高温季节微生物发酵床基质垫层微生物群落结构变化动态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜禽业生产规模的日益扩大,产生的废弃物成为许多城市和农村的新兴污染源,已成为一个亟待解决的新问题。近几年兴起的发酵床养殖技术,是根据微生态理论,借助于发酵床垫层中微生物的作用,分解畜禽排泄物,大大减少了污染,在生产中得到迅速推广、应用,生态效益显著。本研究采用传统平板分离法,结合磷脂脂肪酸(PLFAs)分析,对高温季节下微生物发酵床养猪基质垫层的微生物群落结构进行研究分析,结果如下:
     (1)分离结果表明,各样品中含量最高为细菌(×10~5 cfu/g),其次是放线菌(×10~4 cfu/g),真菌含量最少(×10~3 cfu/g);根据微生物在各样品中含量可分为三个类群,类群Ⅰ特征为细菌含量大于70.00×10~5 cfu/g,真菌含量大于70.00×10~3 cfu/g,放线菌含量大于70.00×10~4 cfu/g;类群Ⅱ特征为细菌含量为30.00~70.00×10~5 cfu/g,真菌含量为30.00~70.00×10~3 cfu/g,放线菌含量为30.00~70.00×10~4 cfu/g;类群Ⅲ特征为细菌含量小于30.00×10~5 cfu/g,真菌含量小于30.00×10~3 cfu/g,放线菌含量小于30.00×10~4 cfu/g。在三十个采样点中,细菌的平均空间分布由高至低依次为类群Ⅱ(40.67%)、类群Ⅰ(30.67%)和类群Ⅲ(28.67%);真菌的空间分布平均比例由高至低依次是类群Ⅲ(66.00%)、类群Ⅱ(21.33%)和类群Ⅰ(12.67%);放线菌的空间分布平均比例由高至低依次是类群Ⅲ(67.33%)、类群Ⅱ(28.00%)和类群Ⅰ(4.67%)。
     (2)微生物的数量-时间变化曲线可分为前峰型、中峰型、后峰型、双峰型等类型,细菌数量的时间变化曲线包含类型主要是中峰型和后峰型,真菌的数量变化曲线包括了全部四种类型,放线菌的数量变化曲线类型主要是前锋型和后峰型;细菌的平均含量随时间变化呈现先升后下降的趋势,真菌的平均含量则基本呈现下降趋势,而放线菌的平均含量变化平缓。
     (3)以微生物发酵床基质垫层中三类微生物平均含量之间的相互比值作为衡量微生物结构比例变化的指数,细菌/真菌以B/F表示,细菌/放线菌以B/A表示,真菌/放线菌以F/A表示。分析表明,5、6、7三栏的细菌/真菌(B/F值)比值变化范围(0.32~8.73,1.29~4.1,0.26~6.89)比较小,细菌/真菌结构比例比较稳定;1栏、4栏、8栏和10栏的细菌/真菌(B/F值)变化范围(0.64~55.60,2.68~79.53,0.49~53.35,0.69~64.47)很大;其余三个栏2栏、3栏和9栏的变化范围(0.63~16.71,0.13~19.78、0.55~14.64)介于中间。2、3、5、6四栏的细菌/放线菌(B/A值)变化范围(0.74~6.16,0.18~4.88,0.54~4.13,0.55~8.94)比较小,细菌/放线菌结构比例比较稳定。1栏、4栏、7栏、8栏、9栏、10栏等六栏B/A值范围较大,变化范围最大的是10栏(1.48~88.39),细菌/放线菌结构比例变化较大。真菌/放线菌(F/A值)分析表明,10个栏的真菌放线菌(F/A)值都比较小(F/A值<10),4栏的F/A值变化范围最小(0.3~1.11),60天时10个栏的F/A值<1。
     (4)根据聚集度指数负二项分布的K指标分析,细菌的聚集指数总体降低,由随机分布转变为聚集分布,且聚集分布的程度逐渐减弱,之后保持比较稳定的聚集分布程度;真菌属于聚集分布且聚集分布程度逐渐降低,但变化平缓;放线菌聚集指数变化比较大,由聚集分布转变为随机分布,又转变为聚集分布;在30-60天时细菌、真菌、放线菌聚集度指数K值都变化不大,趋于稳定,放线菌比细菌和真菌偏高,表明细菌、真菌、放线菌均处于比较稳定的聚集分布状态,放线菌的聚集分布程度比细菌和真菌偏高。
     (5)不同栏位不同时间PLFA总量的比较结果表明:PLFA总量随时间变化呈相同的变化趋势“升—降—升—降”,其中2栏在15-45天时的变化范围(2227359.33~12464370.33)较大,10栏的变化范围(4581140.67~8981641.33)较小;在第1天时各栏微生物的PLFA总量相近(1358607.33~3345488.00 ) ,第60天时各栏微生物的PLFA总量也很相近(1458257.33~3078114.00)。PLFA特征标识分析表明:PLFA特征细菌标识16:0、特征真菌标识18:1ω9c、特征放线菌标识TBSA 10 Me 18:0和特征原生动物标识20:4ω6,9,12,15c数量在随时间变化中均呈现“降—升—降”的变化趋势,特征原生动物标识20:4ω6,9,12,15c数量较少,变化范围(16155.93~129881.93)较其他三者更小,变化平缓。
