畜禽养殖废水厌氧氨氧化脱氮处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜牧业已成为中国农村经济中最活跃增长点和主要支柱产业,畜牧排放的大量废物对周围环境造成严重污染,畜牧养殖废水中污染物进一步加剧了我国水资源短缺的矛盾,严重制约着可持续发展战略的实施。畜禽养殖废水处理中碳氢化合物去除技术已相对成熟,而对氮、磷处理仍缺乏理想方法。基于新发现的废水脱氮机理,寻求一条工艺可靠、运行稳定、成本相对低的畜禽废水脱氮处理工艺,不但对创新废水处理方法有重要理论意义,而且对解决我国水体污染有着重要的应用价值。本文基于氨氧化机理,探索用厌氧—亚硝化—厌氧氨氧化组合工艺处理养殖废水。通过构建一套养殖废水处理试验装置,利用模拟废水培养出厌氧氨氧化污泥,利用实际养殖废水进行驯化运行;着重对处理过程中亚硝化反应和厌氧氨氧化反应两个处理单元各影响因素、处理效能进行了研究,并对亚硝化和厌氧氨氧化处理单元的微生物种群和反应机理进行了较深入探索。得出如下研究成果:
     1、通过分析畜禽养殖废水处理的现状和发展要求,总结出了四套畜禽养殖废水处理工艺流程,并确定水解酸化—UASB厌氧反应—SBR亚硝代反应—UASB厌氧氨氧化反实验工艺流程。
     2、选择适合反应器和反应条件,在较短的时间内可以培养出厌氧氨氧化微生物为主体的污泥,启动成功的厌氧氨氧化反应器表现出较高的NO_2~--N和NH_4~+-N去除率。试验条件下用人工模拟养殖废水,以养殖场废水处理厌氧污泥为种泥通过150天培养出成熟的厌氧氨氧化污泥;培养成熟的污泥在HRT为24h时处理NO_2~--N和N_4~+-N浓度均为490mg/L的人工模拟养殖废水、去除率均达到85%以上。
     3、较低浓度有机物和溶解氧对厌氧氨氧化反应器影响不大,但有机物和溶解氧的存在导致反应器中反应类型增加,好氧氨氧化菌主要消除溶解氧的危害、反硝化反应主要消除有机物的危害,正是由于几个反应在同一反应器中同时存在要求进水NO_2~--N/NH_4~+-N比值随进水中溶解氧和有机物浓度的变化而改变。试验条件下模拟废水中有机物浓度为180mg/L、溶解氧浓度0.5mg/L、TN浓度为980mg/L时要维持厌氧氨氧化最高TN去除率应保持进水NO_2~-N/NH_4~+-N的比值为1.45左右为宜。
     4、影响亚硝化反应进行的主要因素是溶解氧、pH值、温度,溶解氧浓度是控制亚硝化进行程度的决定性因素。实验表明:曝气量在0.036-0.04m~3/h(通过多次测定此时溶解氧浓度为0.3mg/L左右)、pH值为8、温度为34-36℃之间反应器处于较理想的亚硝化状念。在此状态下,进水NH_4~+-N和NO_2~--N浓度均为490mg/L、HRT为24小时出水NH_4~+-N浓度为35.7mg/L,除率为92.6%;出水NO_2~--N浓度为18.7mg/L,去除率为96.2%。
     5、保持适合的亚硝化反应条件,通过控制反应时间可以对亚硝化反应发生程度进行控制,使亚硝化反应出水达到厌氧氨氧化微生物要求的NO_2~--N/NH_4~+-N比值。试验中亚硝化反应器进水有机物浓度180mg/L、溶解氧浓度为0.03mg/L亚硝化反应时间控制在34h,出水中NO_2~--N/NH_4~+-N比值为1.45满足厌氧氨氧化反应的要求。
     6、厌氧氨氧化反应器对养殖废水TN去除效果较好,处理过程中对NO_2~--N的去除效果明显优于对NH_4~+-N的去除效果。人工模拟养殖废水培养成熟的厌氧氨氧化污泥经过61天的驯化培养可对实际养殖废水进行处理,并达到稳定运行状态。达到稳定运行后NH_4~+-N去除率为45.5%、NO_2~--N去除率为95.1%、TN去除率为62.6%。
     7、厌氧氨氧化反应微生物对环境条件的适应能力较差,进水中有害物质严重影响其生长和活性。厌氧氨氧化反应器处理实际养殖废水时TN、NH_4~+-N去除率均出现较大幅度下降,与人工模拟废水相比NH_4~+-N去除率下降47%左右,NO_2~--N去除率下降不明显,TN去除率下降31.8%。
     8、采用亚硝化—厌氧氨氧化组合工艺进行养殖废水脱氮处理时两个工艺过程水力停留时间对TN去除效率有较大影响,亚硝化反应水力停留时间决定厌氧氨氧化能否完全进行。组合工艺亚硝化最佳水力停留时间为34小时,厌氧氨氧化反应器最佳水力停留时间为19-20小时。
     9、存在一定溶解氧和有机物的养殖废水进行脱氮处理时反应器的选择必须满足进水在反应器中处于较完整的推流状态,这样可在反应器中形成满足不同微生物生长条件的反应区,在反应器中加装填料有利于生长缓慢微生物的富集,形成以某类反应为主的主反应区。试验中发现在加填料的UASB反应器底部进水区好氧氨氧化微生物菌群富集主要发生好氧氨氧化反应,进水区上部一定范围内反硝化微生物菌群富集主要进行反硝化反应,上部处于完全缺氧和无机状态厌氧氨氧化微生物菌群富集主要进行厌氧氨氧化反应。
     10、养殖废水脱氮处理中微生物种类繁多,且不同的反应区起主要作用的微生物菌群存在较大差别。通过对亚硝化反应器、厌氧氨氧化反应器各不同部位污泥进行电镜扫描发现亚硝化反应微生物菌群以丝状菌为主、球菌和短杆菌也有一定量的存在;好氧氨氧化反应微生物菌群以丝状菌为主,厌氧氨氧化反应微生物菌群以球菌和短杆菌为主。
The livestock husbandry has become the most active growth point and the main pillar industry of rural economy in China. The environment was polluted gravely by a large amount of waste discharged by livestock and poultry, and the contamination of livestock wastewater has aggravated the shortage of water resource, The strategy of sustainable development was seriously restricted. The technology of eliminating hydrocarbon in livestock wastewater is already