初始挠度的基础上,研究轴向压缩载荷作用下的含中心穿透裂纹板的剩余极限强度变化规律。
     本文的研究工作表明:非线性有限元法能够合理地分析裂纹对结构剩余极限强度的作用,裂纹的存在对结构的剩余极限强度有削弱作用,在工程结构强度评估中应该受到足够的重视。同时,船舶结构中的多裂纹分布的数量和分布位置是随机的,本文的工作为含随机多裂纹板的剩余极限强度分析奠定了基础。
The strength of the ship hull structures is one of the most important index to expressing the safety and reliability of the ships. It is also one of the most important factors which have to be reviewed during the design, construct and the service of the ships. Plates and stiffened panels are two kinds of basic structure components of the ships and ocean engineering structures, the strength evaluation of these structures is very important. The initial damage and the complex loading condition will reduce the strength of the structures significantly. It is of crucial importance and to estimate the ultimate strength of the damaged structures.
     Crack is one of the most common types of damages in the aging ships. As a result of the complexity of the stress distribution around the crack and the diversity of the parameters, the strength assessment of cracked structures is different from the integrated ones. Systematic analyses are insufficient currently and the research method relating to crack problems is generally limited to theoretical elastic fracture mechanics or fully plastic estimation method, which could not be conveniently applied in engineering practice. As one of the new research field, the ultimate strength analysis of the ship structures is still in its initial developing phase. The investigation of the relationship between the damages and the strength of the structures and the establishment of the reasonable analysis model are new research directions of the assessment of the strength of the ships.
     The objective of this thesis is to investigate the general situation of the analysis of the ultimate residual strength of the cracked structures. A serious of researches are carried out to find out how the dimension of crack and the loading condition affect the ultimate residual strength of cracked structures under two direction of tensive stresses. At last we analyze the ultimate strength of cracked structures under compressive stresses considering the effect of the initial deformation.
     The work we done in this thesis shows that: we can find out how the crack affect the ultimate residual strength of the structures using the nonlinear finite element method; the existence of the crack weaken the strength of the structures definitely. We have to pay enough attention to the effect of the cracks when evaluating the strength of the ships and ocean engineering structures. Actually, the number and the location of the cracks in the ships in service are stochastic. Based on the conclusion we obtained in this thesis, we can analyze the strength of structure with random multiple crack damages in succession
引文
[1] ANSYS, Release10.0 Documentation for ANSYS;
    [2] Antoniou A C(1980), On the maximum deflection of plating in newly built ships[J], Ship Research,1980:24(1):31-39;
    [3] Ayhan.A.O.(2009),Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements[J], International Journal of Solids and Structures,2009:46(3-4):196:810
    [4] Behzad, M., Meghdari, A., Ebrahimi(2008), A, A linear theory for bending stress-strain analysis of a beam with an edge crack[J],Engineering Fracture Mechanic;2008: 75 (16): 4695- 4705;
    [5] Cao J.J., Yang G.J., J.A. Pacher(1998), Crack modeling in FE analysis of circular tubular joints, F.M. Burdekin[J], Engineering Fracture Mechanics, 1998:61:537-553;
    [6] Carlsen C A, Czujko J(1978), The specification of post-welding distortion tolerance for stiffened plates in compression[J], The Structure Engineering, 1978:56A(5):133-141;
    [7] Chen YZ(1983), A Dugdale problem for a finite internally cracked plate[J], Engineering, Fracture Mech, 1983:17(6):579-583;
    [8] Degdale F, Erdogan F(1988), Interface crack in a nonhomogeneous elastic medium[J], Int.J.Engng.Sci., 1988: 26(6): 559-568;
    [9] Dugdale DS(1960),Yielding of steel sheets containing slits[J],J. Mech. Phys. Solids,1960: 100-104;
    [10] Erdogan F, Kaya A C, Joseph P F(1991), The model III crack problem in bonded nonhomogeneous interfacial zonet[J], J.Appl.Mech, 1991: 58(2): 419-427;
    [11] Erdogan F, Ozturk M(1992), Diffusion problem in bonded nonhomogeneous materious with an interface cut[J], Int.J.Engng.Sci.,1992:30(10):1507-1523;
    [12] Faulkner D.(1975), A review of effective plating for use in the analysis of stiffened plating in bending and compression[J], Journal Ship Research, 1975:19:1-17;
    [13] Feddersen C.E(1971),Evaluation and prediction of the residual strength of centre cracked tension panels[J],ASTM STP 486,1971:50-78.
