三疣梭子蟹基因组串联重复序列分析及微卫星标记的初步筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文构建了三疣梭子蟹部分基因组文库,对片段长度为500~1500bp的4164个克隆进行测序,在此基础上分析了微卫星和小卫星在基因组上的分布特征。利用筛选的含有微卫星的克隆序列,设计出30对微卫星引物,并筛选出了9对多态性引物。
     对三疣梭子蟹部分基因组DNA文库测序,获得了总长度622 409个碱基的基因组DNA序列,从中找到微卫星重复序列(1-6bp重复)697个。统计微卫星重复类型,以两碱基重复数目最多,为445个,占微卫星序列总数目的63.84 %;其次是三碱基,152个,占21.81%;再次分别是单碱基,45个,占6.46%;四碱基,31个,占4.45%;五碱基,14个,占2.01%;六碱基,10个,占1.43%。在单碱基重复类型中,重复拷贝类别全部为A;两碱基重复类型中,AG重复数目最多,其次是AC和AT;三碱基重复类型中以ACT最多,其次是AGG和AAT;四碱基重复类型中, AGAC重复数目最多;五碱基重复类型中,以AACCT重复拷贝类别最多;六碱基重复中以AGGGGA重复数目最多。GC重复拷贝类别的重复数目很少,只发现1个(注册号为EU113241)。
     在序列拼接后长度500~1500bp的709个克隆中,筛选到130个小卫星序列,其序列总长度占测序序列总长度的2.55%。小卫星序列中,以12bp重复单位的序列数量最多(10.77%),总体趋势表现为重复单位越长,相应的重复序列数目越少(R=-0.663,p<0.01)。小卫星重复单位拷贝数分布范围以8bp重复单位最广为3.9~66.5;其次是13bp重复范围在2.0~40.6;再次是26bp重复,范围在2.3~21.0。平均拷贝数最高的三种重复类型分别为8bp重复(19.96),25bp重复(16.00)和22bp重复(15.85)。小卫星序列中各重复单位的拷贝数分布范围2~66.5,集中分布在2~25,且表现为拷贝数目越大,其相应的重复序列数目越低的趋势。130个重复序列分别由123种重复单位所组成,因而小卫星重复序列的类型很多。我们初步分成三类:两种碱基组成类别、三种碱基组成类别和四种碱基组成类别,并进一步根据各个重复序列中所含有的碱基种类的数量从大到小排列这些碱基而分成若干小类。从这些分类中可以看出,三疣梭子蟹基因组中的小卫星整体上是富含A/T的重复序列,并揭示了其与微卫星重复序列之间的关系,即一部分小卫星重复序列可能起源于微卫星序列。
     对蟹类微卫星分离方法、引物设计、遗传学特性以及在种群遗传、家系分析、遗传多样性评价等方面的最新研究进展进行了综述,并分析了微卫星分析中无效等位基因(null allele)、“结巴”带(stutter bands)和上游等位基因“扩增丢失”现象(upper allelic dropout)的产生原因以及对微卫星基因型判读带来的影响。
     根据建立的三疣梭子蟹部分基因组文库,筛选其中含有微卫星序列的克隆设计引物。在709个克隆测序序列中,找到包含完整侧翼序列(长度大于50bp)的重复序列,设计了30对微卫星引物,从中筛选出了9对微卫星多态性引物。
In this paper, random genome library of crab Portunus trituberculatus was constructed and the lengths of 4164 sequenced clones were between 500 to1500bp. The distribution and frequencies of microsatellite and minisatellite wereanalyzed from the 709 sequences spliced; nine polymorphic microsatellite primer pairs were screened from these clones included short tandem repeat.
