金鳟(Oncorhynchus mykiss)幼鱼的补偿生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了16±2℃条件下金鳟(Oncorhynchus mykiss)幼鱼(平均初始体重31.52±1.33g)饥饿及恢复投喂不同时间的补偿生长状况。通过研究饥饿和恢复投喂对其形态性状指标、鱼体生化指标、血液生理生化指标、消化酶活性的影响,探讨了金鳟幼鱼在饥饿胁迫下的适应性对策及其补偿机制,结果如下:
     饥饿后,金鳟幼鱼的体重、体长、比肝重、肥满度和特定生长率均下降,其中体重、比肝重、肥满度和特定生长率对饥饿的反应很敏感。恢复投喂后,各饥饿组体重上升,但仍与对照组存在显著差异,其他形态形状指标均与对照组无显著差异。恢复生长时期金鳟幼鱼饥饿组的生长速度均超过了对照组,摄食率变化不大,食物转化率的变化比较明显。
     饥饿后,金鳟幼鱼鱼体水分和灰分含量上升,粗脂肪,粗蛋白,肝糖原和肌糖原含量下降;恢复投喂后各饥饿组生化指标除了肌糖原外均恢复到与对照组无显著差异水平。结果表明,肝脏是金鳟幼鱼的主要贮能器官,金鳟幼鱼能较好的利用体内的糖类作为能源物质;在饥饿时首先动用的是糖原,然后是脂肪;从肝糖原和肌糖原变化的情况来看,在饥饿的过程中首先动用肝糖原,然后再大量动用肌糖原;贮存能源物质时是优先积累肝糖原的。
     饥饿后,金鳟幼鱼红细胞总数、血红蛋白含量和红细胞比容显著下降,白细胞总数上升,红细胞沉降率呈下降趋势;恢复投喂后,血液生理指标均恢复到与对照组无显著差异水平。饥饿后,金鳟幼鱼血糖含量大幅度下降,饥饿初期下降较快,后期则维持在一定水平,胆固醇含量和甘油三脂呈类似锯齿形的阶梯状下降,血液总蛋白含量变化不显著。恢复投喂后,血液各生化指标均恢复到与对照组无显著差异水平。
     饥饿后,金鳟幼鱼消化道内蛋白酶,类胰蛋白酶和谷丙转氨酶活性均下降,且都在饥饿初期下降较快,后期下降变缓。脂肪酶活性先降低后升高,淀粉酶活性先升高后降低。恢复投喂后,金鳟幼鱼淀粉酶和脂肪酶活力与饥饿前相比都有所上升,但淀粉酶活性总体上仍低于同期对照组,脂肪酶活性总体上高于对照组水平,蛋白酶,类胰蛋白酶和肝胰脏谷丙转氨酶活性恢复到对照组水平,基本上没有变化,而且一直保持平稳的状态。金鳟幼鱼不同消化酶在消化道中的活性分布规律是:蛋白酶和类胰蛋白酶的活性,胃和幽门盲囊中最高,肠中次之,肝胰脏中最低;淀粉酶活性,肠中最高,幽门盲囊中次之,胃比幽门盲囊稍低,肝胰脏中最低;脂肪酶活性,肠中最高,幽门盲囊和胃中次之,肝胰脏中最低。
     从体重和特定生长率指标的变化可以看出,金鳟幼鱼的补偿生长是部分(有限)补偿生长。从摄食率和食物转化率的变化可以看出,其部分(有限)补偿生长主要是食物转化率提高所致。建议在金鳟人工养殖过程中应尽量避免或减少喂食不足,科学地利用补偿生长生理现象,对金鳟的养殖有着重要的意义。
This study is about the compensatory growth of kingtrout juvenile (average initial body weight 31.52±1.33g) under 16±2℃after starvation and refeeding for different days. The changes of character, the body component , the physiological and biochemical index of blood and the digestion enzyme activity have been studied in kingtrout juvenile. Countermeasure and mechanism of compensatory growth have been discussed. The result is as follows:
     After starvation, the body weight, length , hepatosomalic index , corldition factor and specific growth rate in the experimental group decrease. The body weight, hepatosomalic index , corldition factor and specific growth rate are sensitive to starvation while the body length is not sensitive to starvation. After refeeding, the body character is no significant difference except for body weight compared with control group. In the period of refeeding, the growth speed of starvation group all exceeds the control group. The change of feeding rate is not obvious and that of food conversion efficiency is very obvious.
