不同沥青路面结构组合层间工作状态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先针对我国目前沥青路面结构形式单一,路面早期损伤严重等问题,提出研究新型沥青路面结构的必要性。以内蒙古地区为试点,结合内蒙古地区的特殊自然环境与实际交通状况,拟定了三大类五种沥青路面结构(包括柔性基层沥青路面、全厚式沥青路面、组合式基层沥青路面),根据室内材料试验结果及现行《沥青路面结构设计规范》,确定了所需筑路材料的回弹模量、劈裂强度等设计参数。
     其次应用Bissar3.0设计软件,对本文拟定的五种沥青路面结构进行模拟分析,得出以下重要结论:
     (1)级配碎石骨料在荷载的作用下位置做出相应的调整,同时应力重分布,骨料重新排列,会使产生的裂缝得到一定程度的弥合,因此级配碎石材料在裂缝的问题上,具有自愈性的特点。
     (2)全厚式沥青路面结构的主要优点是总厚度比有常规基层的沥青路面结构更薄,同时可以减少长生疲劳裂缝的可能性,并使路面可能发生的损伤限制在路面结构的上部。
     (3)路基模量越大对路面结构的疲劳寿命越有利,可以通过设计适宜模量的基层材料和提高路面基层的厚度及路基强度的方法延长路面结构的使用寿命。
     (4)组合式基层沥青路面结构一的面层厚度从5cm增长到11cm时面层层底拉应变逐渐增大,并且在11cm处面层层底拉应变最大,之后随厚度增加面层层底拉应变缓慢减小。
     (5)级配碎石层不宜过厚,过厚将加快沥青面层疲劳损坏,也不能太薄,太薄将不能充分发挥其防止反射裂缝的作用,综合多方面因素,建议15-20cm左右比较合适。
     最后对试验路段进行了检测和路用性能分析,并分析了不同沥青路面结构组合的病害成因和防治措施,从而达到从路面结构方面对沥青路面的早期损坏进行防冶的目的。依此,推荐了五种适用的沥青路面典型结构。
This paper first proposes it is necessary to research new asphalt pavement structure, because of currently asphalt pavement structural style to be unitary, road surface early injury serious and so on questions in our country. Trial in Inner Mongolia region, combined with the special natural environment in Inner Mongolia and the actual traffic conditions, the development of the three categories of five asphalt pavement structure (including the flexible asphalt pavement, full depth asphalt pavement, asphalt pavement combined), according to Interior material test results and the current "Asphalt Pavement Structure Design", established the necessary road material modulus, split tensile strength and other design parameters.
     Secondly, this paper simulates and analysises five kind of asphalt pavement structure by using the Bissar3.0 design software, draws the following important conclusion:
     (1) Under the effect of the loading,graded crushed stone adjust position, at the same time, stress will redistribute, crushed stone will re-arrange, so the crack obtains the certain extent closing, therefore the graded broken stone material in the crack question, has the self-recovery characteristic.
     (2) The main advantages of full depth asphalt pavement is that its total thickness is thinner than a conventional asphalt pavement, reduce the possibility of fatigue cracks,limit road damage that may occur in the upper part of the road structure.
     (3) More subgrade modulus is better for the pavement structure fatigue life, in order to prolong life of the pavement structure, you can design appropriate modulus of base material and improve the road base thickness and subgrade strength.
     (4) when modular structure of an asphalt pavement surface layer thickness from 5cm up to 11cm, the tensile strain increases gradually, and the tensile strain in11cm place is the largest, then follows with the change of thickness and tensile strain is reduced slowly.
     (5) Graded gravel layer should not be too thick, if that will speed up the asphalt surface fatigue damage, at the same time, should not be too thin, if that will not be able to fully play its role to prevent reflective cracking, integrated various factors, propose that about 15-20cm more appropriate.
     Finally, the paper tests experimented the road section and analysis road performance, and analysis disease causes and prevention measures,of asphalt pavement with different combinations, to achieve the pavement structure from the early damage of asphalt pavement for the purpose of prevention and cure. Accordingly, recommended a five for a typical asphalt pavement structure.
