应用动物模型BLUP和DFREML法对牙鲆(Paralichthys olivaceus)遗传评定的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以中国水产科学研究院北戴河中心试验站的野生牙鲆为亲鱼建立家系。在养殖到185日龄、235日龄、345日龄、455日龄、505日龄时对试验鱼的全长、体长、头长、尾柄长、眼后头长、体高、尾柄高、体重和肥满度进行了测定和计算;对影响牙鲆生长性状的主要因素进行了分析,应用育种界首推的非求导约束最大似然法(DFREML)和动物模型最优线性无偏预测(BLUP)方法进行了不同模型的比较研究,估计出生长性状的方差组分和遗传参数,并计算了固定效应值、永久环境效应值和动物个体的加性效应值(估计育种值)。本研究根据估计育种值对所有个体进行遗传评定,结果如下:
     (1)池、年、季、家系和测定日龄效应对所有生长性状均有显著影响。
     (2)应用单性状无重复观测值模型,两性状模型和单性状有重复观测值模型(重复率模型)对其进行遗传参数的估计。应用单性状无重复模型估计的遗传力范围:全长0.22~0.30、体长0.23~0.30、头长0.23~0.29、尾柄长0.23~0.29、眼后头长0.26~0.38、体高0.22~0.34、尾柄高0.20~0.29、体重0.19~0.31、肥满度0.22~0.43;应用两性状模型估计的遗传力范围:全长0.26~0.31、体长0.23~0.35、头长0.29~0.38、尾柄长0.26~0.38、眼后头长0.26、体高0.19~0.28、尾柄高0.14~0.29、体重0.20~0.35、肥满度0.11~0.36。应用重复率模型分析的结果为:全长0.3、体长0.29、头长0.32、尾柄长0.28、眼后头长0.35、体高0.32、尾柄高0.25、体重0.34、肥满度0.20。全长、体长、头长、尾柄长、眼后头长、体高、尾柄高、体重,8个生长性状间为显著表型正相关;肥满度与体重在185日龄、235日龄、345日龄时表现着显著负相关,相关系数分别为-0.349、-0.123、-0.282,455日龄表现着不显著的正相关,相关系数为0.074,505日龄表现着极显著的正相关,相关系数为0.167。性状遗传相关表现趋势与表型相关基本相同。
     (3)三种模型比较的结果表明,单性状有重复有观测值模型为最优模型。
     (4)各性状的育种值对牙鲆进行遗传评定的名次与综合育种值的评定的名次之间差别不大;各种遗传评定方法之间都存在着显著的秩相关。
Samples derived from the research center in BeiDaiHe based in Chinese academy of fishery sciences, based on wild Japanese Flounder to build family. The fish were recorded when they were 185 day, 235 day, 345day, 455 day and 505 day. The study analyzed the major factors influencing the growth trait of Japanese Flounder, compared different models and estimated variance components and genetics parameters of total length, body length, head length, caudal peduncle length, postortital length, body depth, caudal peduncle depth, body weight and condition factor utilizing Derivative-Free Restricted Maximum Likelihood(DFREML) and animal model Best Linear Unbiased Prediction (BLUP).The fixed effects, the permanent environment effects and the fixed effects, the permanent environment effects and the animal genetic effects were calculated. Animal were ranked according to their estimated breeding value (EBV)to provide information for selection. The results showed as following:
     Pool, year, season, family and test-day significantly affected almost all growth traits.