     By sequencing randomly, 4164 clones of sequences in the genomic library of crab Portunus trituberculatus were obtained. This study use software DNASTAR (Version 5. 0) to assemble all of the clones .The length of DNA sequences is about 622,409 bp in total.With the help of the bio-soft Tandem Repeats Finder (Version 2. 02), 697 microsatellite repeat sequences are found in the sequences. In the 697 repeat sequences , the number of the dinucleotide repeat is 445 , and it’s the most one(63.84 %) among all of the repeat sequences . The second one is the trinucleotides repeat , 152 (21.81 %) ; the third one is the mononucleotide repeat , 45 (6.46 %) ; the forth one is the tetranucleotides repeat , 31 (4.45 %) ;the fifth one is the petranucleotides repeat , 14 (2.01 %) ; the sixth one is the hexanucleotides repeat , 10 (1.43 %) .
     Number of repeat sequences that composed of the motif of A is 46, and don’t find the motif of C among the mononucleotide repeat. In dinucleotides repeat , the number of AG repeat is 214 , which is the most one, accounting for 48.09 %; and the second and third one are AC and AT repeats, 187 (42.02 %) and 43(9.66 %) respectively. Eight classes of repeat sequences that respectively composed of the motif ACT , AGG, AAT , ACC , AAG, ATC, AAC and AGC , are found in the trinucleotides repeat, in which the number of ACT repeats is 42, the most ; the second one is AGG (35) ; the others are AAT(28)、ACC(21)、AAG(9)、ATC(7)、AAC(7) and AGC(3) in turn. AGAC , AACCT and AGGGGA repeats are the most ones in tetranucleotide , pentranucleotide and hexanucleotide respectively. One GC dinucleotide repeat is found in our study and the sequence is referred to the GenBank, and the number of accession is EU113241. The reason of fewer GC repeat is also discussed in the article. Two possible answers are that: one is methylation of C in CpG islands resulting in the mutation of C-T; and another is that it is difficult to sequence the GC repeat sequences.
     Distributions of copy numbers in different types of repeat sequences are as follows: copy numbers of mononucleotide repeats are mainly between 28~40 and 68~76 , accounting for 80.00%; copy numbers of dinucleotides are mainly between 12and 36 , accounting for 64.04 %; copy numbers of trinucleotides repeats are mainly between 8 and 24 , accounting for 57.90%; copy numbers of tetre- , pentra- and hexanucleotides repeats together are mainly between 4 and 12. In general , the length of microsatellite repeat sequences is mainly between 24 to 72 bp. Based on the above point , it is believed that the nucleotide mutation of microsatellite locations are accumulated largely in a long term of evolution ; and there would be abundant polymorphism in these locations. Therefore , it would be very practical to use microsatellite to study the genome of Portunus trituberculatus and would beapplied to a variety of fields including population differentiation, kinship analysis, linkage analysis, and evolutional and ecological studies. This study provides a base for Portunus trituberculatus microsatellite research.
     With the help of the bio-soft Tandem Repeats Finder (Version 2. 02), 130 minisatellites were screened in the crab’s genome DNA sequences. Their cumulative length occupied 2.55% of the total length of DNA sequences. In the minisatellite sequences, twelve-nucleotide repeats were the most frequent type, accounting for 10.77% of the total number of minisatellites. It showed that the number of sequences decreased with the length of its repeat unit(R=-0.663,p<0.01).Eight-nucleotide repeat had the largest range of copy number of repeat unit (3.9~66.5),the following were thirteen-nucleotide repeat type(2.0~40.6) and twenty-six-nucleotide(2.3~21.0) ,respectively. Descending three repeat types in mean copy number of repeat unit were eight-nucleotide repeat (19.96), twenty-five-nucleotide (16.00) and twenty-two-nucleotide (15.85), respectively. The range of copy number of repeat unit varied from 2 to 66.5, and the copy number mostly ranged from 2 to 25. Moreover, it was showed that the number of corresponding minisatellites decreased as copy number of repeat unit increased. In our research , the 130 minisatellite sequences are composed of 123 kinds of repeat units , so it is very difficult to classify the minisatellite sequences. We think the minisatellite sequences can be classified into three types: dinucleotide minisatellite sequences composed of two kinds of nucleotide, trinucleotide minisatellite sequences composed of three kinds of nucleotide and tetranucleotide minisatellite sequences composed of four kinds of nucleotide. Further, all of above sequences can be divided into many sub-types according to the composition of nucleotide and their number from large to small. Totally, the minisatellite sequences in Portunus trituberculatus are A/T rich. We also discussed the genesis and evolution of minisatellite repeat sequences, and think the minisatellite repeats may come from the microsatellite repeats. It would be very practical to use minisatellite to study the genome of Portunus trituberculatus and would be applied to a variety of fields.