     After starvation, the content of moisture and ash of kingtrout juvenile ascends while the content of muscle glycogen and liver glycogen descends. After refeeding, the body component is no significant difference except for muscle glycogen compared with control group. The results indicate that the liver is the main organ stores energy of kingtrout juvenile and the fish can use glycogen as energy sources; What first uses is the glycogen and then it is the fat in hunger; The fish first uses the liver glycogen and then the muscle glycogen in hungry; Kingtrout juvenile first accumulates the liver glycogen when it stores the energy material.
     After starvation, red blood cell count , hemoglobin , hematocrit and erythrocyte sedimentation rate of kingtrout juvenile levels decline significantly while white blood cell count shows a downward trend; after refeeding, the physiological index of the blood returned to the level with no significant difference compared with control group. After starvation, the glucose level of blood declines significantly and it declines faster in the early period of starvation while later it maintains a certain level. Total cholesterol o and triglyceride levels are similar sawtooth-shaped ladder decline The total protein content of the blood did not change significantly. After refeeding, the biochemical index of the blood returned to the level with no significant difference compared with control group.
     After starvation, the activities of protease , trypsin and alanine aminotransferase of digestive tract in kingtrout juvenile all decrease. And they all fall faster in the early period then later fall slower. Lipase activity decreased after the first of increased while amylase activity first increased and then decreased. After refeeding, the activities of amylase and lipase are on the rise compared to before, but amylase activity on the whole is still below the same period in the control group while lipase activity is higher compared with control group . The activities of protease , trypsin and alanine aminotransferase return to the level with no significant difference compared with control group. They basically have not changed, and have remained stable condition. The distribution orderliness of different digestive enzymes activities in the digestive tract is: protease and trypsin activities are highest in stomach and pyloric, secondly in intestines ,thirdly in hepatopancreas. Amylase activity is highest in intestines, secondly in pyloric, thirdly in stomach , fourthly in hepatopancreas. Lipase activity is highest in intestines, secondly in stomach and pyloric , thirdly in hepatopancreas.
     It could be seen from the change of body weight and specific growth rate that kingtrout juvenile shows partially compensatory growth. It could be seen from the change of food conversion efficiency and feeding rate that the partially compensation growth is mainly due to increased food conversion efficiency. Starvation should be avoided or reduced in breeding process of kingtrout . It has important significance to feeding kingtrout by scientific using of this physiological phenomenon.
引文
1. Bertram D.F.,Chambers R.C.,Leggett W.C..Negative correlation between larval and juvenile growth rates in winter flounder; implications of compensatory growth for variation in size-at-age. Mar.Ecol.Prog.Ser.,1993,96(3):209-215
    2. Bilton H.T. and Robins G.L.. The effects of starvation and subsequent feeding on survival and growth of Fulton channel sockeye salmon fry (Oncorhynchus nerka). J.Fish Res.Bd.Can.,1973,30:1-5
    3. Bisbal G.A., Bengtson D.A.. Description of the starving condition in summer flounder, Paralichthy dentatus, early life history stages. Fish Bull, 1995, 93: 217-230
    4. Butler,D.G.,1968.Hormonal control of gluconeogenesis in the North American eel(Anguilla rostrata). Gen. Comp. Endocrinol.,10:85-91
    5. Comphell C M, Davies P S. Thermal acclimation in the teleost , Blennius pholis (L.). Comp. Biochem. Physiol. , 1975 ,52A:146-151
    6. Das K M and Triphthi S D. Studies on the digestive enzymes of grass carp, Ctenopharyngdon idella. Agriculture,1991,92:21-32.