relatively mature, but still lack an ideal method to nitrogen and phosphorus. Based on the newly discovered mechanism of wastewater denitrification, seeking for a reliable ,stable and economical craft for denitrification of livestock wastewater not only has important theoretical significance for innovative wastewater treatment methods, but also has important applications value to solve the water pollution. Based on the ammonia oxidation mechanism, anaerobic - Nitrosation - ANAMMOX combination to treat .with waste water was researched in this text. Through construction of a suit of experimental treatment plant for Livestock Wastewater , ANAMMOX sludge was cultivated successfully by simulated wastewater and The plant was run by ANAMMOX sludge which domesticated by actual wastewater; the anaerobic-nitrosation-ANAMMOX combined processess for treating livestock wastewater has been researched, and the influencing factors, treatment efficacy and reaction mechanism of nitrosation and ANAMMOX processess were studied respectively, and the microbial community in nitrosation and ANAMMOX processess were analyzed.
     The main results were as follows:
     1、Situation and developmental requirements of Livestock wastewater treatment was analyzed and four sets of livestock and poultry wastewater treatment process was summarized. A Hydrolysis-UASB anaerobic reactor-SBR Nitrosation reaction-UASB ANAMMOX anti-experimental process was determined.
     2、Selecting the appropriate reactor and the reaction conditions can cultivate ANAMMOX microorganisms as the main sludge in a short period of time. ANAMMOX reactor showed high NO_2~--N and NH_4~+-N removal rate in a successful state. when artificial livestock wastewater was simulated, The mature ANAMMOX sludge which seeded with anaerobic sludge treat of livestock wastewater was cultivated successfully in 150 days. When the influent concentration of NO_2~-N and NH_4~+-N was 490mg/L, the both of removal rate was above 85% at HRT of 24 h.
     3、Low concentrations of organism and dissolved oxygen has little impact to ANAMMOX reactor, but the existence of organism and dissolved oxygen in the reaction could increase types of reaction in the reactor. Aerobic ammonia-oxidizing bacteria mainly to eliminate the harm caused by dissolved oxygen, Denitrification mainly to eliminate the harm caused by organism.Because sereval reaction exist in the same reactor,the ratio of NO_2~--N/ NH_4~+-N must be adjusted as the amount of organism and DO in influent wastewater. Keeping the ratio of NO_2~--N/ NH_4~+-N 1.45 is good for maintaining optimum TN removal rate of ANAMMOX with the concentration of organism 180mg/L, DO 0.5 mg/L and TN 980 mg/L in synthetic wastewater.
