典型绿洲区长期膜下滴灌棉田土壤盐分运移规律与灌溉调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜下滴灌在我国西北干旱区特别是新疆盐碱地上得到广泛应用,由于膜下滴灌理论上仅调节土壤盐分在作物根系层的分布状况,盐分并未排出土体,因此,长期膜下滴灌条件下作物根区土壤盐分是否累积是决定这一灌溉方式在干早区能否可持续应用的重要问题。已有研究成果对于指导膜下滴灌水盐调控起到了积极作用,但难以反映长期膜下滴灌田间盐分真实的变化趋势。本文于2009~2013年在典型绿洲区新疆石河子121团连续定点监测5块膜下滴灌应用2-16a的农田盐分变化,研究区荒地0-40cm土层平均含盐量25~70g/kg,地下水埋深2-4m,土壤以不同程度盐化砂壤土为主,棉田平均灌溉定额816.15mm,灌溉水矿化度0.4g/L左右。基于以上条件研究揭示了长期膜下滴灌农田土壤盐分演变规律,提出了相应灌溉调控对策,可为干旱区膜下滴灌可持续应用提供理论依据。主要研究结论有:
     (1)长期膜下滴灌棉田土壤水盐分布及变化特征
     膜下滴灌灌水显著影响并改变了农田土壤自然状态下的水盐分布格局。现行灌溉制度条件下,在观测深度范围(0-140cm)内,长期膜下滴灌农田土壤水分整体偏高,灌水后农田近似整体湿润分布,膜内、膜间及棉花不同生育阶段土壤水分含量均较高且无显著差异,且年际间差异不大。灌水、作物耗水及蒸发综合影响膜下滴灌棉田土壤水盐分布及变化,垂直影响深度可达300cm,即可以达地下水位置。土壤盐分含量及分布随膜下滴灌应用年限发生较大的时空变异,总体上,水平方向膜间盐分含量较高且变异较大,膜内盐分含量较低,特别是在0-100cm深度范围总体较低,比较适宜棉花生长;垂直方向表层盐分变异较大,越往深层盐分变异程度越小,不同水平位置之间盐分差异也越来越小,整体不断降低;土壤盐分在年内棉花生长期整体呈降低趋势,特别是在4月份苗期灌水后,降低趋势最为显著;随膜下滴灌应用年限增加,年际间盐分变异系数及差异性亦逐渐降低。
     (2)长期膜下滴灌棉田土壤盐分演变规律
     现行灌溉制度下膜下滴灌应用年限对农田0-300cm深度范围土壤盐分均具有显著影响,单次灌水后膜下滴灌棉田土壤盐分在水平及垂直方向均发生显著迁移,灌溉是棉田盐分迁移的主要因素,盐分运动对流作用显著;多次灌水后棉田盐分呈整体向下迁移变化,近似一维垂直运动。总体上盐分均值随滴灌年限呈幂函数前快后慢的降低趋势,滴灌应用前3a农田盐分相对周边荒地土壤盐分迅速降低,属于快速脱盐阶段;滴灌应用3-8a脱盐率呈线性增加,属于稳速脱盐阶段,其中滴灌7a以后盐分降至5g/kg以下;滴灌应用8-16a之间,脱盐率稳定在80-90%之间,盐分随滴灌应用年限降低缓慢,滴灌应用16a时,盐分均值在3g/kg以下。根据现行灌溉制度下不同深度土壤盐分与滴灌应用年限的相关关系,要使农田盐分均值降至5g/kg以下,0-60cm、0-100cm、0-140cm不同剖面需要的滴灌应用年限分别为5.69、6.08、6.53a。膜下滴灌应用年限越长,田间盐分相对越低,盐分降幅也越来越小,并将处于一种动态平衡状态。
     (3)长期膜下滴灌棉田适宜灌溉定额及灌溉调控对策
     膜下滴灌棉田根区土壤盐分含量显著影响棉花生长及产量,现行膜下滴灌灌溉制度对于盐分淋洗具有重要意义。随着根区(0-60cm深度)盐分降低,应调整苗期灌水定额及灌溉定额。滴灌6a以内,根区盐分含量较高,均值在5-24g/kg之间,应强化冲洗进行压盐,苗期冲洗定额宜在104.5-350mm,苗期灌水量宜在161.7-400mm,灌溉定额宜在855.0-1660mm;滴灌6-9a,根区盐分均值3-5g/kg,基本满足耕种条件,棉花产量在5250kg/hm2以上,应适当减少灌水量,弱化冲洗保持控盐,苗期冲洗定额宜在66.1-104.5mm,苗期灌水量宜在123.3-161.7mm,灌溉定额宜在733.9-855.0mm;滴灌9-16a盐分根区均值低于3g/kg,且Cl-含量低于0.12g/kg,棉花产量在6000kg/hm2以上,苗期冲洗定额宜在34.5-66.1mm左右以保持控盐,苗期灌水量亦在91.7-123.3mm,灌溉定额宜在637.0-733.9mm,并宜适当提高灌水次数,以发挥膜下滴灌技术少量多次的灌水优点。
Drip irrigation under mulch has been widely practiced in the arid region of Northwest China especially the saline-alkali soils in Xinjiang. As, theoretically, drip irrigation under mulch only affects salt distribution in root zones and salts are not drained out of the soil baby, whether salts will accumulate in root zones with long-term drip irrigation under mulch is an important question deciding whether such an irrigation method can be sustainably applied in arid regions. Previous results have provided a lot on water and salt management for drip irrigation under mulch but little on the actual changing trends of salts in fields with long-term drip irrigation under mulch. Therefore, in this study, salt changes in five agricultural fields with2-16years of drip irrigation under mulch were monitored consecutively from2009-2013. These fields were located in Regiment121, Shihezi, Xinjiang, which is a typical oasis. Study area wasteland0~40cm soil salinity average25~70g/kg, groundwater depth2-4m, sandy loam soil with varying degrees of salinization mainly in cotton irrigation quota on average816.15mm, irrigation water salinity0.4g/L or so.The results revealed soil salt content evolution trends in agricultural fields with long-term drip irrigation under mulch under current irrigation regime. Corresponding irrigation management strategies were proposed. The results from this study are expected to provide theoretical basis for the sustainable application of drip irrigation under mulch in arid regions. And main conclusions were drawn as follows:
     (1) Water and salt distribution and changing characteristics in cotton fields with long-term drip irrigation under mulch