    7. Dobson S.H.,Holmes R.M..Compensatory growth in the rainbow trout, salmo gairdneri Richardson.J. Fish Biol, 1984, (25):649-656
    8. Ehrlish K.F., Blaxter J.HS., Pemberton R. Morphological and histological changes during the growth and starvation of herring and plaice larvae. Mar. Biol., 1976,35:105-118
    9. Fish G R. The comparative activity of some digestive enzymes in alimentary tract of Tilapia and Perch.Hydrobiologia.,1960,15:167-168
    10. Gillid T E and Ballantyne J S. The effect of starvation on plasma free amino acid and glucose concentration in lakes turgeon. J. Fish Biol., 1996,49(6):1306-1316
    11. Idler,D.R. and Bitners, I.. Biochemical studies on sockeye salmon during spawning migration. V.Cholesterol, fat, protein and water in body of the standard fish. J.Fish Res. Bd.Can. 1959,16, 235-241
    12. Jany K D. Studies on the digestive enzymes of the stomachnless bony fish, Carassius anratus giblio(Bloch):Endopeptidases. Comp.Biochem.Physiol., 1976, 536:31-38
    13. Jobling M., Joergensen E.H., Siikavuopio S.I..The influence of previous feeding regime onthe compensatory growth response of maturing and immature Arctic charr,Salvelinus alpinnus. J. Fish Biol.,1993,43(3):409-419
    14. Jobling M.et al.. The compensatory growth response of the Atlantic cod: effects of nutritional history. Aquaculture International, 1994,2:75-90
    15. Jobling,M.. Fish Bioenergetics Chapman and Hall.1994, London.
    16. Kakizawa S.et al..Effect of feeding,fasting,background adaptation,cute stress and exhaustive on the plasma somatolactin concentration in rainbow trout. Gen.Comp. Endocrinal., 1995, 98:137-146
    17. Kim M K, Lovell RT.. Effect of restricted feeding regimens on compensatory weight gain and body tissue changes in channel catfish Ictalurus punctatus in ponds. Aquaculture , 1995,135 :285-293
    18. Kjorvik,E.T.,V.Meeren,H. Kryvi, J. Arefinnson and P.G.kvenseth. Early development of the digestive tract of food larvae, Gadus morhua L., during start-feeding and starvation. Journal of Fish Biology,1991,38:1-15
    19. Kutty M N. Ammonia quotient in sockeye salmon ( Oncorhynchusnerka). J. Fish Res. Bd Can , 1978 ,35:1003-1005
    20. Larsson,A. and K.Lewander. Metabolic effects of starvation in the eel, Anguilla anguilla Comp. Biochem. Physiol., 1973,44A:367-374
    21. Le-Francois N R,Blier P U,Adambounou L T,et al.Exposures to low-level ionizing radiation; effects on biochemical and whole-body indices of growth in juvenile brook charr. J. Exp. Zool,1999,283(3):315-325
    22. Lnce BW,Thorpe A.The effects of starvation and force-feeding on the metabolism of the northern pikd.Esox lucius L..J. Fish boil. 1976,8:79-88
