基于GIS的县域耕地地力评价、动态分析及改良利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耕地是土地的精华,是农业生产不可替代的重要生产资料,是保持社会和国民经济可持续发展的重要资源。良好的耕地地力水平与合理利用是实现区域农业和社会经济可持续发展的重要基础和必要条件,因此,及时掌握耕地资源的数量、质量及其变化情况对于合理规划和利用耕地,切实保护耕地具有十分重要的意义。通过耕地地力动态研究可以及时掌握耕地的基础地力变化规律,为合理利用土地,保护和提高耕地地力,指导当前农业生产,研究和制定相关政策提供科学依据。本研究以山东省广饶县为例,在2007和2005年二期耕地地力调查分析数据及其地力评价的基础上,进行了县域耕地地力动态变化及改良利用研究。
     在GIS的支持下,采用土壤图和土地利用现状图叠置的方法划分评价单元,系统聚类与Delphi法相结合筛选参评因素,层次分析法(AHP)确定其权重,模糊评判法确定耕地地力等级。结果显示,广饶县耕地总体水平较好,一、二等地占总耕地面积的60.11%,主要分布在该县南部地区,中部地区也有小部分分布;三、四等地主要分布在中部地区,面积占耕地总面积的25.68%;相对较差的五、六等地分布在西北地区,面积占耕地总面积的14.21%。
     通过对比分析2005年和2007年两期耕地地力评价数据,运用GIS叠置分析中的多边形与多边形叠加求交操作方法获取耕地地力变化分析单元,以2005年为基期,应用GIS的统计分析功能分别对2007年广饶县耕地地力综合指数、耕地土壤主要养分含量变化情况进行了分析,并应用GIS的自然间距分类的方法对变化量进行分级,共分为五级,即变好、略微变好、基本不变、略微变差和变差。在此基础上对每一级进行面积统计和分析,并提出合理利用的对策。结果显示,广饶县耕地地力总体水平逐渐变好。其中,变好的占耕地总面积的45.45%,基本不变的占32.73%,变差的占21.82%;耕地土壤有机质含量提高的耕地面积占49.81%,基本不变的占25.39%,降低的占24.80%;耕地土壤有效磷含量提高的耕地面积占66.37%,基本不变的是19.95%,降低的是13.68%;耕地土壤速效钾含量提高的耕地面积占55.94%,基本不变的是25.97%,降低的占18.09%。通过耕地地力动态研究,为农民科学有效的施肥提供了基础性数据,对改变农民盲目、过量施肥等现状,对农业主管部门合理规划和利用耕地有借鉴意义。
     以2007年耕地地力评价数据为基础,通过建立耕地改良利用分区系统、选取改良利用限制性因子、制定耕地改良利用分区标准,最后在GIS支持下,利用耕地地力评价单元图,根据耕地改良利用各主导因子分区标准在其相应的属性库中进行检索分析,确定各单元相应的耕地改良利用类型,通过图面编辑生成耕地改良利用分区图,并统计各类型面积比例。结果显示,广饶县耕地改良利用分区共分为三类,即耕地土壤培肥改良利用区、耕地环境条件改善利用区和耕地土体整治改良利用区。其中土壤培肥改良利用区占耕地总面积的28.33%,而不需要改良的耕地达到了71.67%;耕地环境条件改善利用区面积占耕地总面积的44.23%,而不需要改良的耕地面积占55.77%;耕地土体整治改良区面积占总面积的37.95%,不需要改良的占到62.05%。结合广饶县耕地改良利用分布图,可以总体上掌握整个县域的耕地改良利用情况,进而提出相应的区域耕地改良利用方案,指导农民合理施肥,为耕地资源科学管理提供决策依据。
     本研究实现了基于GIS的县域耕地地力评价、动态分析和改良利用分析,表明了GIS技术在耕地地力评价、耕地地力动态分析和耕地改良利用研究中应用的可行性和科学性,为快速、准确的开展耕地地力评价、动态分析和改良利用提供了可行的技术方法,对当前耕地资源的科学管理和可持续利用具有实践应用价值。
Cultivated land is the essence and irreplaceable resource for agricultural production, and it is also the important resource for sustainable development of our society and national economy. Favorable natural cultivated land quality and rational utilization of resources are important foundation and critical condition for regional agricultural and social-economic sustainable development. Therefore, it is of great significance to know the quantity, quality and changes of cultivated land for the reasonable planning, utilization and effective protection of cultivated land. Dynamic study of cultivated land fertility makes it possible to master the fundamental productivity variation of the cultivated land and provide a scientific basis for rational land utilization, soil fertility protection and improvement, cunrrent agricultural production, and related policy decision.Taking Guangrao County as the research area, this paper aims to study dynamic changes, improvement and utilization of cultivated land at county level based on GIS data analysis and fertility evaluation in 2005 and 2007.