     In this article , we review isolation methods , design of primer,developmental status and genetic characteristics of microsatellites , and their applications in studies on population study , pedigree analysis , assessment of genetic diversity , and analyzed the causes resulting to null allele , stutter bands , upper allelic dropout and their effects on genotyping of microsatellite.
     Microsatellite primers were designed from the short tandem sequences which were screened from 709 clones of genomic library. microsatellites which have the 50 bp upstream and downstream flanking sequences were used. Nine primer pairs with high amplified polymorphisms were screened from thirty primers paired designed.
引文
[1]戴爱云,杨思谅,宋玉枝,陈国孝.中国海洋蟹类[M].北京:海洋出版社,1986.213-214
    [2]堵南山编著.甲壳动物学(下)[M].北京:科学出版社,1993.882-883
    [3]沈嘉瑞,刘瑞玉.我国的虾蟹[M].北京:科普出版社, 1965
    [4]戴爱云,冯钟琪,宋玉枝.三疣梭子蟹渔业生物资源的初步调查[J].动物学杂志,1977,(2):30-33
    [5]宋鹏东.三疣梭子蟹的形态和习性[J].生物学通报,1982,(5):18-21
    [6]中国海洋渔业资源编写组.中国海洋渔业资源[M].杭州:浙江科学技术出版社,1986
    [7]孙颖民,闫愚,孙进杰.三疣梭子蟹幼体发育[J] .水产学报,1982,8(3):219-226
    [8]邓景耀.渤海三疣梭子蟹的生物学.甲壳动物学论文集.北京:科学出版社,1986
    [9]宋海棠,丁耀平,许源剑.浙江近海三疣梭子蟹洄游分布和群体组成特征[J].海洋通报,1989,8(1):66-74
    [10]宋海棠,丁跃平,许源剑.浙江北部近海三疣梭子蟹生殖习性研究[J].浙江水产学院学报,1988,7(1):39-46
    [11]王浦东.三疣梭子蟹增养殖技术[J].海洋科学,1995,(6) 31:65-69
    [12]孙颖民,宋志乐,严瑞深.三疣梭子蟹生长的初步研究[J].生态学报,1984,4(1):57-64
    [13]朱冬发,王春琳,李志强.三疣梭子蟹核型分析[J].水产学报,2005,29(5):649-653
    [14]王国良,金珊,李政,陈寅儿.三疣梭子蟹养殖群体同工酶的组织特异性及生化遗传分析[J] .台湾海峡,2005,24(4):474–480
    [15]余红卫,朱东发,韩宝芹.三疣梭子蟹不同组织同工酶的分析[J].动物学杂志,2005,40(1):84-87
    [16]朱冬发,余红卫,王春琳.三疣梭子蟹个体发育早期的同工酶谱变化[J].水产学报,2005,29(6):751–756
    [17]金珊,赵青松,王春琳,陈寅儿.梭子蟹科六种海产蟹的RAPD标记[J].动物学研究,2004,25(2):172—176
    [18]张亚平,施立明.动物动物线粒体DNA多态性的研究概况[J].动物学研究,1992,13(3)289-298
    [19]郭天慧,孔晓喻,陈四清,喻子牛.三疣梭子蟹线粒体DNA l6S rRNA和CO I基因片段序列的比较研究[J].中国海洋大学学报,2004,34(1):22-28
    [20]Allen R.Place,Xiaojun Feng,Colin R.Steven.Genetic markers in blue crabsⅡCompleteMitochondrial genome sequence and characterization of genetic variation [J].Experimental Marine Biology and Ecolocgy, 2005, 319: 15–27
    [21] Pamela C Jensen,Paul Bentzen. Isolation and inheritance of microsatellite loci in the Dungeness crab(Brachyura: Cancridae: Cancer magister)[J] . Genome, 2004, 47:325-331.