     Genetic parameters were estimated with single-trait, multiple-trait and repeatability animal models. Total length, body length, head length, caudal peduncle length, postorbital length, body depth, caudal peduncle depth, body weight and condition factor showed low to moderate heritability estimates ranging from 0.22 to 0.30, from 0.23 to 0.30, from 0.23 to 0.29, from 0.23 to 0.29, from 0.26 to 0.38, from 0.22 to 0.34, from 0.20 to 0.29, from 0.19 to 0.31 and from 0.22 to 0.43 by single-trait animal model, respectively. Total length, body length, head length, caudal peduncle length, postortital length, body depth, caudal peduncle depth, body weight and condition factor exhibited low to moderate heritability by multiple-trait animal model, the heritability ranging between 0.26 to 0.31, between 0.23 to 0.35, between 0.29 to 0.38, between 0.26 to 0.38, between 0.26 to 0.38, between 0.19 to 0.28, between 0.14 to 0.29, between 0.20 to 0.35 and between 0.11 to 0.36, respectively. Heritability was estimated with repeatability animal model for total length, body length, head length, caudal peduncle length, postortital length, body depth, caudal peduncle depth, body weight and condition factor were 0.3, 0.29, 0.32, 0.28, 0.35, 0.32, 0.25, 0.34 and 0.20, respectively. Significant phenotypic positive correlations were found among eight growth traits including total length, body length, head length, caudal peduncle length, postortital length, body depth, caudal peduncle depth and body weight. Significant negative correlations were found at 185, 235 and 345 test-day between condition factor to body weight, the correlations coefficients is -0.349, -0.123 and -0.282, respectively. Insignificant positive correlations and significant positive correlations were found at 455 and 505 test-day whose correlations coefficients are 0.074 and 0.167. The genetic correlations trend of the traits was the same to phenotypic correlations.
     In comparison of different model, repeatability was the optimal model.
     The ranks of all kinds of one-trait estimated breeding values were basely same to comprehensive estimated breeding value. And all the genetic evaluation methods had significant correlations.
引文
白俊艳. 2002.应用动物模型BLUP和DFREML对内蒙古白绒山羊遗传评定和遗传参数估计的研究.内蒙古农业大学硕士学位论文.呼和浩特:内蒙古农业大学.
    白俊艳,李金泉,道尔吉,等. 2004.用不同模型估计绒山羊早期生长性状遗传参数的比较.遗传学报. 31(6):578-581.
    常玉梅,孙效文. 2006.水产养殖动物遗传连锁图谱及QTL定位研究进展.动物学研究. 27(5):533~540.
    常建波. 1995.国外鱼贝类多倍体育种技术新进展.国外水产. 21(2):1-6.
    曹洪战,吴常信. 2004.利用MTDFREM估计大约克双肌臀种猪活体背膘厚遗传力时固定效应及水平数的确定.中国畜牧杂志. 40(3):34-38.
    陈光荣,肖克宇,翁波,等. 2004.鱼类细胞工程遗传育种研究进展.水利渔业. 24(1):4-6.
    陈松林. 2004.海水养殖鱼类抗病分子育种研究进展及前景展望.科技导报. 32(9):10-13.
    陈贵才.1993.动物遗传参数估计中的最优试验设计.浙江农业大学学报. 19(2):215-219.
    戴强,戴建洪,李成. 2006.关于肥满度指数的讨论.引用与环境生物学报. 12(5):715-718.
    高连勇,等. 1992.水产动物性别控制研究和实践.河北渔业. 15(4): 8-11.
    窦硕增,杨纪明. 1993.渤海牙鲆成鱼食性研究.应用生态学报. 4(1):74-77.
    桂建芳,洪云汉. 2003.海水养殖生物遗传改良技术的发展现状及前景.高技术发展报告. 北京:科学出版社.
    李鸿鸣,孙效文. 2002.应用大规模家系选育技术促进辽宁海水养殖业的可持续发展.沈阳农业大学学报:社会科学版. 4(1):7-10.
    李莉. 2006.用BLUP和MTDFREML对敖汉细毛羊遗传评定和遗传参数估计.内蒙古大学硕士论文.
    李思发,吴力钊,王强,等. 1990.长江、珠江、黑龙江鲢、、草鱼种质资源研究.上海科学技术出版社,上海(第一版). 51-101.
    李思忠,王惠民. 1995.硬骨鱼纲-鲽形目.中国动物志.科学出版社,北京(第一版). 91-255.