     4、Dissolved oxygen, pH, temperature are the major factors to affect Nitrosation reaction , whereas dissolved oxygen concentration is the crucial factor to control of the degree of denitrification.Data suggested that: The reactor cause to ideal nitrosation condition under the conditions of value of pH 8,aeration rat was from 0.036 m~3/h to 0.04m~3/h(DO was 0.3mg/L by repeated determine), temperature was 34-36℃. When the influent concentration of NO_2~--N and NH_4~+-N was 490mg/L, the concentration of NH_4~+-N in effluent was 35.7mg/L and removal rate was 92.6% at HRT of 24 h, While the concentration of NO_2~--N in effluent was 18.7mg/L, the removal rate was 96.2%.
     5、Maintaining suitable reaction conditions of Nitrosation , it can controlling of the degree of denitrification by controlling the reaction time, so that the effluent reached requirements NO_2~--N/NH_4~+-N ratio of anammox microbial.In the studies, nitrosation process with time of 34h, concentration of organism 180mg/L and DO of 0.03 mg/L in influent, ratio of NO_2~--N / NH_4~+-N 1.45 are good for ANAMMOX reaction.
     6、ANAMMOX reactor has a outstanding treatment for TN. in the Livestock Wastewater. In the process,the removal rate of NO_2~--N is superior to NH_4~+-N.During 61 clays domestication, the mature ANAMMOX bacteria treated with synthetic livestock wastewater could treat with actual livestock wastewater,and work stably. the removal rate of NH_4~+-N , NO_2~--N and TN was 45.5%, 95.1% and 62.6%, respectively after stably working.
     7、ANAMMOX bacteria have inferior capacity to adapt to environmental conditions,so the harmful materials in actual livestock wastewater influenced the growth and activity considerably. The revomal rate of TN,ammonia and nitrite has descended significantly. Compared with the synthetic livestock wastewater , revomal rate of NH_4~+-N declined 47%, NO_2~--N didn't decline obviously,and TN declined 31.8%.
     8、The HRT in the Nitrosation- ANAMMOX combined processess have remarkably influence for the removal rate of TN when they were used to treat with nitrification in the Livestock Wastewate. HRT in the Nitrosation reaction decided whether ANAMMOX was completely progressed.Nitrosation- ANAMMOX combined processes have great effect on nitrogen removal of livestock wastewater,the nitrosation optimal water power standing time of the process was 34h, ANAMMOX reactor optimal water power standing time of the process was 19-20h.
     9、choosing reactor for the denitrification treatment in the Livestock Wastewater which exist a certain of dissolved oxygen must keep influent in push flow state.Then different growth conditions of microbial are reached and reaction zone is formed in the reactor.It is benefit for enrichment of slowly development microbial. The installation in the reactor is good for enrichment of slowly development microbial and it can form a certain reaction dominating the main reaction zone.In this studies, aerobic ammonia oxidation reaction occurred mainly in ammonia oxidation zone where aerobic microbial community enriched at the bottom of the in let zone of UASB reactor . denitrification reacted during the top of inlet zone and ANAMMOX reacted in the top of the reactor that lack oxygen and filled with inorganisms.
     10、There are varieties of microorganisms for denitrification treatment of Livestock wastewater, and there is a outstanding difference between microbial community which play a major role in different reactions.The scanning electronmicrograph showed that microorganism species in different parts of nitrosation and ANAMMOX reactors were different .the predominantly microorganism species was Filamentous bacteria,accompanied with Methanobacterium and Sarcina-type bacteria in nitrosation reactor, but Methanobacterium and Sarcina-type bacteria were predominantly in ANAMMOX reactor.