With the scale of livestock and poultry production expanding, waste generated as emerging pollution sources in many urban and rural had become a new problem demanding prompt solution. Based on micro-ecological theory of culture techniques of fermentation bed, the animal wastes were decomposed with the help of fermentation microorganisms, as result in pollution being greatly reduced and eco-efficiency being remarkable. The thesis focused on the microbial community structure analysis of microbial fermentation bed by used traditional plate separation combined with the Phospholipid Fatty Acids (PLFAs) analysis under the high temperature seasons. the results showed as follow:
     (1) The result of traditional plate separation showed: in the microbial fermentation bed, the bacteria were the highest(×10~5 cfu/g),followed by the actinomyces (x10~4 cfu/g), and the fungi was minimum (x 10~3 cfu/g).The microorganisms were devided into three groups according to their quantity. The characteristics of groupⅠwere the bacteria content more than 70.00 x10~5 cfu/g, the fungal content more than 70.00 x10~3 cfu/g, and the actinomyces content more than 70.00x10~4 cfu/g. The characteristics of groupⅡwere the bacteria content of 30.00~70.00 x10~5 cfu/g, the fungi of 30.00 ~ 70.00 x10~3 cfu/g, the actinomyces of 30.00~70.00 x10~4 cfu/g. The characteristic of groupⅢwere the bacteria content less than 30.00 x10~5 cfu/ g , the fungi content less than 30.00 x10~3 cfu/g, the actinomyces content less than 30.00 x10~4 cfu/g. In 30 sampling sites, the bacteria averages in the space were distributed with the order from high to low were groupⅡ(40.67%), groupⅠ(30.67%),and groupⅢ(28.67%). The fungi averages were distributed as that groupⅢ(66.00%), groupⅡ(21.33%),andⅠgroup(12.67%). The actinomyces averages were distributed as groupⅢ(67.33%), groupⅡ(28.00%),andⅠgroup(4.67%).
     (2) The microbial population dynamic curve with quantity-time could be divided into four types such as advanced peak type, central peak type, delayed peak type and petronas-peak type. The bacterial quantity dynamic curve mainly contained the two types of central peak type and delayed peak type, and the fungi curve included all the four types. For the actinomyces, there were main types of advanced peak type and delayed peak type. The averages of bacteria increased firstly, and then dropping the trends in the changes over time, the averages of fungi presented the downward trend basically, and the averages of actinomyces changed gently.