    23. Loughna,P.T. and G.Goldsprink. The effects of starvation upon protein turnover in red and white myotomal muscle of rainbow trout, Salmo gairdneri Richardson. J.Fish Biol.,1984,25:223-230
    24. Luquet P,Oteme Z J,Cisse A.Evidence for compensatory growth and its utility in the culture of Heterobranchus longifilis. Aqua. Living Resour.,1995,8:389-394
    25. MacLeod M.G.. Effects of salinity and starvation on the alimentary canal anatomy of the rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 1978. 12:71-79
    26. Maddock DM, Burton MP. Some effects of starvation on the lipid and skeletal muscle layers of the win2ter flounder, Pleuronectesam ericanus. Canadian Journal Zoology, 1994,72: 1672- 1679
    27. M Ali and R J Wootton. Compensatory growth in fishes: a response to growth depression. Fish and Fisheries, 2003, 4, 147-190
    28. Miglvas I, Jobling M.. Effect of feeding regime on food consumotion, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinus alpinus, with particular respect to compensatory growth. J. Fish Biol. 1989,34:947-957
    29. Mommsen,T.P. et al.. Sites and patterns protein and amino acid utilization during the spawning migration of salmon. Can.J.Zool.,1980,58:1785-1799
    30. Moon T M. Metabolic reserves and enzyme activities with food deprivation in immature American eels. Anguilla rostrata (LeSueur). Can. J. Zoo1,1983,61:802-811
    31. Mortensen A., Damsgaard B.. Compensatory growth and weight segregation following light and temperature manipulation of juvenile Atlantic salmon Salmo salar and Arctic charr Salvelinus alpinus.Aquac.,1993,114(3-4):261-272
    32. Munilla-Moran R, Stark JR. Metabolism in marine flatfish.Ⅵ. Effect of nutritional state on digestion in turbot, Scophthalmus maximus. Comparative Biochemistry Physiology, 1990,95 (3) : 625-634
    33. Pedersen B H, Ugelstad L, Hjelmeland K. Effect of transitory, low food supply in the early life of larval hetting, Clupea harengus on mortality, growth and digestive capacity. Mar Biol, 1990,107:61-66
    34. Pedersen BH, Nilssen EM. Variations in the content of trypsin and tryp sinogen in larval herring (Clupeaharengus) digesting copepod nauplii. Journal of Marine Biology, 1987,94 (2) : 171-181
    35. QIAN X,CUI Y,XIONG B,et a1.Compensatory growth,feed utilization and activity in gibel carp,following feed deprivation. J. Fish Biol.,2000,56:228-232
    36. Qtrinton J C, Blake R W. The effect of feed cycling and ration level on the compensatory growth response in rainbow trout,Obcorhynchus mykiss.J. Fish Biol.,1990,37:33-41
    37. Reimers E, Kjorrefjond A G, Stavostrand S M. Compensatory growth and reduced maturation in second sea winter farmed Atlantic salmon following starvation in February andMarch[J].J. Fish Biol.,1993,43(5):805-810
