土壤动物活动对农田温室气体(CO_2、N_2O)排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Influence of Soil Fauna on Greenhouse Gases (CO_2, N_2O) Emissions in Rice-Wheat Rotation Agro-ecosystem
  • 作者:罗天相
  • 论文级别:博士
  • 学科专业名称:生态学
  • 学位年度:2008
  • 导师:胡锋
  • 学科代码:071012
  • 学位授予单位:南京农业大学
  • 论文提交日期:2008-10-01
摘要
土壤微量气体代谢是地球各圈层相互作用的重要研究内容。土壤圈、生物圈以及大气圈之间通过碳(C)、氮(N)等元素循环及动力学过程相互作用,形成有机连续体。土壤生物是地球化学过程(生物小循环)的驱动者,调控微量气体代谢(例如温室气体的生成、消耗及传输等),进一步在大尺度上影响大气环境及全球气候变化。蚯蚓是分布非常广泛的土壤动物,在温带土壤无脊椎动物中其生物量最大,也是陆地生态系统中最重要的大型土壤动物之一。但是,关于土壤动物特别是蚯蚓对农田生态系统中温室气体排放影响的研究尚不多见。
     本论文主要通过田间的盆栽试验,辅以微系统的培养试验研究了在相同环境条件下,接种蚯蚓对农田CO2和N2O排放的影响,以及作物秸秆不同的施入方式下(混施和表施)蚯蚓和秸秆对稻麦轮作生态系统中CO2和N2O排放的综合影响、相关过程和可能机理。此外,通过原位富化获得不同密度食微线虫并接种蚯蚓的培养试验,研究了线虫和蚯蚓在微系统中对微量气体代谢的贡献及其相互作用,旨在进一步阐明土壤食微线虫和蚯蚓的相互作用及其对温室气体排放的影响。
     试验结果表明:
     (1)在施用秸秆并接种蚯蚓(赤子爱胜蚓,Eisenia foetida)的微系统试验中,21天的培养期内,蚯蚓活动显著提高了土壤C02和N20的排放量。与原土处理相比,单接种蚯蚓处理与单施加秸秆的处理导致C02排放量分别增加了60%和1.35倍,N20排放量增加了1.06倍和3.94倍。与单施加秸秆的处理相比,接种蚯蚓并施加秸秆的处理导致CO2和N2O排放分别增加了41%和45%。由于蚯蚓的直接排放量在该微系统中占有较大比例,当蚯蚓的直接排放量被扣除后,我们计算发现在未施加秸秆时,蚯蚓的存在并未导致CO2和N2O排放量的显著增加;而施加秸秆后,接种蚯蚓使CO2和N2O的累积排放量增加了21%和25%,均达到显著水平(p<0.05)。微系统中,蚯蚓取食秸秆并促使更多的秸秆分解转化,为CO2和N2O的产生提供了更多可利用的C、N源。施用秸秆显著提高了土壤微生物生物量,而单接种蚯蚓处理的土壤微生物生物量相比对照反而降低,土壤呼吸作用的加强不能单纯的归因于土壤微生物量的增加。接种蚯蚓使N03--N含量增加更显著,不同处理土壤矿质氮的分异主要取决于N03--N含量的变化,与NH4+-N相比,NO3--N含量对土壤N20排放的影响似乎更为显著。
     (2)不同土壤线虫密度下接种蚯蚓(赤子爱胜蚓,Eisenia foetida)的15天培养试验结果表明,土壤动物对土壤温室气体(C02和N20)排放有显著促进作用。与灭线处理相比,高密度线虫处理与高密度线虫加蚯蚓处理的CO2排放量分别增加了4.4倍和5.3倍,N2O排放量增加了1.8倍和2.7倍。接种蚯蚓在高密度线虫土壤中较接种在低密度线虫土壤中的C02和N2O排放量分别增加了13%和28%,均达到显著水平(p<0.05)。不同密度线虫土壤中CO2和N2O排放的差异显著,C02和N20排放量的变化显示出线虫在温室气体代谢过程中具有显著作用。两种气体的排放速率与土壤DOC浓度相关,微系统土壤中更高的DOC含量预示着土壤微量气体的代谢活动加强。扣除蚯蚓直接的排放量后,蚯蚓并没有产生更高的CO2排放量,但是当与未接种蚯蚓的对应处理相比,蚯蚓接种在高密度线虫土壤中时仍然显著提高了N20的排放量,土壤动物之间的相互作用及其对微生物种类特性的影响也是决定温室气体排放的重要原因。
     (3)通过田间试验,研究了秸秆不同施用方式以及接种蚯蚓(威廉腔环蚓,Metaphire guillelmi)对稻麦轮作土壤中CO2排放通量的影响。稻季和冬小麦栽培季节中,CO2累积排放量最大的均为混施秸秆处理,分别为1.60 kg·m-2和2.11kg·m-2,其平均排放速率为596.2 mg·m-2·h-1和540.6 mg·m-2·h-1。未加入秸秆和蚯蚓的对照处理累积排放量和排放通量均最低,平均排放速率为417.2 mg·m-2.h-1(稻季)和352.8 mg·m-2·h-1(麦季)。相比对照处理,秸秆处理(混施或表施)在整个生育期内显著提高了农田生态系统CO2的排放通量,不同秸秆施用方式CO2的排放有差异。稻季混施秸秆较表施秸秆增加了20%的CO2排放量,显著高于麦季的11%,表施秸秆有助于减少农田土壤C02排放量。蚯蚓的作用相对复杂:在稻季和麦季栽培的早期(前1个月内),蚯蚓显著促进了C02的排放。而在整个生育期内,表施秸秆加蚯蚓处理较表施秸秆处理未有明显差异;在混施秸秆的情况下,蚯蚓的存在甚至降低了麦季农田生态系统CO2的排放通量(p<0.05)。在相对长期的试验中,蚯蚓活动增加了土壤有机碳库,与初期的物理扰动增加CO2排放不同的是,蚯蚓最终减少了土壤中C-CO2的逸失。通过相关性分析,我们发现SOC、全氮和CO2排放量呈极显著正相关,但MBC和DOC没有表现出与CO2排放量的显著相关性。试验结果表明,DOC与MBC不适合作为土壤有机碳长期累积性变化的指标,考虑到微系统中温室气体的排放速率与土壤DOC浓度相关,或许DOC适合指示短期瞬时的变化。
     (4)通过田间试验,进一步研究了秸秆不同施用方式以及接种蚯蚓(威廉腔环蚓,Metaphire guillelmi)对稻麦轮作系统N2O排放通量的影响。结果显示不论采用何种秸秆还田方式(混施或表施),施加秸秆和接种蚯蚓均能增加N2O的排放量。在秸秆表施情况下,接种蚯蚓处理在整个稻麦轮作生长季N2O的累积排放量达到最高的29.20 kg·hm-2,平均排放速率为439.2μg·m-2·h-1;对应的不接种蚯蚓处理为24.13 kg·hm-2,平均排放速率为362.9μg·m-2·h-1,两者差异极显著(p<0.01)。在秸秆混施时,接种蚯蚓后的处理N2O累积排放量为29.11 kg·hm-2,而不接种蚯蚓的对应处理N2O累积排放量为26.90 kg·hm-2,两者在稻季和麦季栽培后期均没有表现出显著性差异,表明农田生态系统中蚯蚓对N2O排放的贡献主要体现在促进秸秆混入土壤,从而加快N的分解和N20的排放。养分富集过程(NEP)较肠道关联过程(GAP)更好的解释了接种蚯蚓后土壤所表现出的生态效应。稻、麦两季观测结果表明,接种蚯蚓处理土壤N的矿化作用加强,矿质N含量提高,铵态氮含量比较稳定,硝态氮含量显著提高,其中表施秸秆接种蚯蚓处理硝态氮含量比未接种处理提高了20.1%(p<0.01),混施秸秆接种蚯蚓使硝态氮含量较未接种处理提高了11.7%。相关分析表明,硝态氮含量与N2O排放密切相关,接种蚯蚓后N2O排放潜力的提高可能与蚯蚓活动促进土壤氮素矿化特别是硝态氮含量的增加有关。
     微系统和田间的试验结果表明,在短时间内,蚯蚓和线虫对土壤CO2和N2O排放具有促进作用;在田间条件下,蚯蚓对土壤CO2排放的影响与秸秆施用方式有关。田间试验和微系统培养试验中所观察到的秸秆表施情况下N2O排放量的增加,从机理上表明蚯蚓的“营养富集过程”(NEP)较“肠道生理过程”(GAP)更适合解释蚯蚓对N2O排放的促进作用。
Soil trace gas metabolism has been one of the important research subjects about interaction between the Earth's spheres. Pedosphere, biosphere and atmosphere come into being interrelatively and mutually dependently in the cycling and dynamic process of soil C, N biogeochemistry. Soil biota drive the biogeochemical process by regulating trace gas metabolism, and further influence atmospheric environments and the global climate change on larger scale. Earthworms are one of the most important members of soil fauna in terrestrial ecosystem. However, little information of the impact of soil fauna especially earthworms on the generation of trace gases in agro-ecosystem is available so far.