    [22] Masatsugu T ,Anna B ,Takuma S , et al. Isolation and characterization of microsatellite DNA markers from mangrove crab, Scylla paramamosain [J] . Molecular Ecology Notes, 2005,5: 794–795.
    [23] David G , Jane M H ,Jing Ma. Identification of polymorphic microsatellite loci in the mud crab Scylla serrata (Brachyura: Portunidae) [J].Molecular Ecology Notes,2002, 2: 481-483.
    [24] Yap E S, Sezmis E, Chaplin J A. Isolation and characterization of microsatellite loci in Portunus pelagicus (Crustacea: Portunidae) [J]. Molecular Ecology Notes,2002, 2 (1):30–32.
    [25] Puebla O, Parent E, Sevigny J M. New microsatellite markers for the snow crab Chionoecetes opilio (Brachyura: Majidae) [J] . Molecular Ecology Notes ,2003, 3 (4):644–646.
    [26] An H S, Jeong J H, Park J Y. New microsatellite markers for the snow crab Chionoecetes opilio (Brachyura: Majidae) [J] .Molecular Ecology Notes, 2006, 7 (1): 86–88.
    [27] Hanfling B, Weetman D. Characterization of microsatellite loci for the Chinese mitten crab, Eriocheir sinensis[J]. Molecular Ecology Notes, 2003, 3 (1), 15–17.
    [28] Chang Y M, Liang L Q, Li S W, et al. A set of new microsatellite loci isolated from Chinese mitten crab, Eriocheir sinensis [J] . Molecular Ecology Notes, 2006,6(4),1237–1239.
    [29]高焕,刘萍,孟宪红,等.中国对虾基因组微卫星特征分析[J].海洋与湖沼, 2004, 35(5): 424 -431.
    [30] Katti M V, Ranjekar P K, Gupta V S.Differential distribution of simple sequence repeats in eukaryotic genome sequences[J]. Molecular Biology and Evolution , 2001.18 : 1161-1167.
    [31] Toth,Gspri Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis[J]. Genome Reseach,2000.10(7): 967-981.
    [32]崔建洲,申雪艳,杨官品,等.红鳍东方鲀基因组微卫星特征分析[J].中国海洋大学学报,2006,36(2):249-254.
    [33] Pearson C E , Sinden R .Trinucleotide repeat DNA structures:dynamic mutations from dynanic DNA[J]. Curr Opin Struct Biol,1998, 8:321-330.
    [34] Cummings C J , Zoghbi H Y. Fourteen and counting : unravelingtrinucleotide repeat diseases[J].Hum Mol Gen,2000,9:909-916.
    [35] De F V,Bersani E, Aluffi P F , et al. Are only repeated triplets guilty [J ].Journal of Theoretical Biology, 1998,194:125-142.
    [36] Xu Z,Dhar A K,Wyrzykowski J, et al. Identification of abundant and informative microsatellites from shrimp ( Penaeus monodon ) genome[J]. Anim Genet , 1999, 30 ( 2 ) :150-156.
    [37]徐鹏,周令华,相建海, 2001.中国对虾微卫星DNA的筛选[J].海洋与湖沼, 32 (3) : 255-259.
    [38] Schorderet D F,Gartler S M, 1992. Analysis of CpG suppression in methylated and nonmethylated species[J]. Proc Natl Acad Sci USA , 89: 957-961.
    [39]Lund G, Lauria M, Guldberg P, et al. Duplication-dependent CG suppression of the seed storage protein genes of maize. Genetics , 2003, 165 : 835-848.
    [40] Ramel C. Mini-and microsatellites. Environ Health Perspect 105 (Suppl)[J]. 1997,4:781-789.
    [41]Ingavale SS,Kaur R,Aggarwal P,et al. A minisatellite sequence within the propeptide region of the vacuolar carboxypeptidase Y gene of Schizosaccharomyces pombe[J].Bacteriol, 1998,180(14): 3727-3729.