     (3) The changes index of microbial structure was introduced into the research on treated ratio of content of three types microorganism in microbial fermentation bed. the B/F index refered to bacteria/fungi, the B/ A refered to bacteria/ actinomyces, and the F/A refered to fungi/actinomyces. The results showed that the ratios of bacteria /fung(iB/F value)in the 5th、6th、7th pigstys were narrow range(0.32~8.73,1.29~4.1,0.26~6.89), and the bacteria/fungi structure of them changed little. While the B/F value of 1st, 4th, 8th and 10th pigstys were wide-ranging (0.64~ 55.60,2.68 ~ 79.53, 0.49~ 53.35, 0.69~64.47).The rest three pigstys of 2nd,3rd and 9th range(0.63~16.71,0.13~19.78、0.55~14.64)changed in the middle. The ratio ranges of bacteria/ actinomyces (B/A value) in the four pigstys of 2nd, 3rd, 5th and 6th were small with the values 0.74 ~ 6.16, 0.18 ~ 4.88, 0.54 ~ 4.13, 0.55 ~ 8.94, and the bacteria/ actinomyces structural scale of them were more stable relatively. Whie the B/A value ranges of six pigstys in 1st, 4th, 7th, 8th, 9th and 10th were large, of which 10th pigsty change range (1.48:1 ~ 88.39) was the biggest, and bacteria/ actinomyces structural scale varied considerably. The fungi/ actinomyces (F/A value) analysis showed that, fungi/ actinomyces (F/A value) of 10 pigstys were comparatively small (F/A value < 10). The changing range of F/A value of 4th pigsty was minimum (0.3 ~ 1.11), and the F/A value of 10 pigstys were less than 1 on 60th day.
     (4) According to analysis of aggregation index-negative binomial distribution K index, the aggregation index of bacteria reduced overall, it’s spatial distribution changed from random distribution to a aggregated distribution, and the extent of aggregated distribution weakened gradually, the distribution then remained relatively stable level of aggregated distribution. The fungal distribution was of aggregated distribution all along and the extent of aggregation gradually reduced gently. Actinomyces change of aggregated index was relatively bigger ,and it’s spatial distribution transformed from aggregated distribution into random distribution and then into aggregated distribution again. The aggregation index of bacteria, fungi and actinomyces were changed little during 30th-60th days, turning to be stable, and the index of actinomyces was higher than bacteria and fungi in this time.It suggested that bacteria, fungi, actinomyces were in relatively stable state of aggregated distribution, and actinomyces aggregated distribution degree was higher than bacteria or fungi.
     (5) The comparison results of total amount PLFA in different pigstys of different time showed that total amount PLFA changes with time in the same changing trend of " increase - decrease - increase - decrease". Total microorganism PLFA amount of each pigstys on the 1st day (1358607. 33~ 3345488. 00) were similar, and it increased on 15th da(y8981641.33~12464370.33)while decreased on 30th day. On 45th day, total microorganism PLFA amount increased slightly in relative 30th day. And what happened on the 60th day(1458257.33~3078114.00)was as same as 1st day. 16:0 is characteristics identified PLFA of bacterial, 18:1ω9c of fungi, TBSA 10 Me 18:0 of actinomyces and 20:4ω6,9,12,15c of Protozoa. Analysis of identify characteristics PLFA showed that the content changes of them were significantly in the same trend of "decrease - increase - decrease". And the total amount of 20:4ω6, 9,12,15c was less and than the other three and so was the range. The rang of it was frome 16155.93 to 129881.93, changing gently.
引文
[1]苏杨.我国集约化畜禽养殖场污染问题研究[J].中国生态农业学报. 2006, 14(002): 15-18.
    [2]田宁宁,李宝林.畜禽养殖业废弃物的环境问题及其治理方法[J].环境保护. 2000(012): 10-13.
    [3]邓良伟,李中轩,陈子爱.猪场粪污处理与环境改善——规模化猪场废水处理模式选择[J].猪业科学. 2007, 24(009): 22-26.
    [4]日本洛东式发酵养猪法技术要点及应用效果初报[J].
    [5] Daniel T C, Sharpley A N, Lemunyon J L. Agricultural phosphorus and eutrophication: a symposium overview.[J]. 1998.
    [6] Nicholson F A, Smith S R, Alloway B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales[J]. The Science of the Total Environment. 2003, 311(1-3): 205-219.
