我国东南水网平原地区不同土地利用方式氮磷流失特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业面源污染是造成水体富营养化的重要原因,进行源解析,阐明农田和畜禽养殖等不同来源的氮磷流失量并据此进行分类控制是有效控制水体富营养化的基础。嘉兴地区地势低平、水田交错,农田或畜禽养殖场水量与氮磷流失量受周边水文条件影响大,小尺度定位监测很难获得有意义的观测结果。为了解大田、集约化农田和畜禽养殖场三种土地利用方式下氮磷流失特征,本研究选取可分别代表大田作物农田、集约化栽培作物农田、畜禽养殖场3种土地利用类型的7个具有代表性的平方公里尺度研究区,于2006年7月~2007年6月份汛期与非汛期总共进行了14次监测(其中大田1个点:汛期2次,非汛期1次;集约化农田3个点:汛期1~2次,非汛期1次;养殖场3个点:汛期1次)。在各定位研究区上,监测了河道水、沟渠水、水田田面水、沟渠底泥(沟渠底泥含水量忽略不计)与农田耕层土壤水分量和总量,研究了5种不同类型水体中氮、磷存量特征。对河道水、沟渠水、田面水研究了其总氮、水溶性总氮、硝态氮、铵态氮;对沟渠底泥研究了其0~5 cm表层土壤水溶性磷、Olsen P、矿质氮(硝态氮、铵态氮);对农田土壤研究了0~5 cm表层土壤水溶性磷、Olsen P和0~20 cm耕层土壤硝态氮、铵态氮。主要结论如下:
     7个研究区总水量平均为200.3千m3/km2,变化范围为83.7~944.7千m3/km2,相差11.3倍。4个农田研究区总水量汛期平均为198.7千m3/km2,变化范围为99.4~324.4千m3/km2;非汛期平均为174.9千m3/km2,变化范围为83.7~276.0千m3/km2,汛期与非汛期差异不大,仅相差1.1倍。河道水、沟渠水、田面水、0~20 cm、0~5 cm土层土壤水4种水体组分分别平均占总水量的69.6%、0.9%、2.0%、27.5%、7.7%。河道水是总水量的主要水体类型,0~20 cm土壤水次之。因此不同研究点位的河道水量和土壤水存量是引起总水量差异的主要因素。总水量、河道水、0~20 cm土层土壤水存量汛期与非汛期差异均不大,而沟渠水汛期是非汛期的1.7倍。
     7个研究区磷素总存量平均为933 kg/km2,变化范围为117~6220 kg/km2,相差53倍。畜禽养殖场、集约化农田类型研究区磷素总存量分别为760、1111 kg/km2,均高于大田(172 kg/km2),分别是大田的4.4倍、6.5倍。
     河道水总磷、沟渠水总磷、田面水总磷、沟渠0~5 cm底泥和0~5 cm土层土壤水溶性磷5个分量分别平均占磷素总存量的10.5%、0.4%、0.3%、0.1%、88.7%,研究区内农田0~5 cm土层土壤水溶性磷是磷素总存量的主要存在形式。7个研究区中农田0~5 cm土层土壤水溶性磷存量平均为958 kg/km2,变化范围为0~6167 kg/km2。畜禽养殖场、集约化农田类型研究区中农田0~5 cm土层土壤水溶性磷存量分别为270、1038 kg/km2,均高于大田(26 kg/km2),分别是大田的10.4、39.9倍;浓度分别为40.51、29.87 mg/kg,均远高于大田(0.79 mg/kg),分别为大田的51.3、37.8倍。大田和畜禽养殖场农田0~20 cm土层土壤矿质氮相差不大,但由于受畜禽养殖研究区中农田面积的较小,畜禽养殖研究区的土壤氮素存量仍低于大田研究区。
     3种类型研究区河道水总磷浓度大小顺序为畜禽养殖场>集约化农田>大田,沟渠水总磷浓度和沟渠底泥水溶性磷浓度与河道水总磷浓度一致。
     4个农田研究区的磷素总存量及河道水总磷、沟渠水总磷、田面水总磷、沟渠0~5cm底泥和0~5 cm土层土壤水溶性磷5个分量均表现为汛期高于非汛期,汛期分别是非汛期的1.5、2.2、2.1、1.2、1.4、1.5倍。
     7个研究区氮素总存量平均为14477 kg/km2,变化范围为3480~51555 kg/km2,相差14.8倍。畜禽养殖场、集约化农田、大田3种类型研究区氮素总存量分别为:3913、17082、5596 kg/km2,集约化农田研究区最高,大田次之,畜禽养殖场最小。
     河道水总氮、沟渠水总氮、田面水总氮、沟渠0~5 cm底泥和0~20 cm土层土壤矿质氮5个分量分别平均占氮素总存量的5.7%、0.2%、0.2%、0.2%、93.8%,0~20 cm土层土壤矿质氮是氮总存量的主要存在形式。7个研究区中农田0~20 cm土层矿质氮存量平均为13576 kg/km2,变化范围为0~50900 kg/km2。畜禽养殖场、集约化农田、大田3种类型研究区0~20 cm土层土壤矿质氮存量分别平均为:1143、16309、4635 kg/km2,集约化农田研究区最高,大田次之,畜禽养殖场最小;浓度平均分别为43.0、117.3、33.9 mg/kg,集约化菜地最高,是大田和畜禽养殖场的3.5倍。由于畜禽养殖研究区中农田面积关系,虽然大田和畜禽养殖场农田0~20 cm土层矿质氮相差不大,但是畜禽养殖研究区的土壤氮素存量低于大田研究区。
     4个农田类型研究区汛期的氮素总存量、河道水总氮存量、沟渠0~5 cm底泥和0~20 cm土层土壤矿质氮存量与非汛期的差异均不大,而沟渠水总氮存量是非汛期的1.7倍。