     To identify the effects of soil fauna on greenhouse gases (CO2, N2O) emissions from agro-ecosystem, an outdoor pot experiment assisted with laboratory incubations were conducted under the same climate condition and agricultural management. The primary objective was to examine the effect of earthworm on greenhouse gases emissions with residues applied (incorporation or mulching), and to explore their processes and relevant mechanisms in agro-ecosystem. Also, laboratory incubations were carried out by inoculating different populations of nematodes and earthworm into soil samples to assess the influence of different populations of nematodes and earthworms on CO2 and N2O emission, and to make clear whether there exist synergies or antagonisms among soil faunal groups.
     (1) Short-term effects of actively earthworm (Eisenia foetida) with or without corn-straw residues on CO2 and N2O emissions were studied in a microcosm experiment throughout a 21 day incubation. Both residues application and earthworm presence resulted in significant differences in CO2 and N2O emissions relative to the control treatment. Cumulative emissions of CO2 and N2O in soil only with earthworm and soil only with residues were increased 60% and 1.35 fold for CO2,1.06 fold and 3.94 fold for N2O, respectively versus the soil treatment. The emission fluxes of CO2 and N2O in soil with residues and earthworm were 41% for CO2 and 45% for N2O higher than soil only with residues. Due to direct gases emissions of actively earthworms themselves are significant compared to fluxes measured from the whole systems, when emissions from earthworms themselves were deducted, cumulative amounts of CO2 and N2O emissions from the earthworm treatments are similar to that from the soil treatments. On the other hand, cumulative emissions of CO2 and N2O in treatment of earthworm and residues were 21% for CO2 and 25% for N2O higher than the treatment of residues (p<0.05). To supply easily available C, N as energy source for CO2 and N2O emissions, our experiment showed a much more positive earthworm effect on CO2 and N2O emissions in treatments with residues application. The value of MBC increased significantly by straw residues application meanwhile it decreased by earthworm inoculation, therefore the increase of CO2 emission cannot only attribute to MBC. The contents of NO3--N and NH4+-N increased significantly by earthworm inoculation, but not significantly by residues application, indicating that the relationship of N2O emission and NO3--N was more intimate than NH4+-N.
     (2) To determine the effects of soil fauna on greenhouse gases emissions, soil inoculated with different populations nematodes and earthworms (Eisenia foetida) were incubated for 15 days. Soil treated with greater populations of nematodes and earthworms enhanced CO2 and N2O emissions. Cumulative emissions of CO2 and N2O in the greater populations nematodes treatment and the greater populations nematodes with earthworm treatment increased by 4.4 times and 5.3 times for CO2, 1.8 times and 2.7 times for N2O, respectively versus the nematode-killed treatment. The effects of nematode abundance on CO2 and N2O emissions were apparent, nematodes play a important role in greenhouse gases metabolism. The greater populations of nematodes increased DOC value when compared with the lower populations of nematodes. Cumulative emissions of CO2 and N2O from the soils treated with different populations nematodes were positively correlated with DOC concentration measured at the start of gas sampling (p<0.05). Due to direct gases emission of earthworm activity were significant compared to amounts measured from whole systems, earthworm seem to be overestimated in greenhouse gases emissions. Earthworm does not contribute to higher CO2 release from soil instead of lead to increased production of the greenhouse gas nitrous oxide in Soil treated with greater populations of nematodes when gases derived from earthworm was deducted, which indicating that interaction between soil fauna and microorganism is also one of the determinant of greenhouse gases emissions.