引文
[1]卞有生.生态农业中废弃物的处理与再生利用[M].西安:化学工业出版社,第二版
    [2]中华人民共和国农业部.关于加快调整畜牧业生产结构的意见.牧发[1999]26号
    [3]农业部畜牧业司.农业部:当前全国畜牧业生产形势分沂.新华网
    [4]季明,吴长征.集约化养殖对环境的危害与预防措施[J].环境科学与技术,1999(2):32-34
    [5]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.61-71
    [6]Turk O,Mavinic D S.Maintaining nitrite build-up in a system acclimate to free ammonia[J].Water Res,1989,23(11):1383-1388
    [7]文一波,钱易.焦化废水生物脱氮研究[J].环境科学,1994,13(3):45-50
    [8]张克强,高怀友编著.畜禽养殖业污染物处理与处置[M].北京出版社,2004
    [9]陈梅雪,杨敏,贺泓.日本畜禽产业排泄物处理与循环利用的现状与技术[J].环境污染治理技术与设备,2005,6(3):5-11
    [10]汪莉等.畜牧场污水的综合治理[J].四川畜牧兽医学院学报,1999,13(4):57-62.
    [11]李淑兰.猪场废水厌氧消化及后处理技术研究:[硕士学位论文].长沙:中南林学院,2003
    [12]国家环境保护总局.全国环境统计公报(2002年)[EB/OL].http://www.sepa.gov.cn/649371571659472896/20030625/1039168.shtml,2003-6-5
    [13]孟子,熊向陨,马箭.我国垃圾渗滤液处理现状及存在问题[J].给水排水,2003,29(10):26-29
    [14]张少辉.厌氧氨氧化工艺研究:[博士学位论文].浙江:浙江大学,2004
    [15]GB8978-1996,污水综合排放标准[S]
    [16]于金莲,阎宁.牲畜养殖废水处理方法探讨[J].给水排水,2000,26(9):44-46.
    [17]邓喜红.规模化养殖场粪污治理概述[J].农业环境与发展,1999,(2):42-46.
    [18]张兆伯,刘刚,于国霞等.畜禽废水处理技术探讨[J].山东环境,2001,(6):35
    [19]崔理华,朱夕珍,陈智营.国内外规模化猪场废水处理组合工艺进展[J].农业环境保护,2000,19(3):188-191
    [20]杨朝晖,曾光明,高锋等.固液分离-UASB-SBR工艺处理养猪场废水的试验研究[J].湖南大学学报(自然科学版),2002,29(6):95-99
    [21]赵恒斗.规模化养猪的污水产生,治理与综合利用[J].中国沼气,1996,14(3):30-32.
    [22]廖新俤,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13(1):113-117
    [23]张国治,姚爱莉.藻类对猪粪厌氧废液的净化作用[J].西南农业学报,2000,13(增刊):105-112
    [24]彭军,吴分苗,唐耀武.组合式稳定塘工艺处理养猪废水设计[J].工业用水与废水,2003,(6):44-46
    [25]孙群荣,徐彬彬,张雁峰.氨吹脱-A~2/O工艺处理高浓度养殖废水[J].给水排水,2005,31(3):55-57
    [26]秦伟,郭曦,蒋立茂.畜禽养殖场废水处理技术初探[J].四川农机,2006,(1):35-37
    [27]郝海云.氧化沟生物脱氮技术[J].石油化工环境保护,1994,(2):22-26
    [28]刘鹤年.厌氧/好氧生物脱氮—絮凝法处理焦化废水[J].化工环保,1995,6:343-346
    [29]陈凤冈,李伟光,潘桂珉等.缺氧—好氧生物膜法脱氮技术的研究[J].中国环境科学,1995,15(2):135-139
    [30]曹国民,赵庆祥,高广达.城市污水A2/O法除磷脱氮技术研究[J].江苏石油化工学院学报,1995,7(2):9-16
    [31]娄金生.A2/O生物脱氮除磷工艺的探讨[J].中南工学院学报,1996,10(2):36-42
    [32]孙振世,柯强,陈英旭.SBR生物脱氮机理及其影响因素[J].中国沼气,2001,19(2):16-19
    [33]B.E.Rittmann,W E.Langeland,Simultaneous Denitrification with Nitrification in Single-channel Oxidation Ditches[J]J.W P.C.F.1985,57(4):300-308
    [34]Collivignarelli C.and Bertanza G.Simultaneous Nitrification-Denitrifcation Processe sin Activated Sludge Plants:Performance and Applicability[J].Water Science&Technology.1999,40(4-5):187-194
    [35]Hyungseok YOO,Kyu hong Ahn,Hyung Jib Lee.Nitrogen Removal from Synthetic Wastewater by Simultaneous Nitrification and Denitrification via Nitrite in an Intermitently-Aerated Reactor[J].Water Research.1999,33(1):145-154
    [36]Fihpe C.D.M.,Daigger G.(?).and Grady C.P.L.pH as a Key Factor in the Competition between Glycogen-Accumulating Organisms and Phosphorus-Accumulating Organisms[J].Wat.Env.Res.2001,73(2):223-232
    [37]高延耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].给水排水,1998,24(12):6-9
    [38]龚云华,高廷耀.废水处理同时硝化/反硝化脱氮技术现状与展望[J].煤矿环境保护,2001,15(5):17-20
    [39]孟怡,徐亚同.制药废水硝化-反硝化除氮研究[J].化工环保,1999,(19):204-207
    [40]Hellinga C.Schellen.A A J C.et.The SHARON Process:an Innovative Method for Nitrogen Removal from Ammonium-richwaste-water[J].Water Sci Technol.1998,37(9):135-142