    李思发,王成辉,刘志国,等. 2006.三种红鲤生长性状的杂种优势与遗传相关分析.水产学报. 30(2):175~180.
    李秀丽. 2003.考力代绵羊体重生长的遗传参数与协方差函数估计.山西农业大学硕士论文.
    李大鹏,庄平,严安生,等.2004.光照、水流和养殖密度对史氏鲟稚鱼摄食、行为和生长的影响. 28(1):54-61.
    黎中宝. 2003.牙鲆群体生化遗传学研究.中国生态农业学报. 11(2):1-4.
    连建华. 2004.性别控制技术和选择标记在牙鲆育种中的应用.中国海洋大学博士论文.
    刘剑锋,张沅,张勤. 1998.畜禽遗传参数估计的DFS-REML法.草与畜杂志. 4:11-14.
    刘筠. 1993.中国养殖鱼类养殖生理学.北京:农业出版社.
    刘雄. 1998.中国养鳟40年.水产学杂志. 11(2): 68-75.
    刘宗岳. 2007.虹鳟主要经济性状的遗传分析.东北农业大学硕士论文.
    楼允东. 1994.国外对鱼类多倍体育种的研究.水产学报. 6(4): 95-98.
    楼允东. 1999.鱼类育种学.北京:中国农业出版社. 327-343.
    鲁绍雄,吴常信. 2000.动物育种方法的回顾与展望.国外畜牧科技. 271:24-28.
    颉晓勇,李思发,蔡完,等. 2007.尼罗罗非鱼、奥利亚罗非鱼及其正、反杂交后代生长有关性状的基因型×环境互作及相关分析.上海水产大学学报. 16(2):145~151.
    权洁霞,戴纪勋. 1999.海洋生物遗传多样性研究现状.青岛海洋大学学报. 29(2):283-288.
    盛志廉,陈瑶生. 1999.数量遗传学.北京:科学出版社.
    盛志廉. 2001.数量遗传学.北京:科学出版社.
    石连玉. 2005.我国冷水性鱼类育种概况及展望.水产研究. 7:43-45.
    孙振兴. 1993.日本水产生物技术研究的进展.国外水产. 21(2):1-5.
    唐启升,陈松林. 2001. 21世纪海洋生物技术研究发展展望.高技术通讯.14(1): 1-6.
    王丙乾,曹广斌. 2003.鲑鳟鱼类健康养殖的研究现状及发展趋势.水产学杂志. 16(2): 83-88.
    王林云. 2000.猪育种工作中某些数据的校正方法.畜牧与兽医. 32(1):20 -21.
    王清印,李健. 2003.海水养殖优良品种选育和引进的现状与发展战略(一).中国水产科学. 32(2): 62-63.
    王勇,张培军. 2002.我国海水养殖鱼类生物技术的前景展望.海洋科学. 26(3): 23-26.
    王波,张朝晖,左言明等. 2004.牙鲆属主要经济鱼类的生物学及养殖研究概况.海洋水产研究. 2004(10):46-52.
    吴清江,桂建芳. 1999.鱼类遗传育种工程.上海:上海科学技术出版社.
    吴融. 1990.遗传育种新技术在鱼类养殖上的应用.现代渔业信息. 5(9):7-11.
    吴仲贤. 1977.统计遗传学,科学出版社.
    相建海. 2000.生物技术与海水养殖.中国水产. 23 (10): 37-41.
    谢营梁. 1992.日本牙鲆养殖现状及发展趋势.现代渔业信息. 7(1);25-30.
    薛良义. 1996.细胞工程在鱼类育种中的应用.浙江水产学报. 15(4):291-296.
    尹邵武,黄海,雷从改,等. 2007.海水鱼类遗产育种研究进展. 26(7):23-28.
    尤锋. 1997.海产鱼类多倍体育种的研究.海洋科学. 15 (1): 33-37.
    尤锋. 2001.牙鲆群体遗传多样性及鲽形目鱼类分子系统学初步研究.中国科学院海洋研究所博士论文. 1-56.