Agricultural nonpoint source pollution is an important reason for water eutrophication, clarifying nitrogen and phosphorous loss from different source such as cropland and poultry farm is the effective base of controlling eutrophication. Jiaxing city is in lowland plain areas with crisscross network of river courses, and so the loss of N and P from cropland and poultry farm is affected strongly by the surrounding hydrology, which makes it very difficult to get significative result through small-scale investigation. In order to make clear of the characteristics of N and P loss from the three land use types, i.e. paddy-upland rotation field, intensive cropping field and poultry farm, we selected 7 representative experimental sites and monitored 14 times on square kilometer scale from July 2006 to June 2007, including 1 site paddy-upland field (flood season 2 times, non-flood season 1 time), 3 sites intensive cropping fields (flood season 1~2 times, non-flood season 1 time), and 3 sites poultry farm (flood season 1 time). Altogether, we monitored and calculated water quality of 5 different type: river water, channel water, soil surface water, channel sediment water, and topsoil water. We have also monitored total nitrogen, water soluble nitrogen, nitrate, and ammonium of river water, channel water and soil surface water. For channel sediment, we monitored water extractable P (WEP), Olsen P, nitrate, and ammonium nitrogen. For cropland soil, we monitored WEP and Olsen P of 0~5 cm topsoil, and mineral nitrogen (nitrate and ammonium N) of 0~20 cm topsoil. The main conclusions are as follows:
     The total water storage ranged from 83.7 to 944.7×103m3/km2, with an average of 200.3×103m3/km2 .The maximum of water storage was 11.3 times of that of the minmum. The average of the total water storage in four farmland study areas in the flood season and the non-flood season was 198.7×103m3/km2 (83.7~276.0×103m3/km2), 174.9×103m3/km2 (83.7~276.0×103m3/km2) respectively. The total water storage in four farmland study areas in the flood season was 1.1 times of that in the non-flood season. It was obvious that the average of the total water storage had little difference between in flood season and non-flood season. The water in rivers, ditch, soil surface water of paddy field, 0~20 cm and 0~5 cm soil layer averagely were respectively 69.6%, 0.9%, 2.0%, 27.5%, 7.7% of the total water storage. The river water was the main part, and 0~20 cm soil layer took second place. So the water in rivers and 0~20 cm soil layer were the main factor on the differentiation of the total water storage among the different study areas.