     Drip irrigation under mulch has significantly influenced and changed water and salt distribution in farmlands under natural conditions. Under current irrigation regime, for the0-140cm soil layer, soil moisture was high in fields with long-term drip irrigation under mulch. Soil moisture was high after irrigation for the whole field, inside the films, between the films, or for the different growth stages of cotton. And there were no significant differences in soil moisture between positions and times. In addition, interannual variation was small. Distribution and variation of soil moisture and salt to a depth of300cm or to the water table in cotton fields with drip irrigation under mulch were influenced by irrigation, crop water assumption and evaporation together. Soil salt content and distribution displayed fairly big spatial and temporal variation with application years of drip irrigation under mulch. Holistically, high salt contents with great variation were found between films in the horizontal direction. Salt contents within films were low especially in the0-100cm layer, which was suitable for cotton growth. In the vertical direction, great variation in salt content was found in the surface soil layer while the deeper the layer, the smaller the variation, and the smaller the differences in salt content between different horizontal positions with gradual decrease as a whole. Soil salt content as a whole exhibited decreasing trends during the whole cotton growing period within the year especially after the irrigation in cotton seedling stage in April. With longer years of drip irrigation under mulch, interannual salt content variation coefficient and difference decreased gradually.
     (2) Soil salt content evolution trends in cotton fields with drip irrigation under mulch
     Under current irrigation regime, drip irrigation history had significant impacts on the distribution of soil salt content in the0-300cm soil layer. After a single irrigation, soil salts in cotton fields with drip irrigation under mulch displayed pronounced movements in both the horizontal and vertical directions. Soil moisture was the main factor affecting soil salt movement in cotton fields with significant convection in soil salt movement. After several times of irrigation, soil salts showed a holistic downward movement which was close to a one-dimensional movement. As a whole, average salt content displayed the same first-rapidly-then-slowly decreasing trend as a power function exhibits with longer drip irrigation history. The first3years of drip irrigation was the rapid desalinization stage when soil salt content decreased rapidly compared with those in surrounding uncultivated lands. The3rd-8th year was the stable desalinization stage when desalinization rate increased linearly and soil salt content dropped to below5g/kg after7years of drip irrigation. After drip irrigation had been practiced for8-16years, desalinization rate stabilized at80-90%and soil salt content dropped slowly with drip irrigation history. After16years of drip irrigation, average soil salt content was below3g/kg. According to the correlation between soil salt content at different depths and irrigation history under current irrigation regime, drip irrigation needs to be practiced for5.69,6.08and6.53years for the average soil salt content to drop below5g/kg in the0-60cm,0-100cm, and0-140cm soil layers, respectively. The longer the drip irrigation under mulch was practiced, the lower the soil salt content was, and the smaller the salt content dropped. And finally the soil salt content would be in a dynamic equilibrium state.