    尤锋,王可玲,相建海,等. 2001.山东近海褐牙鲆自然与养殖群体生化遗传结构及其遗传变异的比较分析.海洋与湖沼. 32(5):512-518.
    尤锋,张培军. 2003.海水养殖鱼类遗传多样性的保护. 27(12):11-13.
    俞美子. 2001.草原红牛主要经济性状的遗传参数估计.河北农业大学硕士论文.
    张玲,丁雷,岳永生. 2000.现代生物技术在水产动物遗传育种中的研究进展.水利渔业. 20(2): 4-6.
    张勤. 1990.家畜育种值和遗传参数估计方法的发展及现状.国外畜牧学-草食家畜. 6:72-86.
    张勤. 1994.产犊季节的划分及其对估计育种值准确性的影响.畜牧兽医学报. 251:41-46.
    张勤. 2000.动物数量遗传学的新进展及发展趋势.扬州:全国动植物数量遗传与育种学术研讨会文集. 149-155.
    张士璀. 2001.鱼类品种培育新技术.生物工程进展. 21(3):76-78 .
    张沅,张勤. 1993.畜禽育种中的线性模型.北京:北京农业大学出版社. 15-27.
    赵永军,等. 2003.我国鱼类育种50年回顾及前景展望.郑州牧业工程高等专科学校学报. 23(4) :268~269.
    郑友民,王立贤,张沅. 1999.用MTDFREML方法估计大白猪遗传参数.养猪. 22(1):32- 33.
    朱健,等. 2003.我国罗非鱼育种研究发展概况.渔业科技产业. 12 (1): 6-8.
    Araki K. 1995. Androgenetic Diploids of Rainbow Trout (On- corhynchusmykiss) Produced by Fused Sperm. Can J FishAquatSc. 52(5): 892-896.
    Arai,K., 2001. Genetic Improvement of Aquaculture Finfish Species by Chromosome Manipulation Techniques in Japan.Aquaculture. 197:205–228.
    Babiak I, Dobosz S, Goryczko K, et al. 2002. Androgenesis Inrainbow Troutusing Cryopreserved Spermatozoa: The Effectof Processing and Biological Factors. Theriogenology. 57(4): 29-49.
    Bielewski J P, Pumo D E. 1997. Random Amplified Polymor-phic DNA (RAPD) Analysis of Atlantic Coaststriped Bass. Heredity 78(1): 32-40.
    Boldman, K.G., Krise, L.A., Van Vleck, L.D. 1995. A Manual for Use of MTDFREML: a Set of Programs to Obtain Estimates of Variance and Covariance (draft). US Department of Agriculture , Agricultural Research Service.
    Brien F D, Ponzoni R W. 1990.Adescinption of WOOLPAN. In: Proceedings of the 4th word Congress on Geretic applied to Livestock production, Edinburgh. July: 23-27.
    Castro J, Bouza C, Sanchez L, et al. 2003. Gynogenesis As- sessmentusing microsatellite Geneticmarkers in Turbot (Scophthalmus maximus) . Mar Biotechnol. 5(6): 584-592.
    Chen TT, VrolijkN H, Lu JK, et al. 1996. Transgenic Fish and Its Application in Basic and Applied Research. Biotechnol Annu Rev. 2(8):205-236.
    Cheryl, F.M., Bailey, J.K., Friars, G.W. 2005. Responses to Two Generations of Index Selection in Atlantic Salmon (Salmo salar). Aquaculture. 173: 143–147.
    Druet T, Misztal I, Duanginda M, Reverter A, Gengler N. 2001. Estimation of Genetic Covariances with M ethod R. Anim Sci. 79: 6051-615.
    Du S J, Gong Z Y, FletcherG L, et al. 1992. Growth Enhance-ment in Transgenic Salmon by the Use of an“all Fish”Chimeric Grouth Hormone Gene Construct. Biotechnolo-Gy. 10(2): 176-181.