    [42]Jauert PA, Edmiston SN, Conway K, et al.RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology, 2002, 22(3):953-964.
    [43]Nakamura Y, Leppert M, Connell P, et al. Variable number of tandem repeat (VNTR) markers for human genemapping[J]. Science,1987,235(4796):1616-1622.
    [44] Klevytska AM , Price LB , Schupp JM ,et al. Identification and characterization of variable number tandem repeats in the Yersinia pestis genome[J]. Journal of Clinical Microbiology, 2001,39(9):3179-3185.
    [45] van Belkum A, Scherer S, van Leeuwen W, et al. Variable number of tandem repeats in clinical strains of Haemophilus influenzae[J]. Infect Immun, 1997,65(12):5017-5027.
    [46] van Belkum A, Scherer S, Alphen LV, et al. Short sequence DNA repeats in prokaryotic genomes[J]. Microbiol. Mol.Biol. Rev, 1998,62(2):275-293.
    [47] Vergnaud G, Denoeud F. Minisatellites: mutability and genome architecture[J]. Genome Research , 2000,10(7):899-907.
    [48]高焕,刘萍,孟宪红,等.中国对虾(Fenneropenaeus chinensis)基因组微卫星特征分析[J].海洋与湖沼[J],2004,35(5):424-431.
    [49]栾生,孔杰,王清印,等.日本囊对虾基因组小卫星的特征分析[J].水产学报,2007,31(2):137-144.
    [50]陈徽.牙鲆微卫星分子标记的筛选及多态性检测[D].中国海洋大学,硕士学位论文,2005.
    [51]李红蕾,宋林生,王玲玲,等.栉孔扇贝EST中微卫星标记的筛选[J].高技术通讯, 2003,12:72-75.
    [52]高焕,孔杰.中国明对虾基因组小卫星重复序列分析.动物学报[J],2005,51(1):101-107.
    [53]简纪常,夏德全.小卫星pBC174的序列结构特性分析[J].中国水产科学,2002 9(2):186-189.
    [54] Hancock J M. Genome size and the accumulation of simple sequence repeats: implications of new data from genome sequencing projects[J].Genetica,2002,115(1):93-103.
    [55] Meyer W, Maszewska K, Sorrell TC. PCR fingerprinting: a convenient molecular tool to distinguish between Candida dubliniensis and Candida albicans. Med Mycol, 2001,39(2):185-193.
    [56] Bastien D , Favre J M , Collignon A M ,et al. Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [ Picea abies (L. ) Karst ][J]. Theor. Appl. Genet, 2003,107(3):574-580.
    [57]Klevytska A M, Price L B, Schupp J M, et al. Identification and characterization of variable number tandem repeats in the Yersinia pestis genome[J]. Journal of Clinical Microbiology, 2001,39 (9):3179-3185.
    [58]Jeffreys A J, Wilson V, Thein S L. Hypervariable minisatellite pregions in human DNA[J]. Nature, 1985,314(7):67-73.
    [59] Smith G R, Kunes S M, Schultz D W, et al.Triman KL.Structure of chi hotspots of generalized recombination[J].Cell,1981,24(2):429-436.
    [60]Vitturi R, Colomba, Gianguzza P, et al. Chromosomal location of ribosomal DNA (rDNA),( GATA)n and ( TTAGGG)n telomeric repeats in the neogastropod Fasciolaria lignaria(Mollusca : Prosobranchia)[J].Genetica, 2000,108(3):253-257.
    [61] Bois P R. Hypermutable minisatellites, a human affair Genomics ,2003,81(4):349-355.
    [62]Bishop R, Morzaria S, Gobright E. Linkage of two distinct AT-rich minisatellites at multiple loci in the genome of Theileria parva[J]. Gene,1998,216(2):245-254.
    [63]简纪常,夏德全.小卫星DNA的克隆[J].中国水产科学,1999, 6(4):18-20.