    [14] Horne,M.R, Narayanan.r(1976),Strength of straightened welded steel stiffened plates[J], Structural Engineer,1976:54 (11):437-443;
    [15] Hu Yong, Cui weicheng(2003), A Simplified Analytical Method to Predict the Ultimate Strength of Unstiffened Plates Under Combined Loading Including Edge Shear[J],船舶力学, 2003:第7卷第6期:60-73;
    [16] Kmiecik M, Jastrzeki T, Kuzniar J(1995), Statistics of ship plating distortions[J], Matine Structures, 1995:8:119-132;
    [17] Kuang J.H.(1997), The tip plastic strain energy applied to ductile fracture initiation under mixed-mode loading[J], Engineering Fracture Mechanics, 1997:58(1/2):61-70;
    [18] Masaoka K()1996, Development and application of an efficient ultimate strength analysis method for ship structures[Dr.Eng.Dissertation], Japan:Osaka University, 1996;
    [19] M.M.Alinia, S.A.A.Hosseinzadeh, H.R.Habashi(2007), Influence of central cracks on buckling and post-buckling behaviour of shear panels[J], Thin-Walled Structures 45(2007)422-431
    [20] Nishimura Toshihiko(2002), Strip yield analysis of two collinear unequal cracks in an infinite sheet[J], Engineering Fracture Mechanics, 2002:69:1173-1171;
    [21] NTS(1998), Design of steel structures[M], N-114, Oslo:Norwegian Technology Standards Institution, 1998;
    [22] Paik,J.K. et al(2000), On advanced buckling and ultimate strength design of ship plating[J], Trans.SNAME, 2000:Vol.108;
    [23] Paik.J.K(2002), Anil Kumar Thayamballi, Ultimate Limit State Design of Steel-Plated Structures[M], Korea :JOHN WILEY & SONS,LTD,2002;
    [24] Paik J.K(2002),Thayamballi A.K,Ultimate strength of aging ships. Proceedings of the Institution of Mechanical Engineers[J],Part M, Journal of engineering for the maritime environment, 2002:216(M1), P57-77;
    [25] Paik, J.K., Satish Kumar, Y.V., Lee, J.M.(2005), Ultimate strength of cracked plate elements under axial compression or tension[J],Thin-Walled Structures, 2005:43, 237-272,
    [26] Paik.J.K, Y.V.Satish Kumar, Jea Myung Lee(2005), Ultimate strength of cracked plate elements under axial compression or tension[J], Thin-Walled Structures 2005: 43 :237-272
    [27] Paik, J.K(2008), Residual ultimate strength of steel plates with longitudinal cracks underaxial compression-experiments[J], Ocean Engineerin;2008: 35 (17-18): 1775-1783
    [28] Rice.J.R()1972, Some remarks on elastic crack tip fields[J], International journal of solids and structures,1972:8(A):751-758;
    [29] Shao YongBo, Lie Seng Tjhen()2005, Parametric equation of stress intensity factor for tubular K-joint under balanced axial loads[J], International Journal of Fatigue, 2005: 27:666-679;
    [30] Sih G.C(1991),Mechanics of Fracture Initiation and Propagation,Kluwer Academic Publishers[M],Dordrecht/Boston/London,1991;
    [31] Smith C S et al(1988), Strength and stiffness of ships’plating under in-plane compression and tension[M], RINA, 1988:130: 277-296;
    [32] Talei-Faz B., Brennan F.P., Dover W.D.(2004), Residual static strength of high strength steel cracked tubular joints[J], Marine structures, 2004:17:291-309;