    Duangjinda M, et al. 2001. Estimation of Additive and non-additive Genetic Variances inHereford Gelbvieh and Charolais by Method R. J Anim Sci. 79: 2997-3001.
    Duangjinda M, Bertrand J K, M isztal I, Tsmuta S. 2001.The Empirical Bias of Estimates by Restricted maximum Likelihood, Bayesian Method, and Method R under Selection for Addhive, Matemal,and Dominance Models. Anim Sci. 79(2): 991-996.
    Eiichi Yamamoto. 1999. Study on Sex-manipulation and Pro-duction of Cloned Populations in Hirame, Paralichthys olivaceus. Aquaculture. 174:235-246.
    Elvingson, P. & Nilsson, J.1994. Phenotypic and Genetic Parameters of Body and Compositional Traits in Arctic Charr, Salvelinus Alpinus. Aquaculture and Fisheries Management. 25: 677–685.
    Falconer, D.S. & Mackay, T. F. C. 1996. Introduction to Quantitative Genetics. Essex: Longman Group Ltd.
    Felip A, Zanuy S, CarrilloM, et al. 2001.Induction of Trip-Loidy and Gynogenesis in Teleost Fish with Emphasis on Marine Species. Genetica. 111(1-3):175-195.
    Forsberg .1995. Genetic stability within the Norwegian subtype of salmonid alphavirus (family Togaviridae). Aquaculture. 169: 1133-116.
    Gall,G.A.E., Neria, R.. 2004. Genetic Analysis of Female Reproductive Traits of Farmed Coho Salmon (Oncoorhyncus kisutch) . Aquaculture. 234:143-154.
    Gjerde, B. & Schaeffer, L. R. 1989. Body Traits in Rainbow Trout. II. Estimates of Heritabilities and of Phenotypic and Genetic Correlations. Aquaculture. 80:25–44.
    Gilbey J, Verspoor E, McLay A, Houlihan D. 2004. A microsatellite Linkage Map for Atlantic Salmon (Salmosalar) .Anim Genet . 35:98-105.
    Graham A.E. Gall and Yosni Bakar. 2002. Privation of mixed-Model Techniques to Fish Breed Improvement: Analysis of Breeding-value Selection increase 98-day Body Weight in Tilapia. Aquaculture. 212:93-113.
    Hansen, L. P., Hvidsten, N. A. and Jensen, A. J. 1993. Interactions between wild and cultured Atlantic salmon: a review of the Norwegian experience. Fisheries Research 18: 123146.
    Henderson, C.R. 1975. Best Linear unbiased Estimation and Prediction under a Selection Model. Biometrics. 31:423-477.
    Henderson, C.R., and R.L. Quass. 1976. Multiple Trait Evaluation using Relative’s Records.J. Anim. Sci. 43:1188-1197.
    Henderson C R. 1984. Applications of Linear Models in Anima Breeding.University of Guelph.
    Higgins P J. Talbot C. Growth and feeding in jucenile Atlantic salmon. In: Cowey C B, A M. Bell J G. Nutrition and feeding in fish .London: Academic Press. 1985. 243-264.
    Kirkpatriek M,Hill W G,Thompson R. E. Stimating the eovarianee strueture of traits during growth and aging,inllustrated with laetation in dairy cattle. Genet Res, 1994, 64:57-69.
    Hong K P,Lee K J. 1999. Estimation of Generic Parameters on Metric Traits in Oreoch romis miloticus at 60 days of Age. Journal of the Korean Fisheries Society. 32(4):404~408.
    Hogman W J. 1968. Annlus formation on scales of four species of coregonjds reared under artificial conditions. J Fish Res Board Can, 25:2111-2112.
    Hutchings, J. A. & Jones, M. E. B. 1998. Life History Variation and Growth rate Thresholds for Maturity in Atlantic salmon, Salmo Salar. Canadian Journal of Fisheries and Aquatic Sciences. 56:1612–1623.
    Kause, A., Ritola, O., Paananen, T., Ma ntysaari, E. & Eskelinen, U. 2002. Coupling Body Weight and Its Composition: a Quantitative Genetic Analysis in Rainbow Trout. Aquaculture. 211: 65–70.