     The research firstly identified grading distribution of cultivated land in Guangrao County. Overlay method between soil map and land use map was adopted to produce evaluation units, evaluation factors were chosen by Delphi approach and cluster analysis with their weights determined by AHP method. Finally the grades of cultivated land fertility were evaluated by fuzzy discrimination method. Our results showed that the cultivated land fertility in Guangrao County was good in general with area of the first and the second grades 60.11% of the total area, the third and the fourth grades 25.68%, and the fifth and the sixth grades only 14.21% of the total area.
     By means of comparing two period cultivated land fertility evaluation of 2005 and 2007, analysis unit of cultivated land fertility was obtained firstly by superimposing polygon intersection in overlay analysis of GIS.Then comprehensive index of cultivated land fertility and nutrient content changing situation of soil in 2007 were analyzed by using statistical function of GIS regarding 2005 of Guangrao as the base period. Based on classification method of natural distance, the variation was quantitatively classified into five levels, namely becoming better, appreciably becoming better,invariable,appreciably becoming worse and becoming worse. On the basis of this, five level soil fertilities were counted and analyzed respectively and some reasonable countermeasures were put forward. The results show that cultivated land fertility gradually meliorates and main nutrient content gradually increasing in Guangrao County. The area proportion of becoming-better, invariable and becoming-worse cultivated land fertility is 45.45%, 32.73% and 21.82% respectively. The area proportion of increased, invariable and decreased soil organic matter content is 49.81%, 25.39% and 24.80% respectively. The area proportion of increased, invariable and decreased soil available phosphorus content is 66.37%, 19.95% and 13.68% respectively. The area proportion of increased, invariable and decreased soil available potassium content is 55.94%, 25.97% and 18.09% respectively. The study of cultivated land fertility provided basic data for scientific and effective fertilization, changed the situation that farmers fertilized blindly and excessively, which is meaningful for planning and soil utilization of agricultural department.
     The cultivated land improvement zone was divided based on cultivated land fertility evaluation data in 2007. Firstly, limiting factors of cultivated land improvement were selected, secondly, zoning standard in cultivated land improvement was estibulished, and finally, using the cultivated land evaluation unit, the cultivated land improvement zone types were dertermined by searching corresponding library properties according to the zoning standard of dominant factors in cultivated land improvement. The zoning maps were generated by map surface edition and area ratio of every type was acquisited by statistical analysis. Our results showed that the cultivated land improvement zone in Guangrao County was divided into three types. It included the soil fertility improvement zone, the natural environmental conditions improvement zone and the soil remediation improvement zone.The area of soil fertility improvement is 28.33% of the total area and unimprovement zone is 71.67%; The area of natural environmental conditions improvement zone is 44.23% of the total area and unimprovement zone is 55.77%; The area of soil remediation improvement zone is 37.95% of the total area and unimprovement zone 62.05%.This research presented the whole cultivated land improvement condition in Guangrao County, provided the corresponding solution and positive instruction of rational fertilization for farmers and scientific management for policymakers.
     This study realized GIS supported cultivated land fertility evaluation, dynamic analysis,improvement and utilization. It proved that the application of GIS technology in cultivated land fertility evaluation, dynamic analysis, improvement and utilizaton is feasible and scientific. Therefor, it provides the technical scheme for the cultivated land fertility evaluation, dynamic analysis, improvement and utilizaton and has application values for scientific management and sustainable utilization of the cultivated land resources.
引文
[1]陈百明.土地资源学概论[M].北京:中国环境科学出版社,1996.
    [2]陈百明.加拿大耕地质量监测概述[J].资源科学,1996,2:77-80.
    [3]陈署晃,毛端明,许咏梅.基于WebGIS的新疆自治区养分分区管理系统的建立[J].现代化农业,2003,(11):27-29.
    [4]丁光伟,李世顺.我国农用土地资源变化的驱动力分析[J].国土资源与整治,1997,7(3):31-34.
    [5]范国忠,杨作廪.现代统计分析方法[M].北京:中国统计出版社,1992.
    [6]方开泰.实用多元统计分析[M].上海:华东师范大学出版社,1989.
    [7]傅伯杰.美国土地适宜性评价方法的新进展[J].自然资源学报,1987,2(1):92-95.