    38. Robert S.H.,Douglas B.N.,Ning W..Use of compensatory growth. Trans. Am. Fish Soc.,1997,126:316-322
    39. Rueda FM et a1..Effect of fasting and refeeding on growth and body composition of red porgy. Pagrus pagrus L. Aquacult.Res.1998,29(6):447-452
    40. Russell N R , Wooton R J . Appetite and growth compensation in European minnows(Phoxinus phoxinuds)following short periods of food restriction.Environ. Biol. Fish,1992,34:277-285
    41. Sarbahi D S. Studies of the digestive tracts and the digestive enzymes of the goldfish,Carassius auratus L. and large mouth black bass,Micropterus salmoides(Lacepech). Biol. Bull.,1951,100:244-257
    42. Satoh S, Takeuchi H, Watanable T. Effect of starvation and environmental temperature on proximate and fatty acid composition of Tilapia nilotica. Jan.Soc.Sci.Fish, 1984,50:79-84
    43. Schwarz F J,Plank J,Kirehgessner M. Effect of protein or energy restriction with subsequent realimentation on performance parameters of carp(Cyprinus carpio L.).Aquaculture, 1985, 48:23-33
    44. Sergio B, Adriana P, Yoh Y. Digestive enzymes activity during ontog-enetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture, 2005, 15(7):1-13
    45. Skilbrei OT.. Compensatory sea growth of male Atlantic salmo , Salmo salar L. ,which previously mature as parr. J Fish Biol , 1990,37 :425-438
    46. Walton,M.J. and C.B.Coway. Aspects of intermediary metabolism in salmonid fish. Comp. Biochem.Physiol.,B,1982,73:59-79
    47. WANG Y,CUI Y B,YAN G Y X. Compensatory growth in hybrid tihpia,Oreochromis mossambicus×O.niloticus reared in seawater.Aquaculture,2000,189: l01-108
    48. Weatherley,H.A., Gill,H.S.. Recovery growth following periods of restricted rations and starvation in rainbow trout (Salmc gairdnen Richardson). J.Fish boil., 1981,18:195-208
    49. Weatherley,H.A., Gill,H.S.. The biology of fish growth. Academic Press London,1987
    50. Wieser W, Krumschnabel G, Ojwang-Okwor J P.The energetics of starvation and growth after refeeding in juveniles of three cyprinid species.Env. Biol. Fish,1992,33:63-71
    51. Zamal H., Ollevier F.. Effect of feeding and lack of food on the growth, gross biochemical and fatty acid composition of juvenile catfish. J. Fish boil., 1995,46,404-414
    52. Zambonino J L, Cahu C L, Peres A, Quazuguel P, Gall M M L. Sea bass, Dicentrarchus labrax larvae fed different Artemia tations: growth, pancreas enzymatic response and development of digestive functions. Aquaculture, 1996,139:129-138
    53.鲍宝龙,苏锦详.海洋饥饿仔鱼营养状态的研究.上海水产大学学报, 1998, 7(1):51-58