    Kause A., Ritola O., PaananenT., M ntysaari E. & Eskelinen U. 2003b. Selection Against Early Maturity in Large Rainbow Trout Oncorhynchus mykiss: the Quantitative Genetics of Sexual Dimorphism and Genotype-by-Environment Interactions. Aquaculture 228:53-68.
    Kim H Brown. 2002. Mitochondrial and Nuclear Inheritance in Androgenetic line of Rainbow Trout (Oncorhynchus mykiss).Aquaculture. 204:323-335.
    Krakenes, R., Hansen, T., Stefansson, S.O., Taranger, G.L., 1991. Continuous light increases growth rate of Atlantic salmon?Salmo salar.in sea cages. Aquaculture 95, 281–287.
    Kotaro Kikuchi. 2001. Present Status of Research and Production of Japanese Flounder, Paralichthys olivaceus, in Japan. 10:165-175.
    Luckenbach J A, John G, Harry V, et al. 2004. Induction of Diploid Gynogenesis in Southern Flounder (Paralichthys lethostigma) with Homologous and Heterologous Sperm. Aquaculture. 237: 499-516.
    Maria RM, CoimbraK K, SinrokuroK, et al. 2003. A Geneticlinkagemap of the Japanese Fiounder (Paralichthy oliva-ceus). Aquaculture. 220:203-218.
    Martinez, V., Neira, R. & Gall, G. A. E. 1999. Estimation of Genetic Parameters from Pedigreed Populations: Lessons from Analysis of Alevin Weight in Coho Salmon (Oncorhynchus kisutch). Aquaculture. 180: 223–236.
    McKay, L. R., Ihssen, P. E. & Friars, G. W. 1986. Genetic Parameters of Growth in Rainbow Trout, Salmo Gairdneri, as a Function of Age and Maturity. Aquaculture. 58: 241–254.
    Myers J M, Hershberger W K and Sexton A M. 2001. Estimates of Genetic and Phenotypic Parameters for Length and Weight of Marine net-pen Reared Coho Salmon (Oncorhynchus Kisutch Walbaum). Aquaculture Research. 32(4):277-285.
    MeyerK,Hill W G. 1997. Estimation of genetie and phenotyPic covariance unetions for longitudinal or“repeated”records by restrieted maximum likelih Livest Prod Sci. 47:185-200.
    Meyer K 1998a. Estimating eovarianee funetions for longitudinal data using a random regression model. Genet Sel Evol, 30:221-240.
    Nichols K M, Bartholomew J, Thorgaard GH. 2003. Mapping Multiple Genetic Loci Associated with Ceratomyxa Shasta Resistance in Oncorhynchus Mykiss. Dis Aquat Org. 56:145-154.
    Nichols KM, Wheeler PA, Thorgaard GH. 2004. Quantitative Trait Loci Analyses for MeristicTraits in Oncorhynchus Mykiss. Environmental Biology of Fishes. 69:317-331.
    Perry, G. L. M., Danzmann, R. G., Ferguson, M. M. & Gibson, J. P. 2001. Quantitative Trait Loci for Upper Thermal Tolerance in Outbred Strains of Rainbow Trout (Oncorhynchus mykiss). Heredity. 86:333–341.
    PeruzziS, Chatain B. 2003. Induction of Tetraploid Gynogenesis in the European Sea Bass (Dicentrarchus labraxL).Genetica. 119(2):225-228
    QiuQiren,et al. 1993. Fusion of Cells in Grass Carp and in-Duction of Prematurely Condensed Chromosomes. Hereditas. 15(1):14-16(in Chinese).
    Reverter A. 1994. Method R: A Procedure for the Estimation of Variance and Covariance Components. PhD. Dissertation. Colorado State Univ . Fort Collins.
    Rao C R. 1971. Minimum Variance Quadratic Estimation of Variance Components.J.Multivar.Anal. L 19(2):445-456.