     (3) An field experiment was performed to investigate the effects of residues and earthworm (Metaphire guillelmi) activities on CO2 emissions in a upland rice-wheat rotation system. The highest level of cumulative emissions and average rate of CO2 in upland rice season and wheat season were 1.60 kg·m-2 (596.2 mg·m-2·h-1) and 2.11 kg·m-2 (540.6 mg·m-2·h-1) respectively in the residues incorporated treatment, and the lowest level of cumulative emissions were both in the control treatment, the seasonal average rate of CO2 emissions from the control treatment were 417.2 mg·m-2·h-1 in upland rice season and 352.8 mg·m-2·h-1 in wheat season. Obviously, soil with straw residues application, relative to the control treatment, causing significant enhancement of CO2 emission. Two kinds of application of straw residues (incorporation or mulching) had different effect on CO2 emission, mulching decreased CO2 emission flux than incorporation. The presence of earthworm had complicated influence on CO2 emission. During the first 4 weeks both in upland-rice and wheat season, earthworms significantly (p<0.05) increased CO2 emissions. In contrast, significantly lower (p<0.05) CO2 emission amounts were measured at the rest of the entire annual cycle. The data suggested that earthworm activity was high during the first month due to the creation of burrows and incorporation of residues into the mineral soil. Both earthworm and straw residues application increased the SOC when compared with the control. Cumulative emissions of CO2 were positively correlated with the SOC and TN concentration measured at the end of the entire annual cycle. On the other hand, CO2 emissions were not positively correlated with MBC and DOC.
     (4) An field experiment was performed to further investigate the effects of residues and earthworm (Metaphire guillelmi) activities on N2O emissions. Both residues application (incorporation or mulching) and earthworm presence resulted in significant differences in N2O emissions. In the case of straw residues mulching, the cumulative emission amounts and average emission flux of N2O in the whole season significantly increased from 24.13 (362.9μg·m-2·h-1) to 29.20 kg-hm"2 (439.2μg·m-2·h-1) (p<0.01) in the presence of earthworm. However, if residues were incorporated into the soil, the earthworm effect disappeared except in the first stage of wheat season and emissions amounts were 29.11 kg·hm-2. Earthworm plays a more important role in N2O emission when residues mulched through mixing residue into the soil, switching residue decomposition to one with significant denitrification and N2O production. Soil mineral nitrogen (especially NO3--N content) was increased, and nitrogen mineralization was strengthened by earthworm activities. Earthworm inoculation significantly increased the contents of soil NO3--N by 20.1%(p<0.01) when straw residues mulched and up to 21.21 mg·kg-1, which means 11.7% increments when residues incorporated. Cumulative emissions of N2O were positively correlated with the NO3--N content measured at the end of the entire annual cycle.
     Both nematodes and earthworm presence resulted in significant differences in CO2 and N2O emissions accorrding to our outdoor pot experiment assisted with laboratory incubations. Short-term effects of actively earthworm (Eisenia foetida) and nematode abundance on CO2 and N2O emissions were apparent, nematodes play a important role in greenhouse gases metabolism. The presence of earthworm had complicated influence on CO2 emission which concerns the way of application of straw residues (incorporation or mulching). Earthworm plays a more important role in N2O emission when residues mulched both in field and microcosmic scales. It was concluded that the nutrient-enrichment processes (NEP) rather than the gut-associated processes (GAP) are responsible for the increased emissions of N2O in the presence of earthworms.
引文
蔡祖聪.土壤痕量气体研究进展.土壤学报,1993,30(2):117-124.
    陈春梅,谢祖彬,朱建国.土壤有机碳激发效应研究进展.土壤,2006,04:359-365
    陈国康,曹志平.土壤生物的生态学研究.土壤通报.2005,2:259-264
    陈尚洪,朱钟麟,吴婕,等。紫色土丘陵区秸秆还田的腐解特征及对土壤肥力的影响.水土保持学报.2006,6:141-144
    陈小云,李辉信,胡锋,等.食细菌线虫对土壤微生物量和微生物群落结构的影响.生态学报.2004,24(12):2825-2831
    崔玉亭,韩纯儒,卢进登.集约高产农田生态系统有机物分解及土壤呼吸动态研究.应用生态学报,1997,8(1):59-64
    董玉红,欧阳竹,李运生,等.不同施肥方式对农田土壤CO2和N2O排放的影响.中国土壤与肥料2007,(4):34-39
    韩兴国,王智平.土壤生物多样性与微量气体(CO2、CH4、N20)代谢.生物多样性,2003,11(4):322-332
    胡锋,李辉信,谢涟琪,吴珊眉.土壤食细菌线虫与细菌的相互作用及其对N、P矿化-生物固定的影响及机理.生态学报,1999,19:914-920
    胡锋,王霞,李辉信,于建光,王丹丹.蚯蚓活动对稻麦轮作系统中土壤微生物量碳的影响.土壤学报,2005,42(6):65-69
    黄国宏,陈冠雄,韩冰.土壤含水量与N20产生途径研究.应用生态学报,1999,10(1):53-56
    李辉信,陈小云,胡锋.土壤食细菌线虫的分离和富集培养方法.南京农业大学学报,2002,25(2):71-74
    李辉信,胡锋,沈其荣,陈小云,仓龙,王霞.接种蚯蚓对秸秆还田土壤碳,氮动态和作物产量的影响.应用生态学报,2002,13(12):1637-1641
    李曼莉,徐阳春,沈其荣,等.旱作及水作条件下稻田CH4和N20排放的观察研究.土壤学报,2003,40(6):864-869
    李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环.地学前缘,2002,4(2):351-357
    梁文举,史弈.农业生态系统线虫多样性研究进展.应用生态学报,2000,11:1-4
    刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展.生态学报,2007,27(6):2642-2650
    强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响.应用生态学报,2004,15(3):469472
    秦小光,蔡炳贵,吴金水,等.土壤温室气体昼夜变化及其环境影响因素研究.第四纪研究,2005,25(3):376-388
    孙文娟,黄耀,陈书涛,等.稻麦作物呼吸作用与植株氮含量、生物量和温度的定量关系.生态学报,2005,25(5):1152-1158
    万运帆,李玉娥,高清竹,等.不同农业措施下冬小麦田N20排放通量的特征,中国农业气象,2008,29(2):130-133
    王改玲,郝明德,陈德立.秸秆还田对灌溉玉米田土壤反硝化及N20排放的影响.植物营养与肥料学报,2006,12(6):840-844
    王晶,张旭东,解宏图,等.现代土壤有机质研究中新的量化指标概述,应用生态学报,2003,14(10):1809-1812
    王霞,胡锋,李辉信,沈其荣.秸秆不同还田方式下蚯蚓对早作稻田土壤碳氮的影响.生态环境, 2003,12(4):462-466
    徐江兵,李成亮,何园球,等.不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响.土壤学报,2007(4):675-682
    杨红,彭建新,刘凯于,洪华珠.低等白蚁肠道共生微生物的多样性及其功能.微生物学报,2006,3:496-499
    尹文英.中国土壤动物学研究10年进展.中国科学基金,1997,1:48-51
    尹文英等.中国土壤动物.2000.北京:中国科学出版社
    于建光,李辉信,陈小云,等.秸秆施用及蚯蚓活动对土壤活性有机碳的影响.应用生态学报,2007,18(4):818-824
    张宝贵,李贵桐,申天寿.威廉环毛蚯蚓对土壤微生物量及活性的影响.生态学报,2000,20(1):168-172
    张宝贵,李贵桐,孙钊,王建奎.两种生态类型蚯蚓几种消化酶活性比较研究.生态学报,2001,21(6):978-981
    张国明,郭李萍,史培军,等.农田土壤生态系统冬小麦夏玉米轮作CO2排放特征研究.北京师范大学学报(自然科学版),2007,43(4):457-460
    张立宏,许光辉.微生物和蚯蚓的协同作用对土壤肥力影响的研究.生态学报,1990,10(2):116-120
    张卫信,陈迪马,赵灿灿.蚯蚓在生态系统中的作用.生物多样性.2007,2:142-153
    邹建文,黄耀,郑循华,等.基于静态暗箱法的陆地生态系统-大气CO2净交换估算.科学通报.2004,49(3):258-264
    邹建文,焦燕,王跃思,等.稻田CO2、CH4和N20排放通量测定方法研究.南京农业大学学报.2002,25(4):45-48
    Abbadie L, Lepage M. The role of subterranean fungus comb chambers (Isoptera, Macroter-mitinae) in soil nitrogen cycling in a preforest savanna (Cote d'Ivoire). Soil Biology and Biochemistry,1989,21(8):1067-1071
    Abe T, Bignell DE, Higashi M. Termites:Evolution, Sociality, Symbiosis, Ecology. Netherlands: kluwer Academic Publishers,2000,209-231
    Aber J D, Magill AM, Boone R, et al. Plant and soil responses to three years of chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecological Applications,1993,3(1):156-166
    Alexei V T, Stefan S. Microbial biomass, biovolume and respiration in Lumbricus terrestris L.cast material of different age. Soil Biology and Biochemistry,2000,32:265-275
    Alpheri J, Bonkowski M, Scheu S. Dynamics of soil physical properties in a low input agricultural system inoculated with the earthworms Pontoscolex corethrurus in Peruvian Amazonia. Soil Science Society of America Journal,1996,60:1522-1529
    Amador JA, Gorres J H. Role of the anecic earthworm Lumbricus terrestris L. in the distribution of plant residue nitrogen in a corn (Zea mays)-soil system. Applied Soil Ecology,2005,30: 203-214.
    Amador J A, Gorres J H, Savin M C. Carbon and nitrogen dynamics in Lumbricus terrestris (L.) burrow soil:Relationship to plant residuce and macropores. Soil Science Society of America Journal,2003,67:1755-1762
    Ambus P, Jensen E S, and Robertson G P. Nitrous oxide and water mediated N-losses from agricultural soil:influence of crop residue particle size, quality and placement. Phyton (Austria),2001,41(3):7-15
    Anderson R S. Bacteriostatic factor(s) in the coelomic fluid of Lumbricus terrestris. Developmental and Comparative Immunology,1988,12:189-194
    Anderson R V, Elliott E T, McClellan J F, Coleman D C, Cole C V, Hunt E T. Trophic interactions in soils as they affect energy and nutrient dynamics. Ⅲ. Biotic interactions of bacteria, amoebae and nematodes. Microbial Ecology,1978,4:361-371.
    Anderson R V, Gould W D, Woods L E, Cambardella C, lngham R E, Coleman C D. Organic and inorganic nitrogenous losses by microbivorous nematodes in soil. Oikos,1983,40:75-80.
    Andreae M O, Merlet P, Emissions of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles,2001,15(4):955-966
    Angers D A, Recous S. Decomposition of wheat straw and rye residues as affected by particle size. Plant and Soil,1997,189:197-203
    Atlavinyte O, Zimkuviene A. The effect of earthworms on barley crops in soils of various density. Pedobiologia,1985,28:305-310
    Aulakh M S, Doran J W, Walter D T, et al. Crop residue type and placement effects on denitrification and mineralization. Soil Science Society of America Journal,1991,55:1020-1025
    Bardgett R D, Keiller S, Cook R, Gillburn A S. Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung:a microcosm experiment. Soil Biology and Biochemistry,1998,30:531-539.
    Bernard E C. Soil nematode biodiversity. Biology and Fertility of Soils,1992,14:99-103.
    Bertora C, Vliet van P C J, Hummelink E W J, et al. Do earthworms increase N2O emissions in ploughed grassland? Soil Biology and Biochemistry.2007,39:632-640
    Bezkorovainaia I N, Klimentenok L A, Efvgrafova S I. Dynamics of the biological activity of litter in course of its transformation by earthworms. Izvestiia Akademii nauk. Seriia biologicheskaia/Rossi skaia akademiia nauk,2001,2:233-236
    Binet F, Fayolle L, Pussard M. Significance of earthworms in stimulating soil microbial activity. Biology and Fertility of Soils,1998,27:79-84
    Bird A F, Ryder M H. Feeding of the nematode Acrobeloides nanus on bacteria. Journal of Nematology,1993,25:493-499.