     (3) Appropriate irrigation quota and irrigation management strategy for cotton fields with long-term drip irrigation under mulch
     Soil salt content in root zone of cotton fields with drip irrigation under mulch significantly impacted cotton growth and yield. Current drip irrigation regime under mulch has important implications in salt leaching. With the decrease in salt content in root zone (0-60cm depth), irrigation quota on each application in the seedling stage and irrigation quota should be adjusted. When drip irrigation has been practiced for no longer than6years, soil salt content in root zone is relatively high with the average between5-24g/kg and flushing should be strengthened to suppress salts. Flushing quota in the seedling stage should be104.5-350mm, irrigation quota on each application in the seedling stage should be161.7-400mm, and irrigation quota should be855.0-1660mm. When drip irrigation has been practiced for6-9years, average salt content in root zone is3-5g/kg, which basically meet the cultivation requirements for a cotton yield of above5250kg/hm2. Irrigation quota on each application should be properly reduced and flushing should be weakened in strength to keep controlling salts. Flushing quota on each application in the seedling stage should be66.1-104.5mm, irrigation quota on each application in the seedling stage should be123.3-161.7mm, and irrigation quota should be733.9-855.0mm. After9-16years of drip irrigation, average soil salt content in root zone was below3g/kg, Cl-content was below0.12g/kg, and cotton yield was over6000kg/hm2. Flushing quota on each application in the seedling stage should be around34.5-66.1mm to keep controlling salts. Irrigation quota on each application in the seedling stage should be91.7-123.3mm, and irrigation quota should be637.0-733.9mm. In addition, irrigation frequency should be properly raised to make full use of the advantages of small amounts for many times of the drip irrigation technology.
引文
[1]李宝富,熊黑钢,张建兵,等.不同耕种时间下土壤剖面盐分动态变化规律及其影响因素研究[J].土壤学报,2010,47(3):429-438.
    [2]姜凌,李配成,胡安炎,等.干旱区绿洲土壤盐渍化分析评价[J].干旱区地理,2009,32(2):234-239.
    [3]Amezketa, E. An integrated methodology for assessing soil salinization,a pre-condition for land desertification[J]. Journal of Arid Environments,2006,67 (4):594-606.
    [4]姚德良,朱进生,谢正桐,等.土壤水盐运动模式研究及其在干旱区农田的应用[J].中国沙漠,2001,21(3):286-290.
    [5]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
    [6]罗格平,许文强,陈曦.天山北坡绿洲不同土地利用对土壤特性的影响[J].地理学报,2005,60(5):779-790.
    [7]赵成义,闫映宇,李菊艳,等.塔里木灌区膜下滴灌的棉田土壤水盐分布特征[J].干旱区地理,2009,32(6):892-898.
    [8]顾烈烽.新疆生产建设兵团棉花膜下滴灌技术的形成与发展[J].节水灌溉,2003,(1):27-29.
    [9]李明思,郑旭荣,贾宏伟,等.棉花膜下滴灌灌溉制度试验研究[J].中国农村水利水电,2001,(11):13-15.
    [10]刘新永,田长彦.棉花膜下滴灌盐分动态及平衡研究[J].水土保持学报,2005,19(6):82-85.
    [11]张伟,吕新,李鲁华,等.新疆棉田膜下滴灌盐分运移规律[J].农业工程学报,2008,24(8):15-19.
    [12]李明思,康绍忠,孙海燕.点源滴灌滴头流量与湿润体关系研究[J].农业工程学报,2006,22(4):32-36.
    [13]吕殿青,王全九,王文焰,等.膜下滴灌水盐运移影响因素研究[J].土壤学报,2002,39(6):794-801.
    [14]张琼,李光永,柴付军.棉花膜下滴灌条件下灌水频率对土壤水盐分布和棉花生长的影响[J].水利学报,2004,(9):123-126.
    [15]田长彦,周宏飞,刘国庆.21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J].干旱区地理,2000,23(2):177-181.