    [8]傅伯杰.土地评价研究的回顾与展望[J].自然资源,1990,(3):1-7.
    [9]傅伯杰,陈立顶,马诚.土地可持续利用评价指标体系与方法[J].自然资源学报,1997,12(2):112-118.
    [10]高志强,刘纪远,庄大方.基于遥感和GIS的中国土地利用/土地覆盖的现状研究[J].遥感学报,1999,3(2):56-60.
    [11]关文荣.农用地的分等定级与股价[J].中国土地,2000,4:22-24.
    [12]黄福奎.论遥感技术在土地利用动态监测中的应用[J].中国土地科学,1998,3(12):21-25.
    [13]李又富,陈子学.天津市农田地力现状研究[J].天津农林科技,2003,171:31-33.
    [14]李勇,苏文贵,肖笃宁.地理信息系统在典型区土地利用适宜性评价中的应用-以大洼县小三角洲为例[J].土壤,1996,1:14-20.
    [15]李孝芳.土地资源评价的基本理论和方法[M].长沙:湖南科技出版社,1989.
    [16]刘宝元,谢云,张科利等.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001.
    [17]刘友兆,马欣,徐茂.耕地质量预警[J].中国土地科学,2003,17(6):23-26.
    [18]吕烈武,吴琼泽,黄顺监.海南琼海市耕地施肥现状及对策[J].热带农业学,2006,22(8):520-522.
    [19]倪绍祥.土地类型与土地评价概论[M].北京:高等教育出版社,1999.
    [20]裴鑫德.多元统计分析及其应用[M].北京:北京农业大学出版社,1991.
    [21]潘瑜春,薛绪掌,陈立平等.基于GIS的变量施肥尺度效应模拟系统[J].农业工程学报,2005,21(6):77-81.
    [22]史培军,宫鹏等.土地利用/覆盖变化研究的方法与实践[M].北京:科技出版社, 2000.
    [23]史培军,潘耀忠,陈晋.深圳市土地利用/土地覆盖变化与生态环境安全分析[J].自然资源学报,1999,14(4),293-299.
    [24]盛建东,肖华,武红旗等.不同取样尺度农田土壤速效养分空间变异特征初步研究[J].干旱地区农业研究,2005,23(2):63-67.
    [25]孙敬之.食物来源与人口增长[J].地理学报,1956,2(22):121-133.
    [26]汤国安,陈正江,赵牡丹等.ArcView地理信息系统空间分析方法[M].北京:科学出版社,2002.
    [27]谢高地,成升魁,丁贤中.人口胁迫下的全球土地利用变化研究[J].自然资源学报,1999,14(3),193-199.
    [28]王瑞燕,赵庚星,李涛等.GIS支持下的耕地地力等级评价[J].农业工程学报,2004,20(1):307-310.
    [29]王万茂.土地定级与估计[M].徐州:中国矿业出版社,1993,33-35.
    [30]徐俊,刘娜.层次分析法的基本思路与实际应用[J].情报探索.2008,12:113-115.
    [31]薛利红,杨林章,李刚华.遥感技术在精确施肥管理中的应用进展[J].农业工程学报,2004,20(5):22-26.
    [32]颜国强,杨洋.耕地质量动态监测初探[J].国土资源情报.2000,5(3):40-45.
    [33]姚兰,孔祥斌,刘忆等.国外经验对建立我国国家级标准样地质量监测体系的启示[J].北京:国土资源部土地利用管理司,2006.25-30.
    [34]尹君,许嗥,林培等.地理信息系统在土地多宜性评价中的应用[J].河北农业大学学报,1998,21(1):83-89.
    [35]袁秀杰,赵庚星,朱雪欣.平原和丘陵区耕地地力评价及其指标体系衔接研究[J].农业工程学报,2008,24(7):65-71.
    [36]赵其国,孙波等.土壤质地与持续环境土地质地的定义及评价方法[J].土壤,1997(3).
    [37]邹自力,汤江龙.国土资源与管理[M].北京:原子能出版社,2004.
    [38]庄锁法.基于层次分析法的综合评价模型[J].合肥工业大学学报,2000,23(4):582-990.
    [39]张海涛,周勇,汪善勤等.利用GIS和RS资料及层次分析法综合评价江汉平原后湖地区耕地自然地力[J].农业工程学报,2003,19(2):219一223.
    [40]张凤荣,安萍莉,王军艳,等.耕地分等中的土壤质量指标体系与分等方法[J].资源科学,2002,24(2):71-75.