    [64]王进科,周刚,曹文明,等.用小卫星探针33.6对中华绒螯蟹遗传多态性的DNA指纹图谱研究[J].大连水产学院学报, 2001,16(2):92-98.
    [65]王进科,周刚,曹文明,等.中华绒螯蟹DNA指纹图谱的初步研究[J].水产养殖,2000,5:24-27.
    [66]白东清,乔秀亭,龙良启,等.花鲢的DNA指纹分析[J].天津农学院学报, 2001,8(4):11-14.
    [67]堵南山.世界食用蟹类[J].水产科技情报,1997,24(3):104-107.
    [68]王青,孔晓瑜,于珊珊,等.十足目染色体研究进展[J].海洋科学,2005,29(6):60-65.
    [69] Hines A H, Wolcott T G ,Lipcius R N. Populations and community ecology of the blue crabs (Callinectes sapidus) in Chesapeake Bay, USA[A]. Hines A H,ed. First Europan Crustacean Conference, Paris, 1992: 67-68.
    [70] Minagawa M. Influence of temperature on survival, feeding and development of larvae of the red frog crab, Ranina ranina (Crustacea, Decapoda, Raninidae)[J].Jap SOC SCI FISH, 1990,56(5):755-760.
    [71]Pile A J, R N Lipcius, J V Montfrans, et al. Density-dependent settler recruit juvenile relationships in blue crabs[J]. Ecological Monographs, 1996, 66(3):277-300.
    [72]Richard R A. Habitat selection and predator avoidance: Ontogenetic shifts in habitatuse by the Jonah crab Cancer borealis (Stimpson)[J]. J EXP MAR BIOL ECOL, 1992,156(2): 187-197.
    [73] Allen R Place, Feng X J,Colin R Steven. Genetic markers in blue crabsⅡComplete Mitochondrial genome sequence and characterization of genetic variation[J].Experimental Marine Biology and Ecolocgy, 2005, 319:15–27.
    [74] Mitsugu M,Yamauchi. Complete mitochondrial DNA sequence of swimming crab Portunus triuberbuculatus (Crustacea:Decapoda:Brachyura) [J].Gene, 2003, 311:129-135.
    [75]Kobayashi S, Matsuura S. Variation of the duration of copulation of the Japanese mitten crab Eriocheir japonicus[J]. Journal of Ethology,1994, 12:73-76.
    [76]高保全,刘萍,李健,等.三疣梭子蟹野生群体同功酶的遗传多样性分析[J],水产学报,2007,31(1):1-6.
    [77]高保全,刘萍,李健,等.三疣梭子蟹4个野生群体的形态差异分析[J],中国水产科学,2007,14(2):223-228.
    [78] Zane L, Bargelloni L, Patarnello T. Strategies for microsatellites isolation: a review [J].Mol Ecol,2002,11:1-16.
    [79]胡维,向华,周艳,等.用PCR法直接快速筛查重组阳性克隆[J].生物技术通报,1999,15:39-43.
    [80] Colin R Steven T, Jessica Hill, Brian Masters, et al. Genetic markers in blue crabs (Callinectes sapidus) I:Isolation and characterization of microsatellite markers[J]. Journal of Experimental Marine Biology and Ecology,2005,319 :3–14.
    [81]生秀杰,周伟强,姜莉,等.应用以菌落为模板的聚合酶链反应技术筛选重组阳性克隆[J].中华检验医学杂志,2002,25(4):239-240.
    [82]常玉梅,李绍戍,梁利群,等.微卫星标记的制备策略[J].中国生物工程杂志,2005(增):210-214.
    [83] Weber J L. Informativeness of human (dC-dA)n (dG-dT)n poly-morphisms [J]. Genomics,1990,7:524-530.
    [84] Tam, Y K, Kornfield. Characterization of microsatellite markers in Homarus (Crustacea, Decapoda) [J] . Mol Mar Biol Biotechnol,1996,5: 230–238.