    [16]王鹤亭.新疆的水利土壤改良工作及对防治盐碱化的几个问题的探讨[J].水利与电力,1963,(1):29-33
    [17]罗廷彬,任崴,谢春虹.新疆盐碱地生物改良的必要性与可行性[J].十旱区研究.2001,18(1):46-48.
    [18]王全九,王文焰,吕殿青,等.膜下滴灌盐碱地水盐运移特征研究[J].农业工程学报,2000,16(4):54-57.
    [19]周宏飞,马金玲.塔里木灌区棉田的水盐动态和水盐平衡问题探讨[J].灌溉排水学报,2005,24(6):10-14.
    [20]王海江,王开勇,刘玉国,膜下滴灌棉田不同土层盐分变化及其对棉花生长的影响[J].生态环境学报,2010,19(10):2381-2385.
    [21]杨鹏年,董新光,刘磊,等.干旱区大田膜下滴灌土壤盐分运移与调控[J].农业工程学报,2011,27(12):90-95.
    [22]牟洪臣,虎胆·吐马尔白,苏里坦,等.干旱地区棉田膜下滴灌盐分运移规律[J].农业工程学报,2011,27(7):18-22.
    [23]李玉义,张凤华,潘旭东,等.新疆玛纳斯河流域不同地貌类型土壤盐分累积变化[J].农业工程学报,2007,23(2):60-64.
    [24]谭军利,康跃虎,焦艳萍,等.不同种植年限覆膜滴灌盐碱地土壤盐分离子分布特征[J].农业工程学报,2008,24(6):59-63.
    [25]谭军利,康跃虎,焦艳萍,等.滴灌条件下种植年限对大田土壤盐分及pH值的影响[J].农业工程学报,2009,25(9):43-50.
    [26]殷波,柳延涛.膜下长期滴灌土壤盐分的空间分布特征与累积效应[J].干旱地区农业研究,2009,2(6):228-231.
    [27]王振华,郑旭荣,李朝阳.不同滴灌年限土壤盐分分布及对棉花的影响初步研究[J].中国农村水利水电,2011,(6):63-66.
    [28]李明思,刘洪光,郑旭荣.长期膜下滴灌农田土壤盐分时空变化[J].农业工程学报,2012,28(22):82-87.
    [29]孙林,罗毅.长期滴灌棉田土壤盐分演变趋势预测研究[J].水土保持研究,2013,20(1):186-192.
    [30]Khumoetsile M, Dani O. Root zone solute dynamics under drip irrigation:a review[J]. Plant and Soil,2000,222(1/2):163-190.
    [31]傅琳.微灌工程技术指南[M].北京:水利电力出版社,1988.
    [32]山仑.借鉴以色列节水经验发展我国节水农业[J].水土保持研究,1999,6(01):117-120.
    [33]张学军.现代节水灌溉工程技术及特点[J].农村实用工程技术,2000,(1):15.
    [34]马富裕,严以绥.棉花膜下滴灌技术理论与实践[M].乌鲁木齐:新疆大学出版社,2002.
    [35]赵聚宝.干旱与农业[M].北京:中国农业出版社,1995.
    [36]许越先.农业用水有效性研究[M].北京:科学出版社,1992.
    [37]山仑,康绍忠,吴普特.中国节水农业[M].北京:中国农业出版社,2004.
    [38]科技部农村与社会发展司,中国农村技术开发中心.中国节水农业科技发展论坛文集[C].北京:中国农业技术科学出版社,2006.
    [39]汪志荣,王文焰,王全九,等.点源入渗土壤水分运动规律实验研究[J].水利学报,2000,(6):39-44.
    [40]吕殿青,王全九,王文焰.滴灌条件下土壤水盐运移特性的研究现状[J].水科学进展,2001,12(1):107-112.
    [41]Yaron D. Estimation procedures for response functions of corps to soil water content and salinity[J]. Journal of Water Resource Research,1972, (5):78-86.
    [42]Yaron B, Shalhevet J, Shimshi D.Pattern of salt distribution under trickle irrigation[M]. Ecological Studies.Berlin Heidelberg:New York,1973, (5):389-394.
    [43]BenAsher J.Solute transfer and extration from triekle irrigation source:the effective hemisphere model[J].Water Resource Research,1987,23(11):301-323.
    [44]Khan AA,Yitayew M,Warrick AW.Field Evaluation of water and solute distribution of point source[J]. Journal of Irrigation and Drainage Engineering,1996,122(4):221-227.