    [41]张乃凤.我国五千年农业生产中的营养元素循环总结以及今后指导施肥的途径[J].土壤肥料,2002,(4):3-5.
    [42]张书慧,马成林,于春玲.应用于精确农业变量施肥地理信息系统的开发研究[J].农业工程学报,2002,18(2):153-155.
    [43]朱德举.土地评价[M].北京:中国大地出版社,1996.
    [44]2004年中国环境状况公报[EB/OL].国家环境保护总局,2005.
    [45]中国荒漠化和沙化状况公报[EB/OL].国家林业局,2005.
    [46] Akridge,Jay,and Linda.Whipker Precision agricultural services dealership survey results [J].Center for Agricultural Business,Purdue University,WestL afayette,IN.2001.
    [47] Beroteran J,Zinck A Criteria and Indicators of Agricultural Sustainability at National Level Gel-information for Sustainable Land Management. ITC. Enschede, Netherlands. 1997.
    [48] Crozier C.R., B. Walls, D.H. Hardy,and J.S. Barnes.2004.Response of Cotton to P and K Soil Fertility Gradients in North Carolina. The Journal of Cotton Science 8:130-141.
    [49] Csatho P., M. Magyar,K. Debreczeni, and K. Sardi.2005. Correlation between soil P and wheat shoot P contents in a network of Hungarian long-term field trials. Communications in soil science and plant analysis, 36:275-293.
    [50] Dodd J.R. and A.P. Mallarino.2005. Soil-testing phosphorus and corp grain yield responses to long-term phosphorus fertilization for corn-soybean rotations. Soil Science Society of America Journal, 69(4):1118-1128.
    [51] Dumanski J,Stewart.R.B.Crop Production Potentials for Land Evaluation in Canada Research Branch,Agriculture Canada,Ottawa,1993.
    [52] Elizabeth Cromwell,David Cooper,Patrick Mulvany.Agriculture,Biodiversity and Livehoods:isues and Entry Ponits for Development Agencies.Reports onCultivatedConservation research(UKABC),2002:5-6.
    [53] Faust M.B. and N.E. Christians.1999.AB-DTPA and Mehlich 3 soil tests unable to predict copper available to creeping bentgrass. Communications in soil science and plant analysis, 30(17-18):2475-2484.
    [54] Fuhrman J.K., H. zhang,J.L. Schroder,R.L. Davis, and M.E. Payton.2005. Water-soluble P as affected by soil to extractant ratios, extraction times, and electrolyte. Communications in soil science and plant analisis, 36:925-935.
    [55] Graham Sparling.Louis Schipper.Soil quality monitoring in New Zealand:trends and issues arising from a broad-scale survey , Agriculture,Ecosystem and Environment,2004,104:545~552
    [56] John Boum A. Precision agriculture: introduction to the spatial and temporal variability of environmental quality [A].In Precision Agriculture. Introduction to the Spatial and Temporal Variability of Environmental Quality.Chichester, England: John Wilsy & SonsLtd. 1997:5-17.
    [57] Han S F, He Yong. Remote sensing of crop nitrogen needs and variable-rate nitrogen application technology [J].Transactions of the CSAE(农业工程学报),2002,18(5):28-33.
    [58] Islam K R, Weil R R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment, 200,79:9-16.
    [59] Klingebiel L,Montgomery P.H..Land Capability Classification.Agricultural Handbook, Department of Agriculture,U.S.A.Washington DC,1961.
    [60] Turner BL,Meyer WB.Land use and land cover in global environmental change: considerations for study [J]. Int.SoiSci.,J.,1991,130:669-680.
    [61] Van Raiji B. 1994. New diagnostic techniques, universal soil extractants. Communications in soil science and plant analysis, 25(7-8):799-816.
    [62] Walton K. and D. Alle. 2004. Mehlich No. 3 Soil Test-The Western Australian Experience. SuperSoil, 3rd Australian New Zealand Soils Conference, Website:www. Regional. Au/au/asssi/.
    [63] Weisz, R., C. R. Crozier, and R. W. Heiniger. 2001. Optimizing nitrogen application timing in no-till soft red winter wheat. Agron. J. 93:435-442.
    [64] Zbiral J. and P. Nemec. 2000. Integrating of Mehlich 3 extractant into the Czech soil testing scheme. Communications in soil science and plant analysis, 31(11-14):2171-2182.
    [65] Zayas,I Y,Flinn P W.Detection of insects in bulk wheat samples with machine visionJ.Trans ASAE,1998(3):883-888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700