    Blair J M, Parmelee R W.Changes in soil N pools in response to earthworm population manipulations in agro ecosystem with different N sources. Soil Biology and Biochemistry, 1997,29:361-367
    Blanco-Canqui H, Lal R. Mechanism of C sequestration in soil aggregates. Critical Review in Plant Science,2004,23:481-504
    Bohlen P J, Edwards C A. Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biology and Biochemistry,1995,27:341-348
    Bohlen P J, Parmelee R W, Allen M F, Ketterings Q M. Differential effects of earthworms on nutrient cycling from various nitrogen-15-laballed substrates. Soil Science Society of America Journal,1999,63:882-890
    Bohlen P J, Scheu S, Hale C M, McLean M A, Migge S, Groffman P M, Parkinson D. Non-native invasive earthworms as agents of change in northern temperate forests. Frontiers in Ecology and the Environment,2004,2:427-435
    Borken W, Brumme R Liming practice in temperate forest ecosystems and the effects on CO2, N2O and CH4 fluxes. Soil Use Manage,1997,13:251-257
    Borken W, Grundel S, Beese F. Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biology and Fertility of Soils,2000,32: 142-148
    Bossuyt H, Six J, Hendrix P F. Rapid incorporation of fresh residue-derived carbon into newly formed microaggregates within earthworm casts. European Journal of Soil Science,2004, 55:393-399
    Bossuyt H, Six J, Hendrix P F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry,2005,37:251-258
    Bossuyt H T, Six J, Hendrix P F. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon. Geoderma, 2006,130:14-25
    Bouche M B. Action de la faune sur les etats de la matie reorganique dans les ecosystemes. In: Kilbertus G, Reisinger O, Mourey A, Cancela da Fonseca J A (Eds), Humification et Biodegradation. Pierron, Sarreguemines,1975, pp.157-168
    Bouwman A F. Exchange of Greenhouse Gases between Terrestrial Ecosystems and the Atmosphere. In:Bouwman AF(ed). Soil and the greenhouse effect. John wiley & Sons Ltd. Chichester,1990, pp.25-128
    Bouwman A F, Boumans L J M, Batjes N H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles,2002,16 (4):1058-1070
    Bouwmann A F, Germon J C. Introduction. Biology and Fertility of Soils,1998,27:219
    Bouwman A F, Fung I, Matthews E, et al., Global analysis of the potential for N2O production in natural soils, Global Biogechemical Cycles,1993,7(3):557-597
    Boyer J, Michellon R, Chabanne A, Reversat G, Tibere R. Effects of trefoil cover crop and earthworm inoculation on maize crop and soil organism in Reunion Island. Biology and Fertility of Soils,1999,28:364-370
    Brady N C, Weil R R. The Nature and Properties of Soils (12th edn.). Prentice Hall, Upper Saddle River, New Jersey,1999,404-445
    Brown G G. How do earthworms affect microfloral and faunal community diversity? Plant and Soil,1995,170:209-231
    Brown G G, Barois I, Lavelle P. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. European Journal of Soil Biology,2000,36(3):177-198
    Brown G G, Edwards C A, Bnissaard L. How earthworms affect plant growth:Burrowing into the mechanisms. In:Earthworm Ecology. CRC Press LLC,2004, p:13-49
    Brune A. Termite guts:the worlds smallest bioreactors. Trends in Biotechnology,1998,16:16-21
    Brune A, Frenzel P, Cypionka H. Life at the oxic-anoxic interface:microbial activities and adaptations. FEMS Microbiology Reviews,2000,24:691-710
    Brussaard L. On the mechanisms of interactions between earthworm and plants. Pedobiologia, 1999,43(6):880-885
    Byzov B A, Claus H, Tretyakova E B, et al. Effects of soil invertebrates on the survival of some genetically engineered bacteria in leaf litter and soil. Biology and Fertility of Soils,1996, 23:221-228.
    Callaham Jr M A, Blair J M, Hendrix P F. Different behavioral patterns of the earthworms Octolasion tyrtaeum and Diplocardia spp. in tallgrass prairie soils, potential influences on plant growth. Biology and Fertility of Soils,2001,34,49-56.
    Cao G L, Zhang X Y, Zheng F C, Estimating the quantity of crop residues burnt in open field in China. Resources Science,2006,28(1):9-13
    Caravaca F, Pera A, Masciandaro G, et al. A microcosm approach to assessing the effects of earthworm inoculation and oat cover cropping on CO2 fluxes and biological properties in an amended semiarid soil. Chemosphere.2005,59:1625-1631
    Clegg C D, Anderson J M, Lappin H M, et al. Interaction of a genetically modified Psendonmonas fluorescens with the soil-feeding earthworm Octolasion cyanemn (Lumbricidae). Soil Biology and Biochemistry,1995,27:1423-1429
    Conant R.T, Klopatek J M, Klopatek C C. Environmental factors controlling soil respiration in three semiarid ecosystems. Soil Science Society of America,2000,64:383-390
    Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO2, CH4, OCS, N2O,and NO). Microbiological Reviews,1996,60:609-640.
    Cooke A, Luxton M. Effect of microbes on food selection by Lumbricus terrestris. Rev.Ecol.Biol.Soil,1980,17:365-370
    Coq S, Barthes B G, Oliver R, et al. Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues-An experimental study (Madagascar). Soil Biology and Biochemistry,2007,39:2119-2128
    Cortez J, Billes G, BoucheM B. Effect of climate, soil type and earthworm activity on nitrogen transfer froma nitrogen-15-labelled decomposing material under field conditions. Biology and Fertility of Soils,2000,30:318-327
    Curry J P, Byrne D. Role of earthworms in straw decomposition in a winter cereal field. Soil Biology and Biochemistry,1997,29:555-558
    Darlington J P E C, Zimmerman P R, Greenberg J, et al. Production of metabolic gases by nests of the termite Macroterms jeanneli in Kenya. Journal of Tropical Ecology,1997,13:491-510
    Delmas R A, Servant J, Tathy J P, et al. Sources and sinks of methane and carbon dioxide exchanges in mountain forest in equatorial Africa. Journal of Geophysical Research,1992,97: 6169-6179
    Devliegher W, Verstraete W. Lumbricus terrestris in a soil core experiment:nutrient-enrichment processes (NEP) and gut-associated processes (GAP) and their effect on microbial biomass and microbial activity. Soil Biology and Biochemistry,1995,27:1573-1580
    Djigal D, Brauman A, Diop T A, Chotte J L, Villenave C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry,2004,36:323-331
    Edwards C A. The importance of earthworms as key representatives of the soil fauna. In: Earthworm Ecology. CRC Press LLC.2004, p:3-11
    Edwards C A, Bohlen P J. Biology and Ecology of Earthworms,3rd ed. Chapman & Hall, London, 1996
    Edwards C A, Fletcher K E. Interactions between earthworms and microorganisms in organic-matter breakdown. Agriculture, Ecosystems and Environment,1988,24:235-247
    Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle:a test of our knowledge of earth as a system. Science,2000,290:291-296.
    Ferris H, Venette R C, Lau S S. Population energetics of bacterial-feeding nematodes:carbon and nitrogen budgets. Soil Biology and Biochemistry.1997,29:1183-1194
    Firestone M. Biological denitrification, Nitrogen in Agriculture Soil. Stevenson F J, et al. (Eds), Soil Science Society of America, WI, USA.1982, pp.289-326
    Flessa H, Beese F. Effect of sugarbeet residues on soil redox potential and nitrous oxide emission. Soil Science Society of America Journal,1995,59:1044-1051.
    Fraser P M, Beare M H, Butler R C, et al. Interactions between earthworms (Aporrectodea caligininosa), plants and crop residues for restoring properties of a degraded arable soil. Pedobiologia,2003,47:870-876
    Fu S 1, Ferris H, Brown D, et al. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biology and Biochemistry,2005,37:1979-1987.
    Furlong M A, Singleton D R, Coleman D C, et al. Molecular and culture-basrd analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Applied and Environmental Microbiology,2002,68:1265-1279
    Graber JR, Breznak J A. Physiology and nutrition of Treponema promitia, an H2/CO2-acetogenic spirochete from termite hindguts. Applied and Environmental Microbiology,2004,70(3): 1307-1314.