     The total P storage ranged from 177 to 6220 kg/km2, with a mean of 933 kg/km2. The maximum of total P storage was 53 times of that of the minmum.The total P storage in poultry farm (760 kg/km2) and intensive field (1111 kg/km2) was respectively 4.4, 6.5 times of that in paddy-upland rotation field (172 kg/km2).
     Proportion of the total P of river water, ditch water, soil surface water, WEP of sediment of ditch (0~5 cm) and soil layer (0~5 cm) for the total P storage were respectively 10.5%, 0.4%, 0.3%, 0.1%, 88.7%. The WEP of soil layer (0~5 cm) was the main existence form of the total P storage. Among the seven study areas, the average storage of the WEP of soil layer (0~5 cm) of farmland was 958 kg/km2, varing in the range of 0~6167 kg/km2. The WEP of soil layer (0~5 cm) of the farmland in poultry farm and intensive field was 270, 1038 kg/km2 respectively and were both higher than paddy-upland rotation field(26 kg/km2). The concentration of them was 40.51, 29.87 mg/kg, higher than paddy-upland rotation field (0.79 mg/kg). The storage of the WEP of soil layer (0~5 cm) of farmland was affected by the concentration and the total area of farm. Therefore, the storage of the WEP of soil layer (0~5 cm) of the farmland in poultry farm was less than in the intensive field because of its smaller farmland area, although its concentration of the WEP of soil layer (0~5 cm) was the highest in the three kinds of study areas.
     The order of the concentration of the total P in river water was: poultry farm> intensive field > paddy-upland rotation field. The WEP concentration of sediment of ditch and the total P concentration of ditch water were of the same order.
     The total P storage of four farmland study areas and river water, ditch water, soil surface water, the WEP of sediment of ditch (0~5 cm) and soil layer (0~5 cm) in the flood season were 1.5, 2.2, 2.1, 1.2, 1.4, 1.5 times of that in the non-flood season respectively.
     The total storage of N in seven study areas was 14477 kg/km2, varing in the range of 3480~51555 kg/km2. The maximum of total storage of N was 14.8 times of that of the minmum. The total storage of N in poultry farm, intensive field and paddy-upland rotation field study areas was respectively 3913, 17082, 5596 kg/km2. Proportion of the the storage of total N of river water, ditch water, soil surface water, Nmin of sediment of ditch (0~5 cm) and soil layer (0~20 cm) was respectively 5.7%, 0.2%, 0.2%, 0.2%, 93.8% of the total storage of N. The Nmin storage of soil layer (0~20 cm) was the main existence form of the total storage of N. The average Nmin of farm soil layer (0~20 cm) in seven study areas was 13576 kg/km2, varing in the range of 0~50900 kg/km2.The average Nmin of soil layer (0~20 cm) in poultry farm, intensive farm and paddy-upland rotation field study areas was 1143, 16309, 4635 kg/km2 respectively.The concentration of them was respectively 43.0, 117.3, 33.9 mg/kg. Although the difference of the Nmin of soil (0~20 cm) between paddy-upland rotation field and poultry farm was not great, the storage of soil N in poultry farm was less than the paddy-upland rotation field because of the farmland area.
     The difference of the total storage of N, storage of TN in river water, storage of Nmin in sediment of ditch (0~5 cm) and soil layer (0~20 cm) between in flood season and non-flood season was not great, but storage of TN in ditch water in flood season was 1.7 times of that in the non-flood season.
引文
1. Ahmed N, Michael B, Philip J, et al., A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland. Water Research, 2007, 41: 1065-1073.