    [7]马小玲.东江流域水资源制度研究初探[J].水资源,水环境与水法制建设问题研究——2003年中国环境资源法学研讨会(年会)论文集(上册). 2003.
    [8] Yongqiang W. Controlling Countermeasures of the Environmental Pollution of Pig Farm[J]. Journal of Anhui Agricultural Sciences. 2006, 34(2): 243.
    [9]姚丽贤,李国良,党志.集约化养殖禽畜粪中主要化学物质调查[J].应用生态学报. 2006, 17(010): 1989-1992.
    [10] Diez J A, Cartagena A I, Carballo M C, et al. Evaluation of the application of pig slurry to an experimental crop using agronomic and ecotoxicological approaches[J].
    [11]朱颂华.农业发展新阶段与农业可持续发展[Z].上海:上海财经大学出版社, 2002.
    [12]甘露,马君,李世柱.规模化畜禽养殖业环境污染问题与防治对策[J].农机化研究. 2006(006): 22-24.
    [13] GB 5749-2006生活饮用水卫生标准[S].
    [14] Nicholson F A, Chambers B J, Williams J R, et al. Heavy metal contents of livestock feeds and animal manures in England and Wales[J]. Bioresource Technology. 1999, 70(1): 23-31.
    [15]王付民,陈杖榴,孙永学,等.有机胂饲料添加剂对猪场周围及农田环境污染的调查研究[J].生态学报. 2006, 26(001): 154-162.
    [16]江传杰,王岩,张玉霞.畜禽养殖业环境污染问题研究[J].河南畜牧兽医. 2005, 26(001): 28-31.
    [17]叶小梅,常志州,陈欣,等.畜禽养殖场排放物病原微生物危险性调查[J].生态与农村环境学报. 2007, 23(002): 66-70.
    [18]高定,陈同斌,刘斌,等.我国畜禽养殖业粪便污染风险与控制策略[J].地理研究. 2006, 25(2): 311-319.
    [19]孔源,韩鲁佳.我国畜牧业粪便废弃物的污染及其治理对策的探讨[J].中国农业大学学报. 2002, 7(006): 92-96.
    [20]叶小梅,常志州,陈欣,等.畜禽养殖场排放物病原微生物危险性调查[J].生态与农村环境学报. 2007, 23(002): 66-70.
    [21]谷洁,高华,李鸣雷,等.养殖业废弃物对环境的污染及肥料化资源利用[J].西北农业学报. 2004, 13(1): 132-135.
    [22]中野淳,林治宪.最新的排水处理技术高负荷厌氧处理技术和高速凝聚沉淀技术[J].中华纸业. 2009, 30: 12.
    [23]周文.禽畜粪便无公害好氧快速发酵处理技术[J]. AGRICULTNRE EQUIPMENT & TECHNOLOGY. 2003.
    [24]陈国众,李焕烈.规模化养猪场粪便污水处理及利用的实践与思考[J].养猪. 2007(006): 28-30.
    [25]章广德,李滨丹,刘忠媛.规模化养猪场粪便污染治理的探索与思考[J]. HEILONGJIANG ENVIRONMENTAL JOURNAL. 2009, 33(2).
    [26]段妮娜,董滨,何群彪,等.规模化养猪废水处理模式现状和发展趋势[J]. WATER PURIFICATION TECHNOLOGY. 2008, 27(4).
    [27]林纯洁,戴旭明,寿亦丰,等.规模猪场环境污染治理模式的探索[J].中国畜牧兽医. 2005, 32(002): 22-24.
    [28]林国徐,李超雄,陈永明.日本洛东式发酵养猪法技术要点及应用效果初报[J].福建畜牧兽医. 2008, 30(001): 10-11.
    [29]徐会连.发酵床零排放生态养猪——基于环境保护,循环经济和动物福利理念的健康养殖模式[J].河南畜牧兽医:市场版. 2008, 29(008): 6-8.
    [30]刘波,朱昌雄.微生物发酵床零污染养猪法标准操作技术[J].农业知识:科学养殖. 2010(001): 28-29.
    [31]发酵床零排放生态养猪新技术[J].