    [45]吕殿青,王全九,王文焰,等.膜下滴灌土壤盐分特性及影响因素的初步研究[J].灌溉排水,2001,20(1):28-31.
    [46]吕殿青,王全九.王文焰,等.膜下滴灌水盐运移影响因素研究[J].土壤学报,2002,39(6):794-801.
    [47]王全九,王文焰,王志荣.盐碱地膜下滴灌技术参数的确定[J].农业工程学报,2001,17(2):47-50.
    [48]孟杰.膜下滴灌条件下土壤水盐运移田间试验研究[D].乌鲁木齐:新疆农业大学,2008.
    [49]张金珠.北疆膜下滴灌棉花土壤水盐运移特征及耗水规律试验研究[D].乌鲁木齐:新疆农业大学,2010.
    [50]余美,杨劲松,刘梅先,等.膜下滴灌灌水频率对土壤水盐运移及棉花产量的影响[J].干旱地区农业研究,2011,29(3):18-23
    [51]孙海燕,王全九,彭立新.滴灌施钙时间对盐碱土水盐运移特征研究[J].农业工程学报,2008,24(3):53-57.
    [52]胡宏昌,田富强,胡和平.新疆膜下滴灌土壤粒径分布及与水盐含量的关系[J].中国科学:技术科学,2011,41(8):1035-1042.
    [53]王春霞,王全九,庄亮,等.干旱区膜下滴灌条件下膜孔蒸发特征研究[J].干旱地区农业研究,2011,29(1):14-21.
    [54]李邦,杨岩,王绍明,等.干旱区滴灌棉田冻融季土壤水热盐分布规律研究[J].新疆农业科学,2011,48(3):528-532.
    [55]焦艳平,康跃虎,万书勤,等.干旱区盐碱地滴灌土壤基质势对土壤盐分分布的影响[J].农业工程学报,2008,24(6):53-58.
    [56]王振华,温新明,吕德生,等.膜下滴灌条件下温度影响盐分离子运移的试验研究[J].节水灌溉,2004,(3):5-7.
    [57]郑德明,姜益娟,柳维扬,等.膜下滴灌磁化水对棉田土壤的脱抑盐效果研究[J].土壤通报,2008,39(3):494-497.
    [58]张江辉.干旱区土壤水盐分布特征与调控方法研究[D].西安:西安理工大学,2010.
    [59]马东豪,王全九,来剑斌.膜下滴灌条件下灌水水质和流量对土壤盐分分布影响的田间试验研究[J].农业工程学报,2005,21(3):42-46.
    [60]阮明艳,张富仓,侯振安.咸水膜下滴灌对棉花生长和产量的影响[J].节水灌溉,2007,(5):14-16.
    [61]王艳娜,侯振安,龚江等.咸水滴灌对棉花生长和离子吸收的影响[J].棉花学报,2007,19(6):472-476.
    [62]王国栋.微咸地下水滴灌对土壤次生盐渍化及棉花生理特性及产量的影响研究[D].石河子:石河子大学,2008.
    [63]李莎,何新林,王振华,等.微咸水滴灌对土壤盐分及棉花产量影响的试验研究[J].中国农村水利水电,2011,(7):16-20.
    [64]李明思.膜下滴灌灌水技术参数对土壤水热盐动态和作物水分利用的影响[D].杨凌:西北农林科技大学,2006.
    [65]苏里坦,阿不都.沙拉木,宋郁东.膜下滴灌水量对上壤水盐运移及再分布的影响[J].十旱区研究,2011,28(1):79-84.
    [66]李晓明,杨劲松,刘梅先,等.南疆膜下滴灌棉花花铃期土壤盐分分布研究[J].土壤,2011,43(2):289-292.
    [67]高龙,田富强,倪广恒,等.膜下滴灌棉田土壤水盐分布特征及灌溉制度试验研究[J].水利学报,2010,41(12):1483-1490.
    [68]张金珠,虎胆·吐马尔白,王一民,等.不同灌溉定额对膜下滴灌棉花土壤盐分分布的影响研究[J].灌溉排水学报,2010,29(1):44-46.
    [69]刘洪亮,褚贵新,赵风梅,等.北疆棉区长期膜下滴灌棉田土壤盐分时空变化与次生盐渍化趋势分析[J].中国土壤与肥料,2010,(4):12-17.