    [85] Sugaya T, Ikeda M, Mori H,et al. Inheritance mode of microsatellite DNA markers and their use for kinship estimation in kuruma prawn Penaeus japonicus[J]. Fish Sci,2002,68:299–305.
    [86]Belfiore, N M, May B. Variable microsatellite loci in red swamp crayfish, Procambarus clarkii, and their characterization in other crayfish taxa[J].Mol Ecol, 2000,9:2230–2234.
    [87]Bentzen P, Taggart C T, Ruzzante, et al. Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest Atlantic[J]. Can J Fish Aquat Sci, 1996,53:2706–2721.
    [88] Allen P J, Amos W, Pomeroy, et al. Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies[J]. Mol Ecol, 1995,4:653–662.
    [89] Baker N, Byrne K, Moore S, et al. Characterization of microsatellite loci in the redclaw crayfish, Cherax quadricarinatus[J]. Mol Ecol, 2000, 9:494–495.
    [90] Callen D F,Thompson A D,Shen Y, et al. Incidence and origin of“null”alleles in the (AC)n microsatellite markers [J]. Am J Hum Genet,1993, 52: 922-927.
    [91] Pemberton J M, Slate J, Bancroft D R,et al. Nonamp lifying alleles at microsatellite loci: A caution for parentage and population studies [J ]. Molecular Ecology,1995,4:249-252.
    [92] Vigouroux Y, Jaqueth J S , Matsuoka Y, et al. Rate and pattern of mutation at microsatellite loci in maize [J]. Mol Biol Evol,2002,19:1251- 1260.
    [93] Pemberton J M, Slate J, Bancroft D R, et al. Nonamplifying alleles at microsatellite loci: A caution for parentage and population studies[J] . Mol Ecol,1995,4:249-252.
    [94] Jones A G,Stockwell C A, Walker D, et al. The molecular basis of a microsatellite null allele from the white sands pupfish [J]. J Hered,1998, 89:339-342.
    [95]Sugaya T,Ikeda M, Mori H, et al. Inheritance mode of microsatellite DNA markers and their use for kinship estimation in kuruma prawn Penaeus japonicus [J]. Fish Sci,2002,68:299-305.
    [96] Murray V, Monchawin C, England P R. The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR [J]. Nucleic Acids Res,1993,21:2395 - 2398.
    [97] Hauge X Y, Litt M. A study of the origin of shadow bands’seen when typingdinucleotide repeat polymorphisms by the PCR [J]. Hum Mol Genet, 1993,2:411-415.
    [98] Shinde D, Lai Y, Sun F, et al. Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis :(CA/GT)n and (A/T)n microsatellites [J]. Nucleic Acids Res,2003,31:974–980.
    [99] Tully G, Sullivan K M, Gill P. Analysis of 6 VNTR loci by‘multiplex’PCR and automated fluorescent detection. Hum Genet 1993,92:554–562.
    [100] Reilly P T , Herbinger C, Wright J M. Analysis of parentage determination in Atlantic salmon using microsatellites [J]. Anim Genet,1998,29: 363–370.
    [101]马海涛,常玉梅,于冬梅,等.利用微卫星分子标记分析四个中华绒蟹群体的遗传多样性[J]。动物学研究,2007,28(2):126-133.
    [102] Moore, S.S., Whan, V., Davis, G.P. The development and application of genetic markers for the Kuruma prawn Penaeus japonicus. Aquaculture, 1999,173, 19–32.
    [103]肖正东,何定华,何锡山,等.中国栗AC/GT微卫星的提取和多态性及对安徽省板栗品种的分析.分子植物育种, 2005, 4(14): 66-71.
    [104]刘萍,孟宪红,孔杰,等.中国对虾部分基因组文库构建和微卫星DNA序列的筛选.高技术通讯,2004,2:87-90.
    [105] Gao H, Kong J. The microsatellite and minisatellites in the genome of Fenneropenaeus chinensis. DNA Sequence, 2005, 16(6):426~436
    [106]张天时,刘萍,孔杰,等.中国对虾微卫星DNA引物的设计及筛选.中国水产科学, 2004, 11(6): 567-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700