引文
[1]Tschegg E.K., KroyerG, TanD.M., etal. Investigation of Bonding Between AsPhalt Layers on Road Construction[J]. Journal of Transportation Engineering,1995, Vol.121:309-316
    [2]UzanJ., Livneh M. and Y.Eshed. Investigation of Adhesion ProPerties between AsPhaltic-Conerete Layers[J]. Journal of Asphalt Paving Technology,1978, Vol.47:495-521
    [3]Haehiya Y.and SatoK. Effect of Taek Coat on Bonding Characteristics at Interface between Asphalt Conerete Layers[A]. Proeeedings8th International Conference on Asphalt Pavements[C], University of Washington, Seattle,1997,Vol.1:349-362
    [4]Brown S.F. and Brunton J.M.. The influence of bonding between bituminous layers[J]. Highways Transportation,1984,Vol.31:16-17
    [5]A1 Hakim B.. An improved backealeulation method to Predict flexible Pavement layers moduli and bonding condition between wearing course and base course [D]. Liverpool John Moores Univ., Liverpool, U.K.,1997
    [6]King G.and R.May. New Approaches to Tack Application.the 83rd Annual Meeting of the TransPortation Research Board, WashingtonD.C.,2003
    [7]RoffeJ.C. and Chaignon F.. Chataeterisaton Tests on Bond Coats:Worldwide Study [A].3rd International Conference Bituminous Impaet, Tests, and Reeonunendations [C], Mixtures and Pavements, Thessaloniki,2002:603-609
    [8]胡长顺,王秉纲.复合式路面设计原理与施工技术研究[M].北京:人民交通出版社,1999
    [9]宋宇.沥青路面面层与基层间结合状态试验与评价方法研究[D].哈尔滨:哈尔滨工业大学,2005
    [10]严二虎,沈金安.半刚性基层与沥青层之间界面条件对结构性能的影响[J].公路交通科技,2004,Vo1.21,No.1:38-41
    [11]唐承铁,袁腾方,黄开宇.不同层间接触条件下半刚性路面结构疲劳特性分析研究[J].中南公路工程,2007,Vo1.32,No.2:36-40
    [12]戴许明.沥青路面抗裂防水技术研究[D].长沙:长沙理工大学,2006
    [13]薛亮,张维刚,梁鸿颁.考虑层间不同状态的沥青路面力学响应分析[J].沈阳
    建筑大学学报(自然科学版),2006,Vo1.22,No.4:575-578
    [14]戴震.沥青路面结构受力机理分析[D].南京:东南大学,2004
    [15]刘红坡.层间接触对半刚性沥青路面力学响应的影响[D].成都:西南交通大学,2006
    [16]中华人民共和国行业标准.《公路沥青路面设计规范》(JTG D-50—2006)[S].北京:人民交通出版社,2006
    [17]Bitumen Business Group-BISAR 3.0 UserManual [M]·Shell International Oil Products B V,1998
    [18]邓学钧.路基路面工程[M].北京:人民交通出版社.2000年.
    [19]刘丽.沥青路面层间处治技术研究.长安大学博士学位论文.2008
    [20]内蒙古交通设计研究院有限责任公司.沙漠地区公路路面结构设计、施工及材料研究总报告.2005
    [21]蔚旭灿.应用数学力学方法研究沥青路面结构特性[D]:[博士论文].陕西:长安大学道路与铁道工程.2008.
    [22]赵宇.分析沥青路面早期病害的形成原因及防治方法.中国水运
    [23]张朝旭.高速公路半刚性基层沥青路面主要早期病害及防治措施
    [24]王庆波.柔性基层路面的研究与分析[J].黑龙江交通科技.2007.
    [25]赵芳.长寿命路面综述[J].北方交通.2008.
    [26]孙宏斌.关于沥青路面结构设计的探讨.科技信息.
    [27]复纯红.公路沥青路面施工技术探讨[J].广东科技.2008
    [28]黄勇.国内外高等级沥青路面结构简述及探讨.公路交通科技.2008
    [29]台电仓.沥青路面材料及结构组合设计.公路.2000
    [30]肖亮.复合式基层沥青路面研究.长安大学.2008
    [31]黄卫.长寿命沥青路面设计指标和设计方法研究.东南大学博士学位论文.1994
    [32]Donald K. Corum. Designing Asphalt Concrete Mixes Which Are More Readily Compacted。[R]AATP, Vol.56.
    [33]Technical Brief. Superpave Binder Specification and Test Methods [R]. Canada.1995
    [34]Monismith CL,F Longverlay Design for Cracked and Seated Portl and ement Concrete (PCC) Pavement-Interstate Route 710 [C] 1USA:University of California Berkeley,1999
    [35]Martin JS, Harvey JT, Long F, etal. Longlife rehabilitation design andconstruction: free way,longbeach, california[C], Transportation research Board. Transportation research Circular 503; Perpetual Bituminous Pavements. Washington DC: Transportation Research Board NationalResearch Center,2001:50265
    [36]赵昕.半刚性基层沥青路面和永久性路面的受力状态对比分析[J].河北交通科技.2006.12.
    [37]祝建华,何德厚.半刚性沥青路面基层层间不同结合状态下的力学分析[J].中外公路.2008.6.
    [38]李美江,王旭东.沥青面层层间粘结状况对水损坏的影响分析[J].公路交通科技.2008年3月.
    [39]赵延庆,黄大喜,潘友强.柔性基层沥青路面结构黏弹性力学响应分析[J].土木工程学报.2007年5月.
    [40]钟梦武.高速公路倒装结构设计研究[J].公路交通科技.2007年3月.
    [41]李海远,郑传超.级配碎石垫层沥青路面非线性分析及模量研究[J].重庆交通学院学报.2005年10月.
    [42]邵显智,邵敏华,毕玉峰,孙立军.沥青混合料泊松比的测试方法[J].同济大学学报.2006年11月.
    [43]聂忆华,张起森.全厚式沥青路面结构弯沉设计指标研究[J].公路交通科技.2007年2月.
    [44]冯俊领.大粒径沥青混合料路用性能研究[D].长沙理工大学硕士学位论文.2004年5月.
    [45]曾宇彤,陈湘华,王端宜.美国永久性路面结构[J].中外公路.2003
    [46]石培峰.沥青稳定碎石基层对沥青路面力学性能的影响分析[J].公路交通科技.2008
    [47]詹海玲.柔性基层沥青路面结构的应用探讨[J].中外公路.2008年8月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700