    [41]Helmer-Madhok C,Schmid M,Filipov E,et al.Deammonification in biofilm systems:population structure and function[J].Wat.Sci.Tech.,2002,46(l-2):223-231
    [42]杨虹,李道棠,朱章玉.全程自养脱氮新技术处理污泥脱水液的研究[J].环境科学,2001,22(5):105-107
    [43]郝晓地,汪慧贞,钱易等.欧洲城市污水处理技术新概念—可持续生物除磷脱氮工艺(上)[J].给水排水,2002,28(6):6-11
    [44]Wookeun Bae,Seungcheon,Baek,Jinwook chung,Yoogwon Lee.Optimal operational factors for nitrite accumulation in batch reators[J].Biodegradation,2002,12:359-366
    [45]Dowmng,A.Hopwood,A.Some observation on the kinetics of nitrifying activated sludge plants[J],Schweizerische Aeitschrift fur Hydrologie,1964,26:271-280
    [46]Jayamohan S,Ohgak i S,Hanak i K.Effect of DO on k inetics of nitrification[J].Water Supply,1988,6:141-150
    [47]徐冬梅,聂梅生,金承基.亚硝酸型硝化试验研究[J].给水排水,1999,25(7):37-39
    [48]陈际达,陈志胜,张光辉等.含氨废水亚硝化型硝化的研究[J].重庆大学学报,(自然科学版),2000,23(3):74-76
    [49]Turk O,Mavinic D S.Maintaining nitrite build-up in a system acclimate to free ammonia[J].Water Res,1989,23(ll):1383-1388
    [50]Susanne Logemann,Julia Schantl,Saskia Bijvank,Mark van Loosdrecht,J.Gijs Kuenen,Mike Jetten,FEMS Microbiology Ecology,1998,27:239-349
    [51]方士,李筱焕.高氨氮味精废水的亚硝化/反亚硝化脱氮研究[J].环境科学学报,2001,21(1):79-83
    [52]Bernet N.,Peng D.C.,DelgenesJ-P.Nitrifation at low oxygen concentration biofilm reactor[J],Environment.Eng ASCE(American Society of civil Engineers),2001,127(3):266-271
    [53]孙英杰,张隽超,胡跃城.亚硝酸型硝化的控制途径[J].中国给水排水,2002,18(6):29-31
    [54]Wookeun Bae,Bruce E.Rittmann.A structured model of dual-limitation kinetic[J].Biotechnology and Bioengineering,1996,49(6):683-689
    [55]Keisuke H.Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor[J].Water Res,1990.24(3):297-302
    [56]张小玲,彭党聪,王志盈等.低DO紊动床内有机物对硝化过程的影响[J].中国给水排水,2002,18(5):10-13
    [57]Verstaaete W,philips S.Nitrification-denitrification processes and Technologies in New contexts[J]Environmental polution,1998,102(l):717-726
    [58]Fux C,Boehler M,Huber P,et al.Biological treatment of ammonium-rich wastewater by partial nitritation an d subsequent anaerobic ammonium oxidation in a pilot plant[J].Biotechnol,2002,(99):295-306
    [59]Van U Dongen,Jetten M S M.Van Loosdrecht M C M.The SHARON—ANAMMOX process for treatment of ammonium rich wastewater[J].Water Sci Technol,2001,44(1):153-160
    [60]Helmer—Madhok C,Schmid M,Filipov E,et al.Deammonification in biofilm systems:population structure and function[J].Wat.Sci.Tech.,2002,46(1-2):223-231
    [61]Strous M,Kuenen J G,Jetten M S M.Key physiology of anaerobic ammonium oxidation[J].Appl Environ Microbiol,1999,65(7):3248-3250
    [62]Van de Graaf A A,De Bruijn P,Robertson LA,Jetten M S M,Kuenen J GMetabolic pathway of anaerobic ammonium oxidat ion on the basis of N-15 studiesin a fluidized bed reactor[J].Microbiology,1997,143(7):2415-2421
    [63]Kuypers M M M,Sliekers A O,Lavik G,Schmid M,Jorgensen B B,Kuenen J G,Damste J S S,Strous M,Jetten M S M.Anaerobic ammonium oxidation byanammox bacteria in the black sea[J].Nature,2003,422(6932):608-611
    [64]Strous M,Fuerst J A,Kramer E H M,Logemann S,Muyzer G,Van de Pas-Schoonen K T,Webb R,Kuenen J G,Jetten M S M.Missing lithotroph identified as new planctomycete[J].Nature,1999,400(6743):446-449.