    54.柴鹏,李吉方,吴蒙蒙等.饥饿和再投喂对锦鲤幼鱼几种消化酶活性的影响.水利渔业, 2007,27(4):12-14
    55.陈惠群,杨文鸽.饥饿对鳗鲡某些血液指标的影响.水产养殖,2002,5:33-34
    56.陈其才,严定友,吴政星.生理学实验.北京:科学出版社,1995
    57.陈晓耘.饥饿对南方鲶幼鱼血液的影响.西南农业大学学报,2000,22(2):167-169
    58.程鹏.饥饿对翘嘴鲌幼鱼消化酶活性、摄食与生长及体成分的影响.华中农业大学硕士学位论文,2006
    59.崔奕波等.饥饿状态下草鱼的代谢率和氮排泄率及其与体重的关系.水生生物学报,1993,17(4):375-376
    60.戴贤君,舒妙安.黄鳝不同生长阶段消化器官及消化酶的变化.上海交通大学学报(农业科学版),2002,20(2):113-116
    61.邓会山等.饥饿不同时间德国镜鲤血清,肝及肌组织生化成分的变化.大连水产学院学报,1993,8(4):57-61
    62.邓利,张波,谢小军.南方鲇继饥饿后的恢复生长.水生生物学报,1999,23(2): 167-173
    63.刁晓明等.饥饿状态下白鲫能量物质消耗的研究.重庆水产,1998,4:20-23
    64.董义超.饥饿和再投喂对水产动物消化器官组织学及消化酶的研究进展.中国科技论文在线
    65.董元凯,吕维贤,吴熙载.龙洲鲋鱼血液的初步研究.武汉大学学报自然科学版.生物专版,1963,(2):13-25
    66.杜震宇,刘永坚,田丽霞等.饥饿对于鲈肌肉、肝脏和血清主要生化组成的影响.动物学报,2003,49(4):458-465
    67.方展强,郑文彪.鲇肝脏超微结构研究.中国动物学会成立60周年纪念论文集,1994,38-46
    68.冯健,李程琼,梁桂英等.淡水养殖太平洋鲑鱼饥饿后补偿性生长效果研究.中山大学学报(自然科学版),2005,44(3):86-89
    69.付世建,邓利,张文兵等.南方鲇幼鱼胃和肝脏的组织结构及其在饥饿过程中的变化. 1999,24(3)336-342
    70.高露姣,陈立侨,宋兵.饥饿和补偿生长对史氏鲟幼鱼摄食、生长和体成分的影响.水产学报.2004,28(3):279-284
    71.高露姣,陈立侨,赵晓勤等.施氏鲟幼鱼的饥饿和补偿生长研究-对消化器官结构和酶活性的影响.中国水产科学,2004,11(5):413-419
    72.关胜军,吴锐全等.饥饿对大口黑鲈消化器官、蛋白酶和淀粉酶活力的影响.南方水产,2007,3(2):25-29
    73.胡麟,吴天星.饥饿对鱼类生理生化的影响.水利渔业,2007,27(1):7-9
    74.黄辨非,童响波,罗静波.饥饿对泥鳅某些血液指标的影响.淡水渔业,2006,36(6):33-35
    75.姜志强,贾泽梅,韩延波.美国红鱼继饥饿后的补偿生长及其机制.水产学报,2002,26(1):67-72
    76.解玉浩等.中国沿海河口地区鳗苗耐饥力的研究.水产学报,1994,13(6):3-7
    77.李瑾,何瑞国,王学东.中华鲟消化酶活性分布的研究.水产科技情报,2001,28(3): 99-102
    78.李懋,万松良,黄二春等.不同状态下大口鲶血液学研究.水产科学,1997,16 (6):3-7
    79.李霞,姜志强,谭晓珍等.饥饿和再投喂对美国红鱼消化器官组学的影响.中国水产科学,2003,9(3):211-215
    80.林光华.鲫鱼血液的研究.动物学报,1979 ,25 (3):210-218
    81.林浩然.鱼类生理学.广州:广东高等教育出版社,1999,16-58
    82.林学群.饥饿和再投喂对虹鳟生理参数的影响.汕头大学学报(自然科学版),1998,13(2):51-57
    83.刘玉梅等.中国对虾幼体厦仔虾消化酶活力及氨基酸组成的研究.海洋与湖沼,1991,22(5):571-575
    84.刘月.金鳟养殖试验.水产科学,2005,24(5): 36-37
    85.龙良启,熊邦喜,白东青等.池养鳗鲡胃肠组织消化酶的初步研究.华中农业大学学报,1996,15(3):275-278
    86.楼宝.浅谈鱼类的补偿生长(Compensatory growth).现代渔业信息,2006,21 (3):11-14
    87.罗贯一.黄鳝血液的实验.鱼类学论文集(第三辑).北京:科学出版社,1983, 69-75
    88.骆作勇,王雷,王宝杰等.奥利亚罗非鱼饥饿后补偿生长对血液理化指标的影响.海洋科学进展,2007,25(7):340-345
    89.马燕梅,梅景良,林树根.鳜胃肠道和肝胰脏主要消化酶活性的研究.江西农业大学学报,2004,26(4):584-588
    90.米瑞芙.草鱼、鲤和鲢血液学指标的测定.淡水渔业,1982,8(4):10-16
    91.倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、和尼罗非鲫淀粉酶的比较研究.大连水产学院学报,1992,7(1):24-31
    92.倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、和尼罗非鲫脂肪酶活性的比较研究.大连水产学院学报,1990,5(34):19-24
    93.潘鲁青,王克行.中国对虾幼体消化酶活力的实验研究.水产学报,1997,21(1):26-31
    94.钱续.革丽靬金鳟形态学特性的初步研究.淡水渔业,2005,35(5): 31-32
    95.钱雪桥,崔奕波,熊邦喜.摄食水平和营养史对鱼类生长和活动的影响.上海水产大学学报,1998,(Suppl):168-173
    96.钱云霞.饥饿对养殖鲈蛋白酶活力的影响.水产科学,2002,21(3):5-6
    97.钱云霞等.饥饿对养殖鲈鱼血液生理生化指标的影响.中国水产科学,2002,9(2): 133-137
    98.邱岭泉等.水产养殖动物补偿生长的研究概况.水产学杂志,2004,17(2):93-99
    99.区又君,刘泽伟.饥饿和再投喂对千年笛鲷幼鱼消化酶活性的影响.海洋学报,2007, 29(1): 86-91