    Graber J R, Breznak J A. Folate cross-feeding supports symbiotic homoacetogenic spirochetes. Applied and Environmental Microbiology,2005,71(4):1883-1889
    Granli T, Bockman O C. Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences,1994,94(12):127-128
    Griffiths B S. A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants. Biology and Fertility of Soils,1990,9:83-88
    Griffiths B S. Microbial-feeding nematodes and protozoa in soil:Their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant and Soil,1994,164:25-33.
    Griffiths B S, Bardgett R D. Interactions between micro-feeding invertebrates and soil microorganisms. In:van Elsas J D, Wellington E, Trevors J T. eds. Modern Soil Microbiology. Marcell Dekker, New York,1997,165-182.
    Hadi A, Inubushi K, Purnomo E, et al. Effect of land-use changes on nitrous oxide (N2O) emission from tropical peatlands. Chemosphere,2000,2(3-4):347-358
    Haimi J, Fritze H, Moilanen. Responses of soil decomposer animals to wood-ash fertilization and burning in a coniferous forest stand. Forest Ecology and Management.2000,129:53-61
    Hala I C, Larry M Z, Tsutomu O. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biology and Biochemistry,2003,35:295-302
    Hale C M, Frelich L E, Reich P B. Exotic European earthworm invasion dynamics in northern hardwood forests of Minnesota, USA. Ecological Applications,2005,15,848-860
    Hassink J, Bouwman L A, Zwart K B, Brussaard L. Relationship between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biology and Biochemistry 1993,25, 47-55.
    Hendrix P F. Earthworm Ecology and Biogeography in North America. Lucie Publishers, Boca Raton/Ann Arbor/London/Tokyo,1995
    Hirth J R, McKenzie B M, Tisdall J M. Roots of perennial ryegrass (Lolium perenne) influence the burrowing of the endogeic earthworm Aporrectodea rosea. Soil Biology and Biochemistry, 1998,30:2181-2183
    Horn M A, Schramm A, Drake H L. The earthworm gut:an ideal habitat for ingested N2O-producing microorganisms. Applied and Environmental Microbiology 2003,69,1662-1669
    Houghton J H, Meira L G, Bruce J. Climate change 1994. Cambridge UK:Cambridge University Press,1995.
    Huang Y, Zou J W, Zheng X H, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology and Biochemistry.2004,36:973-981
    Igbal M. Potential rates of denitrification in 2 field soils in southern England. Journal of Agricultural Science,1992,118:223-227
    Ingham R E, Trofymow J A, Ingham E R, Coleman D C. Interactions of bacteria, fungi and their nematode grazers:effects on nutrient cycling and plant growth. Ecological Monographs., 1985,55:119-140
    IPCC. Intergovernmental Panel on Climate Change Guidelines fo National Greenhouse Gas Inventories. Chapter 4. Agriculture:Nitrous oxide from agricultural soils and manure management, OECD, Paris, France,1997
    IPCC (Inter-Governmental Panel on Climate Change), Third assessment report climate change 2001:The scientific basis. UK:Cambridge University Press,2001
    Jongmans A G, Pulleman M M, Balabane M, et al. Soil structure and characteristics of organic matter in two orchards differing in earthworm activity. Applied Soil Ecology,2003,24: 219-232
    Jongmans A G, Pulleman M M, Marinissen J C Y. Soil structure and earthworm activity in a marine silt loam under pasture versus arable land. Biology and Fertility of Soils,2001,33: 279-285
    Jungerius P D, van den Ancker J A M, Miicher H J. The contribution of termites to the microgranular structure of soils on the Uasin Gishu Plateau, Kenya. Catena,1999,34(3-4): 349-363
    Kang B T, Ojo A. Nutrient availability of earthworm casts collected from under selected woody agroforestry species. Plant Soil,1996,178,113-119
    Karsten G R, Drake H L. Denitrifying bacteria in the earthworm gastrointestinal tract and in vivo emission of nitrous oxide (N2O) by earthworms. Applied and Environmental Microbiology, 1997,63,1878-1882.
    Ketterings Q M, Blair J M, Marinissen J C Y. Effect of earthworms on soil aggregate stability and carbon and nitrogen storage in a legume cover crop agroecosystem. Soil Biology and Biochemistry,1997,29:401-408
    Khalil M A K, Rasmussen R A, French J R J, et al.,1990. The influence of termiteson atmospheric trace gases:CH4, CO2, CHC13, N2O, CO, H2, and light hydrocarbons. Journal of Geophysical Research,95:3619-3634
    Knight D, Elliot P W, Anderson J M, et al. The role of earthworms in managed, permanent pastures in Devon, England. Soil Biology and Biochemistry,1992,24:1511-1517
    Kristufek V, Ravasz K, Pizl V Changes in densities of bacteria and microfungi during gut transit in Lumbricus rubellus and Aporrectodea caliginosa (Oligochaeta:Lumbricdae). Soil Biology and Biochemistry,1992,24(12):1499-1500
    Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304:1623-1627
    Lassegeus M, Roch P, Valembois P. Antibacterial activity of Eisenia fetida and reicoelomic fluid: Evidence, induction, and animals protection. Journal of Invertebrate Pathology,1989,53: 1-62
    Lavelle P. Faunal activities and soil processes:Adaptive strategies that determine ecosystem function. In:Transaction of International Congress of soil science (Mexico),1994,1: 189-220
    Lavelle P, Brussarrd L., Hendrix P. Earthworm management in tropical agroecsystems. CABI Wallingford, Oxford, U.K.1999
    Lavelle P, Martin A. Small-scale and large -scale effeects of endogeic eatrhworm on soil organicmatter dynamic in soil of the humic tropics. Soil Biology and Biochemistry,1992,24: 1491-1498
    Lawton J H, Bignell D E, Bloemers G F, et al., Carbon flux and diversity of nematodes and termites in Cameroon forest soils. Biodiversity and Conservation,1996,5:261-273
    Leadbetter J R, Breznak J A. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Applied and Environental Microbiology,1996,62:3620-3631
    Leadbetter J R, Crosby L D, Breznak J A. Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Archives of Microbiology,1998,169:287-292.
    Leadbetter J R, Schmidt T M, Breznak J A. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science,1999,283:686-689
    Lee K E. Earthworms:Their ecology and relationships with soil and land use. Sydney:Academic Press,1985
    Lee K E, Foster R C. Soil fauna and soil structure. Australian Journal of Soil Research,1991,29: 745-775.