    2. Babiker I S, Kato K, Ohta K, et al. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environment International, 2004, 29(4): 1009-1017.
    3. Baker D B & Richards R P. Phosphorus budget sand riverine phosphorus export in northwestern Ohio watersheds. Journal of Environmental Quality, 2003, 31, 96–108.
    4. Boers P C M. Nutrient emissions from agriculture in the Netherlands: causes and remedies. Water Science and Technology, 1996, 33(4-5): 183-189.
    5. Bostrom B, Jansson M, Forsberg C. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih, 1982, 18:5-59.
    6. Burchell Ⅱ M R, Skaggs R W, Chescheir G M, et al. Shallow subsurface drains to reduce nitrate losses from drained agricultural land. Transaction of the ASAE, 2005, 48: 1079-1089.
    7. Carpenter,S R, Caraco N F, Correll D L, et al. Non point pollution of surface waters with phosphorus and nitrogen.Ecological Application, 1998, 8: 559-568.
    8. Chen L D, Peng H J, Fu B J, et al. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment of northern China. Journal of Environmental Sciences, 2005, 17(2): 224-231.
    9. Chung S O, Kim H S, Kim J S. Model development for nutrient loading from paddy rice fields. Agricultural Water Management, 2003, 62: 1-17.
    10. Correl D.L., Jordan T.E. & Weller D.E.Nutrient flux in a landscape: effects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters. Estuaries, 1992, 15, 431-442.
    11. Dennis L, Gorwin et al. Non-point pollution modeling based on GIS. Soil and Water Conservation, 1998, 1: 75-88.
    12. Diaz O A, Daroub S H, Stuck M W. Sediment Invertory and phosphorus fractions for water conservation area canals in the Everglades. Soil Science Society of America Journal. 2006, 70: 863-871.
    13. Dunne E J, McKee K A, Grunwald S, et al. Phosphorus in agricultral ditch soil and potential impications for water qulity. Journal of Soil and Water conseration, 2007, 62(4): 244-252.
    14. Fraser A I, Harrod T R, Haygarth P M. The effect of rainfall intensity on soil erosion and particulate phosphorus transfer from arable soils. Water Science and Technology, 1999, 39(12): 41-45.
    15. Gburek W J, Sharpley A N and Heathwaite L, et al. Phosphorus management at the watershed scale: A modification of the phosphorus index. Journal of Environmental Quality, 2000, 29: 130~144.
    16. Gerakis A, Kalburtji K. Agricultural activities affecting the functions and values of Ramsar wetland sites of Greece. Agriculture, Ecosystems and Environment, 1998, 70: 119-128.
    17. Gillian J W, Baker J L, Reddy K R. Water quality effects of drainage in humid regions. In Agricultural Drainage, Skaggs R W, Van Schilfgaarde J, 1999: 801-830. Afronomy Monograph 38: Madison, WI: ASA, CSSA, AND SSSA.
    18. Goss M J, Barry D A J, Rudolph D L. Contamination in Ontario farmstead domestic wells and its association with agriculture: 1, Results from drinking water well. Journal of Contaminant Hydrology, 1998, 32(3/4): 267-293.
    19. Grigg B C, Southwick L M,Fouss J L, et al. Climate impact on nitrate loss in drainage waters from a southern alluvial soil. Transactions of the ASAE, 2004, 47(2): 445-451.
    20. Hargrave A P, Shaykewich C F. Rainfall induced nitrogen and phosphorus from Manitoba soils. Anadial Journal of Soil Science, 1997, 77(1): 59-65.
    21. Harrison J A, Matson P A, Fendorf S E. Effects of a diel oxygen cycle on introgen transformations and greenhouse gas emissions in a eutrophied subtropical stream. Aquatic Sciences, 2005, 67: 308-315.