    [32]李国学,李玉春,李彦富.固体废弃物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报. 2003, 8(4): 252-256.
    [33]侯仲轲,毛春晖. New pesticide varieties and prospect at British meeting in 2000 [J][J]. 2000.
    [34]郝晓娟,刘波,谢关林,等.短短芽孢杆菌JK-2菌株抑菌物质特性的研究[J].浙江大学学报:农业与生命科学版. 2007, 33(005): 484-489.
    [35]林营志,刘波,张秋芳,等.土壤微生物群落磷脂脂肪酸生物标记分析程序PLFAEco[J].中国农学通报. 2009, 25(14): 286-290.
    [36]刘波,郑雪芳,朱昌雄,等.脂肪酸生物标记法研究零排放猪舍基质垫层微生物群落多样性[J].生态学报. 2008, 28(011): 5488-5498.
    [37]王曙光,侯彦林.磷脂脂肪酸方法在土壤微生物分析中的应用[J].微生物学通报. 2004, 31(001): 114-117.
    [38]陈振翔,于鑫,夏明芳,等.磷脂脂肪酸分析方法在微生物生态学中的应用[J].生态学杂志. 2005, 24(7): 828-832.
    [39] White D C, Findlay R H. Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms[J]. Hydrobiologia. 1988, 159(1): 119-132.
    [40]齐鸿雁,薛凯,张洪勋.磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用[J].生态学报. 2003, 23(8).
    [41]宋红梅,张伯兰,范尉尉,等.细胞脂肪酸分析技术在微生物学领域的研究进展[J].中国卫生检验杂志. 2008, 18(010): 2181-2182.
    [42] Frostegard A, Tunlid A, Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J]. Applied and Environmental Microbiology. 1993, 59(11): 3605.
    [43]白震,何红波,张威,等.磷脂脂肪酸技术及其在土壤微生物研究中的应用[J].生态学报. 2006, 26(7): 2387-2394.
    [44]颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报. 2006, 43(005): 851-859.
    [45]朱洪,常志州,叶小梅,等.基于畜禽废弃物管理的发酵床技术研究:Ⅲ高湿热季节养殖效果评价[J].农业环境科学学报. 2008, 27(001): 354-358.
    [46]苏锡南主编.环境微生物学[M].北京:中国环境科学出版社, 2006: 305.
    [47] J. Tunned housing of pigs in livestock envieronment-fourth international symposium[M]. Michigan, American society of Agricultural Enginneers, 1993,1040~1048.
    [48] Connor ML. Update on alternative housing systems for pigs. Manitoba Swine Seminar Proceedings, 1995, 8:93~95.
    [49]孔凡真.日本发酵床养猪技术简介.国际信息,2005,(2):40~42.
    [50]凌云,徐亚同.禽畜粪便高效降解菌对堆肥主要理化指标的影响[J].河北农业大学学报. 2006, 29(1): 24-26,37.
    [51]蓝江林,刘波,陈璐, et al.芭蕉属植物内生细菌磷脂脂肪酸(PLFA)生物标记特性研究[J].中国农业科学. 2010, 43(10): 2045-2055.
    [52] Amann R L, Ludwig W, Schleiffer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiol Rew, 1995, 59:143~146.
    [53] McCarthy C M, Murray L. Viability and metabolic features of bacteria indigenous to a contaminated deep aquifer. Microbial Ecol., 1996, 32: 305~321.
    [54] White D C, Pinkart H C, Ringelberg A B. Biomass measurements: Biochemical approaches. In: Hurst C J, Knudson G R, Mclnemey M J, et al. eds. Mamual of Environmental Microbiology. ASM Press, 1997, 91~101.
    [55] Vestal J R, White D C. Lipid analysis in microbial ecoloy: Quantitative approaches to the study of microbial communities. Bioscience, 1989, 39: 535-541.
    [56] Jennifer M, Fraterrigo, Teri C, et al. Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology, 2006, 87(3): 570-9.