    [33] Vafai A., Estekanchi H.E.(1999), A parametric finite element study of cracked plates and shells[J], Thin-Walled Structures, 33, 1999:211-229;
    [34] Xia,Lin,Shih,C.Fong,Hutchinson,John W(1995), Computational approach to ductile crack growth under large scale yielding conditions[J], Journal of the Mechanics and Physics of Solids, 1995:43 (3):389-413;
    [35]陈铁云,陈伯真(1984),船舶结构力学[M],北京:国防工业出版社,1984;
    [36]程侠,于克萍,邰卫华(2003),金属板材中裂纹尖端区的损伤分析[J],长安大学学报(建筑与环境科学版),2003:第20卷,第1期:61-64;
    [37]崔洪斌等(2007),特征构件疲劳裂纹扩展试验研究[J],试验室研究与探索,2007:第26卷第10期:275-277;306
    [38]葛森等(2008),含多处损伤未加筋铝合金壁板的剩余强度[J],航空学报,2008:第29卷,第二期:411:415
    [39]胡勇(2003),基于“第一原理”的船体结构强度评估系统[博士论文],上海:上海交通大学,2003;
    [40]姜翠香,赵耀,刘土光(2004),含中心裂纹的有限加筋板Dugdale模型[J],中国造船,2004第45卷,第1期:66-71;
    [41]蒋玉川,胡兴福(2005),复合型裂纹扩展的最大塑性区尺寸准则[J],四川大学学报(工程科学版),2005:第37卷,第4期:12-14;
    [42]荆洪阳等(1996),屈强比对高强度钢断裂韧性的影响[J],金属学报,1996:第32卷,第3期:266-268;
    [43]李成,郑艳萍,卢慧敏(2008),尖角裂纹周围应力场分析[J],船舶力学,2008:第12卷第2期:258:263
    [44]李鹤林(1999),石油管道工程[M],北京:石油工业出版社,1999
    [45]李建军,高峰(2005),断裂参量在ANSYS中的计算分析[J],河北理工学院学报,2005:第27卷,第1期:1-3;
    [46]李晓延,许棠,范引鹤(1994),疲劳裂纹尖端塑性变形的研究[J],南京航空航天大学学报,1994:第26卷,第5期:701-704;
    [47]李亚智,黄其青,傅祥烔(2003),含裂纹结构剩余强度的一种估算方法[J],机械强度,2003:第25卷,第1期:71-75;
    [48]李永,宋健,张志民(2003),梯度功能力学[M],北京:清华大学出版社,2003;
    [49]李永东(2005),理论与应用断裂力学[M],北京:兵器工业出版社,2005;
    [50]刘鸿文(1987),板壳理论[M],杭州:浙江大学出版社,1987;
    [51]刘相新,孟宪颐(2006),ANSYS基础与应用教程[M],北京:科学出版社,2006;
    [52]刘应华,岑章志,徐秉业(1999),含缺陷结构的塑性极限分析[J],固体力学学报,1999:第20卷,第3期:12-218;
    [53]倪尔有(1994),裂纹尖端的塑性区分析[J],鞍山钢铁学院学报,1994:第17卷,第2期:41-44;
    [54]彭志刚等(2008),半椭圆表面裂纹前缘应力强度因子的计算[J],计算机仿真,2008:第25卷第7期:332-335;
    [55]钱桂安,王茂廷,王莲(2004),基于ANSYS的二维断裂参量的计算及分析[J],机械强度,2004:第26卷,增刊:205-206;
    [56]束长庚,周国华(2003),船舶结构的屈曲强度[M],北京:国防工业出版社,2003;
    [57]署恒木,李继志(2000),含裂纹管道剩余强度的评价方法[J],石油机械,2000:第28卷,第7期:51-54;
    [58]王成,吴承平(2003),偏心裂纹板在裂纹面内受两对反平面点力的弹塑性解析解[J],应力数学和力学,2003:第24卷,第7期:691-698;
    [59]王芳(2007),具有裂纹损伤的船舶结构剩余极限强度分析[博士论文],上海:上海交通大学,2007;
    [60]王静,师俊平(2005),有限板中裂纹应力强度因子的计算[J],岩石力学与工程学报,2005:第24卷,第6期:963-968;
    [61]王生楠,于红艳(2004),含裂纹结构的极限载荷分析[J],机械科学与技术,2004:第23卷,第7期:863-865;
    [62]王云侠,李健康(2003),拉、弯组合下单边裂纹板的非线性有限元分析[J],兰州铁道学院学报(自然科学版),2003:第22卷,第1期:44-48;
    [63]熊建武,郭日修(1999),船舶结构剩余强度的研究进展[J],海军工程学院学报,1999第二期;
    [64]薛河等(2002),ANSYS中断裂参量的计算及分析[J],重型机械,2002:第2期:47-49;
    [65]于红艳(2002),含裂纹结构的极限载荷分析方法研究[硕士论文],西安:西北工业大学,2002;
    [66]杨继运,张行(2003),材料断裂韧度与试样厚度关系研究[J],机械强度,2003:第25卷,第1期:76-80;
    [67]杨永祥,王庆丰,李树胜(2008),船舶构件共线多裂纹应力强度因子研究[J],江苏科技大学学报(自然科学版),2008:第22卷第1期:10:15
    [68]尹峰,黄维扬(2001),飞机典型结构-含有裂纹的加筋板应力强度因子计算[J],飞机设计,2001:第1期:25-26;
    [69]尹峰,张敏,黄维扬(2002),含裂纹半无限大板面内受集中力的应力强度因子估算[J],飞机设计,2002:第4期:33-41;
    [70]尹双增(1992),断裂、损伤理论及其应用[M],北京:清华大学出版1992;
    [71]尹双增(1985),工程断裂力学[M],邯郸:邯郸市科学技术协会, 1985;
    [72]张君,赵迎祥(1996),应变能密度因子理论的修正[J],宝鸡文理学院学报,1996:总16卷,第1期:70-74;
    [73]张显余(2003),断裂故障研究中裂尖塑性区的影响及处理原则[J],材料工程,2003:增刊:256-258;
    [74]张正国,杨国义,邹广平(2000),Dugdale模型权函数法一般公式[J],哈尔滨工程大学学报,2000:第21卷,第1期:33-36;
    [75]赵耀(1999),关于裂纹柱壳韧性断裂的研究[J],海洋工程,1999:第17卷,第2期:10-16;
    [76]赵耀,姜翠香,刘土光(2005),弹塑性裂纹前端部分加强板的止裂效果分析[J],中国造船,2005:第46卷,第3期:34-40;
    [77]宗褔开等(1997),平面应力的弹塑性断裂窄带颈缩区模型[J],江苏石油化工学院学报,1997:第9卷,第2期:12-17;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700