    Rye, M. & Refstie, T. 1995. Phenotypic and Genetic Parameters of Body Size Traits in Atlantic Salmon Salmo Salar L. Aquaculture Research. 26: 875–885.
    Rye, M. & Gjerde, B. 1996. Phenotypic and Genetic Parameters of Body Composition Traits and Flesh Colour in Atlantic Salmon Salmo Salar L. Aquaculture Research. 27:121–133.
    SakamotoT. 1999. Linkage Analysis of Quantitative Trait Loci as-sociated with Spawning Time in Rainbow Trout(Oncorhyn-chusmykiss). Aquaculture. 173:33-43.
    Saunders, R. L. and Henderson, E. B. 1988. Effect of constant day length on sexual maturation and growthof Atlantic salmon parr. Canadian Journal of Fisheries and Aquatic Sciences 45:60-64.
    Stefansson, S. O., B. Th. Bjonsson, T. Hansen, G. L. Taranger and R. L. Saunders 1991 Growth, parr smolt transformation, and changes in growth hormone of Atlantic salmon (Salmo salar) reared under different photoperiods. Can. J. Fish Aquat. Sci.48:2 100~2 108.
    Smith P J. 1996. Genetic evidence of Two Species of Tarakihi in New Zealand Waters. New Zealand Journal of Marine and FreshwaterResearch. 30(2):209-220.
    Swift D E. Seasonal vatiation in the growth tare, thyroid gland activity and food reserces of brown trout(salmo trutta L.). J Exp Biol, 1995, 32:751-764.
    Sutton, S. G., Bult, T. P. & Haedrich, R. L. 2000. Relationships among Fat Weight, Body Weight, Water Weight, and Condition Factors in Wild Atlantic Salmon Parr. Transactions of the American Fisheries Society. 129: 527–538.
    Vandeputte M, Quillet E and Checassus B. 2002. Early Development and Survival in Brown Trout(Solmo trutta fario L):Indirect Effects of Selection for Growth rate and Estimation of Genetic Parameters.Aquaculture. 204(3-4): 135~445.
    Van Tassell C P, Misztal I Vorana L. 2000. Method R Estimates of Additive Genetic,Dominance Genetic and Permanent Envirormental Fraction of Variance for Yield and Health Traits of Holsteins. Dairy Sci. 83:1873-1877.
    Van Vleck L D,K G Boldman, L A Kriese, et al. 1993. A manual of MTDFREML. USDA:ARS.
    Volckaet F A M, et al. 1994. Gynogenesis in TheAfrican Catifish (Clarias gairepinus) Induction of Meiogynogenesis with Thermal and Pressure Shocks. Aquaculture. 128(3/4): 221-223.
    Wierzbicki, H. 2000. Additive Genetic and Error Variance Components for Conformation and Coat Traits in Arctic fox Alopex lagopus (L.). Scientifur. 24:217–222.
    Wild, V., Simianer, H., Gjoen, H.-M. & Gjerde, B. 1994. Genetic Parameters and Genotype Environment Interaction for Early Sexual Maturity in Atlantic Salmon (Salmo salar). Aquaculture. 128:51–65.
    Winkelman, A. M., Peterson, R.G., 1994. Heritability, Dominance Variation, Common Environmental Effects and Genotype by Environment Interactions for Weight and Length in Chinook Salmon. Aquaculture. 125:17-30.
    Yamamoto,E. 1999. Studies on sex-manipulation and production of cloned populations in hirame,Paralichthys olivaceus (Temminck et Schlegel). Aquaculture. 173:235–246.
    Young W P, Wheeler P A, CoryellV H, et al. 1998. A de-Tailed Linkagemap of Rainbow Troutproduced using Doub-led Haploids. Genetic. 6:839-850.
    Zhang wen di. 1997. Laser-induced Fusion of Fertil-ized Eggs of different Genera Loach and the Fish Chimera by Fusion. Chinese Journal of Biology. 7(3):279-281(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700