    100.邵青,杨阳,王志铮等.水产养殖动物补偿生长的研究进展.浙江海洋学院学报(自然科学版),2004,23(4):334-346
    101.沈文英,金叶飞,金俊,丁雪春.饥饿和再投喂对白鲫生物化学组分的影响.绍兴文理学院学报,2002,22(2):49-51
    102.沈文英,林浩然,张为民.饥饿和再投喂对草鱼鱼种生物化学组成的影响.动物学报,1999,45(4):404-412
    103.沈文英,寿建昕.鱼类补偿生长的研究进展.水利渔业,2003,23(4):40-42
    104.沈文英等.饥饿对银鲫血液组分和卵巢发育的影响.动物学研究,2003,24 (6):441-444
    105.石琼等.饥饿对黄鳝性腺发育及血清褪黑激素水平的影响.北京师范大学学报(自然科学版),1998,34(3):395-398
    106.宋昭彬,何学福.鱼类饥饿研究现状.动物学杂志, 1998a, 33(1),48-52
    107.宋昭彬,何学福.饥饿状态下南方鲇仔鱼的形态和行为变化.西南师范大学学报, 1998b,24(2):155-159
    108.孙红梅.饥饿对黄颡鱼血液指标及免疫机能的影响.吉林农业大学硕士学位论文,2004
    109.王爱民,马德斌,吕林兰.饥饿对异育银鲫鱼种生长及部分血液生理指标的影响.江西农业学报. 2007,19(5):100-102
    110.王吉桥等.鲤、鲢、草鱼苗和鱼种饥饿致死时间的研究.大连水产学院学报,1993,8(2):58-65
    111.王沛宾,林学群.饥饿和恢复投喂对红鳍笛鲷生化组成的影响.水产科学,2005,24(12):10-13
    112.王沛宾,林学群等.饥饿与恢复投喂对红鳍笛鲷血液生化指标的影响.水产养殖,2004,25(5):31-34
    113.王沛宾.红鳍笛鲷的补偿性生长研究.汕头大学硕士研究生毕业论文,2002
    114.王岩,崔正贺.鱼类补偿生长研究中的几个问题.上海水产大学学报,2003,12(3): 260-264
    115.王岩.海水养殖罗非鱼补偿生长的生物能量学机制.海洋与湖沼,2001,32(3):233-239
    116.王燕妮,张志蓉,郑曙明.鲤鱼的补偿生长及饥饿对淀粉酶的影响.水利渔业,2001,21(5):6-7
    117.王永生.鱼类补偿性生长研究.海洋水产研究,2002.23(3):57-61
    118.尾崎久雄.鱼类消化生理.上海:上海科学技术出版社,1983,283-285
    119.吴立新,董双林.水产动物继饥饿或营养不足后的补偿生长研究进展.应用生态学报, 2000,11(6):943-946
    120.吴婷婷,朱晓鸣.鳜鱼、青鱼、草鱼、鲤、鲫、鲢消化酶活性的研究.中国水产科学,1994,2:10-17
    121.伍莉,陈鹏飞,陈建.史氏鲟消化酶活性的初步研究.西南农业大学学报,2002,24 (2):179-189
    122.线薇薇,朱鑫华.摄食水平对褐牙鲆(Paralichthys olivaceus)幼鱼生长影响的初步研究.青岛海洋大学学报,2000,30(3):453-458
    123.谢小军,邓利,张波.饥饿对鱼类生理生态学影响的研究进展.水生生物学报, 1998,22(2):181-188
    124.杨代勤.黄鳝营养需要与消化酶的研究.华中农业大学博士学位论文,2002
    125.杨红生,杨干荣,王辉.饥饿对大鲵血液的影响.河南师范大学学报,1993,21 (1):43-46
    126.杨文鸽,陈惠群.饥饿对养殖鳗鲡血清生化指标的影响.中国水产,2001, (7):48-49
    127.杨严鸥,姚峰,何文平.长吻鮠、异育银鲫和草鱼补偿生长的比较研究.中国水产科学, 2005,12(5):575-579
    128.殷帅文,林学群,陈洁辉.谈谈鱼类的补偿生长.生物学通报, 2003,38 (3):10-11
    129.殷帅文,林学群,陈洁辉.限食和再恢复投喂对鲮鱼生化组成的影响.水生生物学报,2004,28(3):253-259
    130.殷帅文.鲮鱼和鲻鱼的补偿生长研究.汕头大学硕士研究生毕业论文,2002
    131.殷帅文,林学群,陈洁辉.饥饿以及再充分投喂对鲻鱼血液生化指标的影响.水产养殖,2007,28(1):7-9
    132.尹秀芬.饥饿和再投喂对花尾胡椒鲷生化和形态性状指标的影响.汕头大学硕士学位论文,2002
    133.张波,孙耀,唐启升.饥饿对真鲷生长及生化组成的影响.水产学报,2000,24(3):206-210
    134.张波,孙耀.真鲷在饥饿后恢复生长中的生态转化效率.海洋水产研究,1999,20 (2):38-41
    135.张波,谢小军.南方鲇的饥饿代谢研究.海洋与湖沼,2000,31(5):480-483
    136.张桂蓉,严安生,高玉芹,陈龙.饥饿对异育银鲫几项血液指标的影响.水利渔业, 2003,23(1):9-10
    137.张宽,黄金刚.饥饿对不同食性甲壳类动物肝脏谷丙转氨酶活力的影响.氨基酸和生物资源,2005,27(3):35-37
    138.张为民,张利红,沈文英等.饥饿状态下草鱼生长激素的分泌.水生生物学报, 2001,(3):236-240
    139.张晓华等.不同温度条件对鳜仔鱼摄食和生长发育的影响.水产学报,1999,23 (1):91-94
    140.赵永军,张慧等.金鳟的生态习性及病害防治技术.水利渔业,2004,24(5):70-71
    141.郑曙明,王燕妮,聂迎霞,叶坤芬.虎鲨饥饿后的补偿生长及淀粉酶活性研究.华中农业大学学报,2003,22(5):483-487
    142.朱晓鸣等.摄食水平对异育银鲫生长及能量收支的影响.海洋与湖沼,2000,31 (5):471-477
    143.朱鑫华等.鱼类补偿生长及其资源生态学特征的影响.水产学报,2001,25(3): 266-269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700