    [65]Van de Graft A A,De Bruijn P,Robertson L A,et al.Autotrophic growth of an aerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J].Microbiology,1996,142(8):2187-2196
    [66]Dilworth M J,Eady R R.Hydrazine is a product of dinitrogen reduction by the vanadiumnitrogenase from Azotobacter chroococcum[J].Biochem J,1991,277(2):465-468.
    [67]Hyman M R,Arp D J.Effects of ammonia on the de novo synthesis of polypeptides in cells of Nitrosomonas europaea denied ammonia as an energy source[J].J Bacteriol,1995,177(17):4974-4979.
    [68]Keener W K,Arp D J.Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay[J].Appl Environ Microbiol,1993,59(8):2501-2510.
    [69]Hooper A B,Vannelli T,Bergmann D J,Arciero D M.Enzymology of the oxidation of ammonia to nitrite by bacteria[J].Ant van Leeuwenhoek,1997,71(1/2):59-67.
    [70]Egli K,Fanger U,Alvarez P J J,Siegrist H,van der Meer J R,Zehnder A J B.Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J].Arch Microbiol,2001,175(3):198-207.
    [71]Mulder A,Van de Graaf A A,Robenson LA,et al.A discovery in a denitrifying fluidized bed reactor[J].FEMS Microbio Ecology,1995,(16):177-184
    [72]Egli K,Fanger U,Alvarez P J J,Siegrist H,van der Meer J R,Zehnder A J B.Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J].Arch Microbiol,2001,175(3):198-207.
    [73]Strous M,Kuenen J G,Jetten M S M.Key physiology of anaerobic ammonium oxidation[J].Appl Environ Microbiol,1999,65(7):3248-3250.
    [74]Toh S K,Webb R I,Ashbolt N J.Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters[J].Microb Ecol,2002,43(1):154-167.
    [75]胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究[J].应用与环境生物学报,1999,5(S):68-73
    [76]郑平.厌氧氨氧化菌基质转化特性的研究[J].浙江农业大学学报,1998,23(4):409-413
    [77]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,17(2):92-97
    [78]胡宝兰,郑平.ANAMMOX反应器中氨氧化菌的分离、鉴定及特性研究[J].浙江大学学报.2001.27(1):23-27
    [79]金仁村,郑平,陈旭良等.厌氧氨氧化反应器快速启动方法的探讨[J].化工进展,2005,24(6):629-631
    [80]雒怀庆,胡勇有.厌氧氨氧化污泥中效应菌的分子生物学研究[J].微生物学报,2005,45(3):335-338
    [81]王志盈,刘超翔,袁林江等.低溶氧下生物流化床内亚硝化过程的选择特性研究[J].西安建筑科技大学学报,2000,32(1):427
    [82]王志盈,彭党聪,袁林江等.低溶氧下硝化生物膜中菌群的竞争增殖模型[J].中国给水排水,1999,15(12):18-22.