    Lemke R L, Izaurralde R C, Nyborg M, Solberg E D. Tillage and N source influence soil-emitted nitrous oxide in the Alberta Parkland region. Canadian Journal Soil Science,1999,79:15-24
    Maestre F T, Cortina J. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology,2003,23:199-209
    Malhi S S, Lemke R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. Soil and Tillage Research,2007,96(1-2):269-283.
    Mamilov A S, Byzov B A, Zvyagintsev D G, Dilly O M. Predation on fungal and bacterial biomass in a soddy-podzolic soil amended with starch, wheat straw and alfalfa meal. Applied Soil Ecology,2001,16:131-139.
    Manna M C, Jha S, Ghosh P K, Acharya C L. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition. Bioresource Technology,2003,88, 197-206.
    Manuel A, Femado M, Jorge D. Effects of two species of earthworms (Allolobophora spp.) on soil systems:a microfaunal and biochemical analysis. Pedobiologia,2003,47:877-881
    Mao X F, Hu F, Griffiths B, et al. Bacterial-feeding nematodes enhance root growth of tomato seedlings. Soil Biology and Biochemistry.2006,38:1615-1622.
    Marchant R, Nicholas W L. An energy budget for the free-living nematode Pelodera (Rhabditidae). Oecologia,1974,16:237-252.
    Marhan S, Kandeler E, Scheu S. Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestris L.(Oligochaeta, Lumbricidae). Applied Soil Ecology,2007,35,412-422
    Martius C. Diversity and ecology of termites in Amazonian forest. Pedobiologia,1994,38:407-428
    Matthies C, Grieβhammer A, Schmittroth M, Drake H L. Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N2O) by earthworms obtained from garden and forest soils. Applied and Environmental Microbiology,1999,65, 3599-3604.
    Mielnick P C, Dugas W A. Soil CO2 flux in a tallgrass prairie. Soil Biology and Biochemistry, 2000,32:221-228
    Mondini C, Cayuela M L, Sinicco T, Cordaro F, Roig A, Sanchez-Monedero M A. Greenhouse gas emissions and carbon sink capacity of amended soils evaluated under laboratory conditions. Soil Biology and Biochemistry,2007,39,1366-1374
    Moody S A, Piearce T q, Dighton J. Fate of some fungal spores associated with wheat straw decomposition on passage through the guts of Lumbricus terrestris and Aporrectodea Tonga. Soil Biology and Biochemistry,1996,28:533-537
    Mosier A R, Kroeze C, Nevison C, Oenema O, Seitzinger S P, Van Cleemput O. Closing the global N2O budget:nitrous oxide emissions through the agricultural nitrogen cycle. OECD/IPCC/IEAphase Ⅱ development of IPCC guidelines for national greenhouse gasinventory methodology. Nutrient Cycling in Agroecosystems,1998,52,225-248
    Muscolo A, Bovalo F, Gionfriddo F, Nardi S. Earthworm humic matter produces anxin-like effects on Daucus carata cell growth and nitrate metabolism. Soil Biology and Biochemistry,1999, 31:1303-1311
    Ostle N, Briones M J I, Ineson P, Cole L, Staddon P, Sleep D. Isotopic detection of recent photosynthate carbon flow into grassland rhizosphere fauna. Soil Biology and Biochemistry, 2007,39,768-777
    Parkin T B, Berry E C. Microbial nitrogen transformations in earthworm burrows. Soil Biology and Biochemistry,1999,31:1765-1771
    Pashanasi B, Melendez G, Szott L, Lavelle P. Effect of inoculation with the endogeic earthworm Pontoscolex corethrurus (Glossoscolecidae) on N availability, soil microbial biomass and the growth of three tropical fruit tree seedlings in a pot experiment. Soil Biology and Biochemistry,1992,24:1655-1659
    Patricia M C B, Donald A D, Ian C q, et al. The effects of soil horizons and fanual excrement on bacterial distribution in an upland grassland soil, FEMS Microbiology Ecology,2005,52: 139-144
    Pedersen J C, Hendriksen N B. Effect of passage through the intestinal tract of detritivore earthworms (Lumbricus spp.) on the number of selected gram- negative and total bacteria. Biology and Fertility of Soils,1993,16:227-232.
    Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones. Nature,1982, 298:156-159
    Postma-Blaauw M B, Bloem J, Faber J H, Van Groenigen J W, De Goede R G M, Brussaard L. Earthworm species composition affects the soil bacterial community and net nitrogen mineralization. Pedobiologia,2006,50,243-256
    Potthoff M, Joergensen R G, Wolters V. Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought. Soil Biology and Biochemistry,2001,33:583-591
    Pulleman M M, Six J, Uyl A, Marinissen J C Y, Jongmans A G. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Applied Soil Ecology,2005,29,1-15
    Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Glob Biogeochem Cycle,1995,9:23-26
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus,1992,44:81-99.
    Richard J H, Patricia M F, Jacqueline E P, et al. Casts of Aporrectodea caliginosa (Savigny) and Lumbricus rubellus (Hoffmeister) differ in microbial activity, nutrient availability and aggregate stability, Pedobiologia,2003,47:882-887
    Rizhiya E, Chiara B, Petra C.J. van Vliet, et.al., Earthworm activity as a determinant for N2O emission from crop residue. Soil Biology and Biochemistry,2007,39(8):2058-2069.
    Romanya J, Casals P, Cortina J, Bottner P, Couteaux M M, Vallejo VR. CO2 efflux from a Mediterranean semi-arid forest soil. II. Effects of soil fauna and surface stoniness. Biogeochemistry,2000,48,283-306
    Sahrawat K L, Keeney D R, Admas S S. Nitrous oxide emission from soils. Advances in soil science,1986,4:103-148
    Satchell J E. Lumbricidae. In:Burges A, Raw F (eds) Soil biology. Academic Press, New York, 1967,259-322
    Scheu S. Automated measurement of the respiratory response of soil micro-compartments:active microbial biomass in earthworm faeces. Soil Biology and Biochemistry,1992,24:1113-1118
    Scheu S, Schlitt N, Tiunov A V, Newington J E, Jones T H, Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia, 2002,133,254-260
    Schindler-Wessells M, Bohlen P J, McCartney D A., et al. The effect of earthworms on soil respiration in corn agroecosystems with different nutrient treatments. Soil Biology and Biochemistry.1997,29,409-412
    Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature,1990,348:232-234
    Schmitt-Wagner D, Brune A. Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Applied and Environmental Microbiology,1999,65:4490-4496
    Scullion J, Malik A. Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biology and Biochemistry,2000, 32:119-126
    Seiler W. Conrad R, Scharffe D. Field studies of methane emission from termites nests into atmosphere and measurements of methane uptake by tropical soil. Journal of Atmospheric Chemistry,1984,1:171-186
    Senapati B K. Biotic interactions between soil nematodes and earthworms. Soil Biology & Biochemistry,1992,24(12):1441-1444
    Sharada S P, Sanjat K S. CO2 evolution and enzyme activities (dehydrogenase, protease and amylase) of fly ash amended soil in the presence and absence of earthworms (Drawida willsi Michaelsen) under laboratory conditions. Geoderma,2004,118:289-301
    Sharon L L, Paul F H. Interaction of the earthworm Diplocardia mississippiensis (Megascolecidae) with microbial and nutrient dynamics in a subtropical Spodosol. Soil Biology and Biochemistry,2001,33:1411-1417
    Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems. Botany Review,1997,43:449-528.