    [57] Steger K, Jarvis A, Sm?rs S, et al. Comparison of signature lipid methods to determine microbial community structure in compost. Journal of Microbiological Methods, 2003, 55(2): 371-82.
    [58] White D C, Davis W M, Nickels J S, et al. Detemination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia,1979, 40: 51~62
    [59] Medeiros P M, Fernandes M F, Dick R P, et al.Seasonal variations in sugar contents and microbial community in a ryegrass soil. Chemosphere, 2006, 65(5):832~839.
    [60] Hackl E, Pfeffer M, Donat C, et al. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology & Biochemistry, 2005, 37(4):661~671.
    [61] Puglisi E, Nicelli M, Capri E, et al. A soil alteration index based on phospholipid fatty acid. Chemosphere, 2005, 6(11):1548~1557
    [62] Calderon F J, Jackson L E, Scow K M, et al. Microbial responsesto simulated tillage in cultivated and uncultivated soil. Soil Biology & Biochemistry, 2000, 32(11):1547~1559
    [63] CordovaKrelyos A L, Cao Y, Green P G, et al.Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments. Appl Environ Microbiol, 2006, 72(5):3357~3366.
    [64] Syakti A D, Mazzella N, Nerini D, et al. Phospholipid fatty acid of a marine sedimentary microbial community in a laboratory microcosm: response to petroleum hydrocarbon contamination. Organic Geochemistry, 2006, 37(11):1617~1628.
    [65] VanderGheynst J S, Lei F. Microbial community structure dynamics during aerated and mixed composting. Transactions of the ASAE, 2003, 46(2):577~584.
    [66] Frosteg?rd A, Tunlid A, B??th E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to diferent heavy metals. Appl Environ Microbiol, 1993, 59:3605-617.
    [67] Kourtev P S, Ehrenfeld J G, H?ggelom M.Exotic plant species alter the microbial community structure and function in the soil.Ecology, 2002, 83(11):3152-3166.
    [68] Margesin, R., M. Hammerle, et al. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microb Ecol, 2007, 53(2): 259-69.
    [69] Tunlid A, White D C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial community in soil. In:Stotzky G, Bollag J M. eds. Soil Biochem. New York: Dekker, 1992. 229~262.
    [70] Hill G T, Mitkowski N A, Aldrich W L, et al. Methods for assessing the composition and diversity of soil microbial communities. Appl. Soil Ecol., 2000, 15:25~36.
    [71] White D C, Stair J O, Ringelberg DB. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J. Ind.Microbiol, 1996, 17: 185~196.
    [72] Wilkinson S, Anderson J, Scardelis S, et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol. Biochem, 2002, 34: 189~200.
    [73] Baath E, Anderson T H. Comparison of soil fungal/bacteria ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem, 2003, 35: 955~963.
    [74] Borga P, Nilsson M, Tunlid A. Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis. Soil Biol Biochem, 1994, 26: 841~848.
    [75] Zelles L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 1997,35: 275~294.
    [76] Dyaz-Ravina M, B??th E Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Applied and Environmental Microbiology, 1996, 62: 2970~2977.
    [77] Liu B R, Jia G M, Chen J, et al. A review of methods for studing microbial diversity in soils. Pedosphere, 2006, 16(1):18-24.
    [78]周桔,雷霆.土壤微生物多样性影响因素及其研究方法的现状与展望[J].生物多样性. 2007, 15(3): 306-311.
    [79] Frostegfird A, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biology Fertility Soils. 1996, 22: 59-65.
    [80] Bmtha E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA based techniques[J]. Soil Biology and Biochemistry. 2003, 35: 955-963.
    [81] Zelles L, Bai Y Q, Rackwitz R. Determination of phosphorlipid and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structure in soils[J]. Biology Fertility Soils. 1995, 19: 115-123.
    [82] Yu S, He Z L, Huang C Y. Advances in their search of soil mi-croorganisms and their mediated processes under heavy metal stress[J]. hinese Journal of Appllied Ecology. 2003, 14(4): 618-622.
    [83]李庆康,吴雷,刘海琴,蒋永忠,潘玉梅.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护. 2000, 19(4): 251-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700