    [83]郑平.厌氧氨生物氧化技术的研究[学位论文].浙江:浙江大学,1999
    [84]Jetten Mike S M,et al.The anaerobic oxidation of ammonium[J].FEMS Microbiology Reviews.1999.22(6):421-437
    [85]Wang Jianlong,YangNing.Partial nitrification under limited dissolved oxygenconditions[J].Process B iochem istry 2004,39,1223-1229
    [86]康晶,王建龙.COD对颗粒污泥厌氧氮氧化反应性能的影响[J].应用与环境生物学报,2005,11(5):604-607
    [87]Marc Strous,Eric van Gerven,Ping Zheng,J.Gijs Kuenen,Mike S.M.Jetten.Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidiation(Anammox)process in different reactor configurations[J].Water Resoure.1997,31(8):1955-1962
    [88]Strous M,Van Gerven E,Kuenen J G,et al.Effects of aerobic and micro-aembic conditions on anaerobic ammonium-oxidizing(Anammox)sludge[J].Applied and Environmental Microbiology,1997.63(6):2446-2448
    [89]周少奇,姚俊芹.UASB厌氧氨氧化反应器启动研究[J].食品与生物技术学报,2005,24(6):1-5
    [90]阮文权,邹华,陈坚.厌氧氨氧化混培凼的获得及其运行条件[J].重庆环境学报,2002,24(6):30-33
    [91]刘寅,杜兵,司亚安等.厌氧氨氧化菌的培养与推流式反应器氨厌氧工艺[J].环境科学,2005,26(2):137-141
    [92]袁怡,黄勇,龙腾锐.厌氧氨氧化过程的研究进展.工业水处理,2003,23(2):1-6
    [93]袁林江,王志盈,彭党聪等.生物流化床内亚硝酸积累试验[J].中国环境科学,2000,20(3):207-210.
    [94]高大文,彭永臻,王淑莹.短程硝化生物脱氮工艺的稳定性[J].环境科学,2005,26(1):63-67
    [95]邓良伟.规模化畜禽养殖废水处理技术现状探析[J].中国生态农业学报,2006,14(2):23-26
    [96]潘学峰,付泽田,Burton C.H.发达国家畜禽废物处理技术与立法[J].农业工程学报,1995,11(3):108-113
    [97]Strous M.Heijnen J J,Kuenen J G,et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Appl.Microbiol.Biotechnol,1998,50:589-596
    [98]左剑恶,杨洋,蒙爱红.厌氧氨氧化工艺在UASB反应器中的运行研究[J].上海环境科学,2003,22(10):665-669
    [99]张龙,肖文德.低浓度氨氮废水的厌氧氮氧化研究[J].化工环保,2005,25(4):267-270
    [100]Robertson L A,Kuenen J G.Nitrogen removal from water and waste[A].In:Jones C W,et al.Microbial Control of Pollution(C).Cambridge:Cambridge University Press,1992,227-267.
    [101]Cervantes F J,Monroy O,Gomez J.Influence of ammonium on the performance of a denitrifying culture under heterotrophic conditions[J].Appl Biochem Biotechnol,1999,81(1):13-23
    [102]Cervantes F J,De la Rosa D A,Gomez J.Nitrogen removal-from wastewaters at low C/N ratios with ammonium and acetate as electron donors[J].Bioresource Technology,2001,79(2):165-170
    [103]国家环保局.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1989
    [104]廖德祥,李小明,曾光明等.单级SBR生物膜中全程自养脱氮的研究[J].中国环境科学,2005,25(2):222-22
    [105]Strous M,Van Gerven E,Kuenen J G et al.,1997.Effects of aerobic and microaerobic conditions on anaerobic ammonium oxidizing(Anammox)sludge[J].Applied and Environmental Microbiology,63(6):2446-2448.
    [106]Van de Graaf A A,de Bruijn P,Robert son L A,et al1 Metabolic pathway of anaerobic ammonium oxidation on the basis of ~(15)N studies in a fluidized bed reactor[J].Microbiol,1997,143(7):2415-2421.
    [107]Van de Graff A A,Bruijn P,Robertson L A et al.,1996.Autotrophic growth of anaerobic ammonium2oxidizmg micro2organisms in a fluidized bed reactor[J].Microbiology,142:2187-2196
    [108]周少奇.氨氮厌氧氧化的微生物反应机理[J].华南理工大学学报(自然科学版),2000,28(11):16-19
    [109]周娟,李君文,郑金来.亚硝酸细菌研究进展.环境科学与技术.2001,24:8-10
    [110]A.Teske,E.Alm,J.M.Regan,S.Toze,B.E.Rittmann,D.A.Stahl.Evolutionary relationships among ammonia-and nitrite-oxidizing bacteria.Journal of Bacteriology.1994,176:6623-6300
    [111]杨宁.亚硝化/反硝化生物脱氮新工艺实验研究:[硕士学位论文]北京:清华大学环境系,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700