    Six J, Feller C, Denef K, Ogle S M, Sab J C M, Albrecht A. Soil organic matter, biota and aggregation in temperate and tropical soils-Effects of no-tillage. Agronomie,2002,22, 755-775
    Sohlenius B. Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos.1980,34(2):186-194
    Speir T W, Kettles H A, More R D. Aerobic emissions of N2O and N2 from soil cores:factors influencing production from 15N-labled NO3- and NH4+, Soil Biology and Biochemistry,1995, 27:1299-1306
    Speratti A B, Whalen J K. Carbon dioxide and nitrous oxide fluxes from soil as influenced by anecic and endogeic earthworms.2008, Applied Soil Ecology,38,27-33
    Subler S, Kirsch A S. Spring dynamics of soil carbon, nitrogen, and microbial activity in earthworm middens in a no-till cornfield. Biology and Fertility of Soils,1998,26(3):243-249
    Sugimoto A, Inoue T, Kirtibutr N, et al., Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Global Biogeochemical Cycles,1998,12:595-605
    Sundin P, Valeur A, Olsson S, Odham G Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere:effects on root exudation and distribution of bacteria. FEMS Microbiology Ecology,1990,73:13-22.
    Syers J K, Springett J A. Earthworms and soil fertility. Plant and Soil,1984,76:93-104
    Tian G, Olimah J A, Adeoye G O, Kang BT. Regeneration of earthworm populations in a degraded soil by natural, planted fallows under humid tropical conditions. Soil Science Society of America Journal,2000,64,222-228
    Tiunov A V, Scheu S. Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biology and Biochemistry,1999,31: 2039-2048
    Tiunov A V, Scheu S. Microfungal communities in soil, litter and casts of Lumbricus terrestris L.(Lumbricidae):a laboratory experiment. Applied Soil Ecology,2000a,14:17-26
    Tiunov A V, Scheu S. Microbial biomass, biovolume and respiration in Lunbricus terrestris L.cast material of different age. Soil Biology and Biochemistry,2000b,32:2b5-275
    Traunspurger G, Bergtold M, Goedkoop W. The effect of nematodes on bacterial activity and abundance in freshwater sediment. Oecologia,1997,112:118-122
    Triberti L, Nastri A, Giordani G, et al., Can mineral and organic fertilization help sequestrate carbon dioxide in cropland? European Journal of Agronomy.2008, Article in press
    Van Breemen N, Feijtel T C J. Soil processes and properties involved in the production of greenhouse gases, with special relevance to soil taxonomic system. Bouwman A F. Soil and Greenhouse Effect. Chichester:John Wiley and Sons,1990.195-224.
    Velthof G L, Kuikman P, Oenema O. Nitrous oxide emission from soils amended with crop residues. Nutrient Cycling in Agroecosystems,2002,62,249-261
    Venette R C, Ferris H. Influence of bacterial type and density on population growth of bacterial-feeding nematodes. Soil Biology and Biochemistry,1998,30:949-960.
    Vilembois P, Seymour J, Roch P. Evidence and cellular localization of an oxidative activity in the coelomic fluid of the earthworm Eisenia fetida and rei. J. Invertebr. Pathol,1991,57: 177-183
    Wall J W, Skene K R, Neilson R. Nematode community and trophic structure along a sand dune succession. Biology and Fertility of Soils,2002,35:293-301
    Webster E A and Hopkins. Effect of acidity on denitrifacation and nitrous oxide evolution from Atlantic coastal-plain soils. Soil Science Society of America Journal,1996,50:1020-1025
    Welke S E, Parkinson D. Effect of Aporrectodea trapezoids activity on seedling growth of Pseudosuga menziesii, nutrient dynamics and microbial activity in different forest soils. Forest Ecology and Management,2003,173:169-186
    Whitford W G.. Subterranean termites and long-term productivity of desert rangelands. Sociobiology.1991,19(1):235-243
    Willems J J G M, Marinissen J C Y, Blair J. Effects of earthworms on nitrogen mineralization. Biology and Fertility of Soils,1996.23:57-63
    Wilson H M, Al-Kaisi M M. Crop rotation and nitrogen fertilization effect on soil CO2 emissions in central Iowa. Applied Soil Ecology,2008, Article in press
    Wolters V, Joergensen R G Microbial carbon turnover in beech forest soils worked by Aporrectodea caliginosa (Savigny) (Oligochaeta, Lumbricidae). Soil Biology and Biochemistry,1992,24:171-177.
    Wolters V. Invertebrate control of soil organic matter stability. Biology and Fertility of Soils,2000, 31:1-19
    Yeates G W. Nematode populations in relation to soil environmental factors:a review. Pedobiologia,1981,22(5/6):312-338
    Zhang B G, Li G T, Shen T S, Wang J K, Sun Z. Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biology and Biochemistry,2000,32:2055-2062
    Zhang J, Smith K R, Ma Y, Ye S, Jiang F, Qi W et al., Greenhouse gases and other airborne pollutants from household stoves in China:a database for emission factors. Atmospheric Environment,2000,34:4537-4549
    Zhang Q L, Hendrix P R. Earthworm (Lumbricus rubellus and Aporrectodea caliginosa) effects on carbon flux in soil. Soil Science Society of America Journal.1995.59:816-823.
    Zou J W, Huang Y, Sun W J, Zheng X H, Wang Y S. Contribution of Plants to N2O emissions from soil-winter wheat ecosystem:Pot and field experiments. Plant and soil,2005,269:205-211.
    Zou J W, Huang Y, Zheng X H and Wang Y S. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China:Dependence on water regime. Atmospheric Environment,2007,41(37):8030-8042
    Zou J W, Huang Y, Zong L G, et al., Carbon dioxide, nitrous oxide and methane emissions from rice-winter wheat rotation system as affected by crop residue incorportion and temperature. Advances in Atmospheric Sciences.2004,5:691-698

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700