    [70]王新英.荒漠土地开发利用中土壤盐分变化研究[D].乌鲁木齐:新疆农业大学,2007.
    [71]窦超银,康跃虎.地下水浅埋区重度盐碱地不同滴灌种植年限土壤盐分分布特征[J].土壤,2010,42(4):630-638.
    [72]闫映宇.膜下滴灌棉田水盐平衡及淋盐需水量研究[D].乌鲁木齐:新疆农业大学,2009.
    [73]王振华,杨培岭,郑旭荣,等.膜下滴灌系统不同应用年限棉田根区盐分变化及适耕性[J].农业工程学报,2014,30(4):90-99.
    [74]Nielsen D R, Biggar J W. Miscible displacement in soils:Experimental information[J]. Soil Science Society of America Proceedings.1961,25 (1):1-5.
    [75]Nielsen D R, Biggar J W. Miscible displacement is soil:Ⅲ:Theoretical consideration[J]. Soil Science Society of America Proceedings,1962,26 (3):216-221.
    [76]Nielsen D R, Biggar J W. Miscible displacement:Ⅳ:Mixing in glass beads[J]. Soil Science Society of America Proceedings,1963,27(1):10-13.
    [77]Biggar J W, Nielsen D R. Miscible displacement:Ⅱ:Behavior of tracers[J]. Soil Science Society of America Proceedings,1962,26 (2):125-128.
    [78]Biggar J W, Nielsen D R. Miscible displacement:Ⅴ:Exchange processes[J]. Soil Science Society of America Proceedings,1963,27 (6):623-627.
    [79]张蔚榛.地下水非稳定流计算方法和地下水资源评价[M].北京:科学出版社,1983.
    [80]李韵珠,陆锦文,黄坚.蒸发条件下粘土层与土壤水盐运移(国际盐渍土改良学术讨论会论文集)[M].北京:北京农业大学出版社,1985.
    [81]左强.排水条件下饱和-非饱和水盐运动规律的研究[D].武汉:武汉水利电力学院,1991.
    [82]石元春,李韵珠,陆锦文,等.盐渍土的水盐运动[M].北京:北京农业大学出版社,1986.
    [83]石元春,李保国,李韵珠,等.区域水盐运动监测预报[M].石家庄:河北科学技术出版社,1991.
    [84]段建南,李保国,石元春,等.干旱地区土壤碳酸钙淀积过程模拟[J].土壤学报,1999,36,(3):318-326.
    [85]史海滨,陈亚新.饱和一非饱和流溶质传输的数学模型与数值方法评价[J].水利学报,1993,(8):49-58.
    [86]杨金忠,蔡树英,黄冠华,等.多孔介质中水分及溶质运移的随机理论[M].北京:科学出版社,2000.
    [87]任理,秦耀东,王济.非均质饱和土壤盐分优先运移的随机模拟[J].土壤学报,2001,38(1):104-113.
    [88]李保国,李韵珠,石元春.水盐运动研究30年(1973-2003)[J].中国农业大学学报,2003,8(增刊):5-19.
    [89]Clothier B. E. Solute travel times during trickle irrigation[J].Water Resources Research,1984, 20(12):1848-1852.
    [90]TscheschkeP, Alfaro J F, Keller J, et al. Trickle irrigation soil water potential as influenced by management of highly saline water[J].Soil Science,1974,117(4):226-231.
    [91]Hairston J E, Schepers J S, Colville W L. A trickle irrigation system for frequent application of nitrogen to experimental plots[J]. Soil Science Society of American Journal,1981,45 (5):880-882.
    [92]Sharmasarkar F C, Sharmasarkar S, Miller S D, et al. Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugar beets[J]. Agricultural Water Management,2001,46(3): 241-251.
    [93]Bingham F T, Glaubig B A, Shade E. Water salinity and nitrate relations of a citrus watershed under drip furrow and sprinkler irrigation[J]. Soil Science,1984,138(4):306-313.
    [94]Ward A L, Kachanoski R G, Elrick D E. Analysis of water and solute transport away from a surface point source[J]. Soil Science Society of American Journal,1995,59 (3):699-706.
    [95]Khan A A, Yitayew M, Warrick A W. Field evaluation of water and solute distribution from a point source[J]. Journal of Irrigation and Drainage Engineering,1996,122 (4):221-227.
    [96]Leib B G, Jarrett A R, Orzolek M D, et al. Drip chemigation of imidacloprid under plastic mulch increased yield and decreased leaching caused by rainfall[J]. Transactions of the ASAE,2000, 43(3):615-622.
    [97]Omary M, Ligon J T. Three-dimensional movement of water and pesticide from trickle irrigation: finite element model [J]. Transactions of the ASAE,1992,35(3):811-821.
    [98]Bresler, E. Two-dimensional transport of solutes during non-steady infiltration from a tricklesource[J]. Soil Science Society of America Proceedings,1975,39:604-612.
    [99]Zhang R. Modeling flood and drip irrigations[J].ICID Journal,1996,45 (2):81-92.
    [100]West D W, Merrigan I F, Taylor J A, et al. Soil salinity gradients and growth of tomato plants under drip irrigation[J]. Soil Science,1979,127(5):281-291.
    [101]Alemi M H. Distribution of water and salt in soil under trickle and pot Irrigation regimes[J]. Agricultural Water Management,1981,3:195-203.
    [102]Nightingale H I, Hoffman G J, Rolston D E, et al. Trickle irrigation rates and soil salinity distribution in an almond (Amygdalus) orchard[J]. Agricultural Water Management,1991,19 (3): 271-283.
    [103]Russo D. Statistical analysis of crop yield-soil water relationships in heterogeneous soil under trickle irrigation[J]. Soil Science Society of American Journal,1984,48 (6):1402-1410.
    [104]Mmolawa K, Or D. Root zone solute dynamics under drip irrigation:a review[J].Plant and Soil, 2000,222 (1&2):163-190.
    [105]Mmolawa K, Or D. Water and solute dynamics under a drip-Irrigated crop:experiments and analytical model [J]. Transactions of the ASAE,2000,43(6):1597-1608.
    [106]陈小兵,杨劲松,杨朝晖,等.基于水盐平衡的绿洲灌区次生盐碱化防治研究[J].水土保持学报,2007,21(3):32-37.
    [107]李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998.
    [108]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [109]周丽,王玉刚,李彦,等.盐碱荒地开垦年限对表层土壤盐分的影响[J].’干旱区地理,2013, 36(2):285-290.
    [110]戈鹏飞,虎胆·吐马尔白,吴争光,等.棉田膜下滴灌年限对土壤盐分累积的影响研究[J].水土保持研究,2010,17(5):118-122.
    [111]王海江,崔静,王开勇,等.绿洲滴灌棉田土壤水盐动态变化研究[J].灌溉排水学报,2010,29(1):136-138.
    [112]Roberts T L, White S, Warrick A W, et al. Tape depth and germination method influence patterns of salt accumulation with subsurface drip irrigation[J] Agricultural Water Management,2008, 95(6):669-677.
    [113]Ross P J. Modeling soil water and soulute transport-fast, simplified numerical solutions[J]. Agronomic Journal,2003,95(6):1352-1361.
    [114]Wan S, Kang Y, Wang D, et al. Effect of drip irrigation with saline water on tomato (Lycopersicon esculentum Mill) yield and water use in semi-humid area[J].Agricultural Water Management,2007,90(1/2):63-74.
    [115]Kang Y, Chen M, Wan S. Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain[J]. Agricultural Water Management,2010,97(9): 1303-1309.
    [116]汪志农.灌溉排水工程学[M].北京:中国农业出版社,2010.
    [117]李明思,马富裕,郑旭荣,等.膜下滴灌棉花田间需水规律研究[J].灌溉排水,2002,21(1):58-60
    [118]蔡焕杰,邵光成,张振华.荒漠气候区膜下滴灌棉花需水量和灌溉制度的试验研究[J].水利学报,2002,(11):119-123.
    [119]李富先,杨举芳,张玲,等.棉花膜下滴灌需水规律和最大耗水时段及耗水量的研究[J].新疆农业大学学报,2002,25(3):43-47.
    [120]水利部国际合作司.美国国家灌溉工程手册[M].北京:中国水利水电出版社,1998.
    [121]李明思,郑旭荣,贾宏伟,等.棉花膜下滴灌灌溉制度试验研究[J].中国农村水利水电,2001,(11):13-15.
    [122]Kang Y, Wang R, Wan S, et al. Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China[J].Agricultural Water Management,2012,109:117-126.
    [123]王峰,孙景生,刘祖贵,等.申孝军不同灌溉制度对棉田盐分分布与脱盐效果的影响[J].农业机械学报,2013,44(12):120-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700