    22. Hassen M, Fekadu Y, Gete Z. Validation of agricultural non-point source (AGNPS) pollution model in Kori watershed, South Wollo, Ethiopia. Intermational Journal of Applied Earth Observation and Geoinformation, 2004(6): 97-109.
    23. Haygarth P M, Jarvis S C. Transfer of phosphorus from agricultural soils. Advances in Agronomy, 1999(66): 195-249.
    24. Haygarth P M, Condron L M, Heathwaite A L.The phosphorus transfer continuum: Linking source to impact with an interdisciplinary and mult-scaled approach. Science of the Total Environment, 2005, 344: 5-14.
    25. Haygarth P M, Heathwaite A L, Jarvis S.C, et al. Hydrological factors for phosphorus transfer from agricutlure soils. Advances in Agronomy, 2000, 69: 153-178.
    26. Herpe Y V, Troch P A. Spatial and temporal variations in surface water nitrate concentration in a mixed land use catchment under humid temperate climatic conditions. Hydrological Processes, 2000, 14: 2439-2455.
    27. Hesketh N, Brookes P C. Development of a indicator for risk of phosphorus leaching. Journal of Environmental Quality, 2000, 29: 105-110.
    28. Janse J H, Van Puijenbroek P J T M. Effects of entrophication in drainage ditches. Environmental Pollution, 1998, 102: 547-552.
    29. Jones J B J, Fisher S G, Grimm N B. Nitrification in the hyporheic zone of a desert stream ecosystem. Journal of the North American Benthological Society, 1995, 14: 249-258.
    30. Kleinman P J A, Allen A L, Needelman B A. Dynamics of phosphorus transfers from heavily manured Coastal Plain soils to drainage ditches. Journal of Soil and Water Conservation, 2007, 62(4):225-234.
    31. Kothyari B P, Verma P K, Joshi B K, et al. Rainfall-runoff-soil and nutrient loss relationships for plot size areas of bhetagad watershed in Central Himalaya, India. Journal of Hydrology, 2004, 293(1-4): 137-150.
    32. Lena B V. Nutrient preserving in riverine transitional strip. Journa1 of Human Environment,1994,3(6): 342-347.
    33. Li Y, Zhang J B. Agricultural diffuse pollution from fertilizer and pesticides in China. Wat. Sci. Tech, 1999, 39(3):25-32.
    34. Maidment D R, Zhang J Y. Handbook of hydrology. Beijing Science Press, 2002:203-249 (in chinese).
    35. Mason J W, Wegner G D, Quinn G I. & Lange E L. Nutrient loss via groundwater discharge from small watersheds in southwestern and south central Wisconsin. Journal of Soil and Water Conservation, 1990, 45: 327–331.
    36. McDowell R W, Sharpley A N, Brookes P C, et al. Relationship between soil test phosphorus and phosphorus release to solution. Soil Sci, 2001, 66(2):137-149.
    37. Minnesota Pollution Control Agency.Ground water quality adjacent to animal feedlots[EB/OL]. http://www.pca.state.mn.us/publications/wq-f1-o5.pdf/2003-02-27.
    38. Nguyen L, Sukias J. Phosphorus fractions and retention in drainage ditch sediments receiving surface runoff and subsurface drainage from agricultural catchments in the North Island, New Zealand. Agriculture Ecosystems and Environment, 2002, 92: 49-69.
    39. Nigussie H, Fekadu Y. Testing and evaluation of agricultural non-point source pollution model (AGNPS) on Auguchocatchment, Western Hararghie, Ethiopia. Agriculture, Ecosystems and Environment, 2003, 99: 201-212.
    40. Nord E A, Lanyon L E. Managing material transfer and nutrient flow in an agricultural watershed. Journal of Environmental Quality, 2003, 32, 562–570.
    41. Oenema O, Liere LV, Schoumans O. Effects of lowering nitrogen and phosphorus surpluses in agricutltue on the quality of groundwater and surface water in the Netherlands. Journal of Hydrology, 2005, 304: 289-301.
    42. Pautler M C, Sins J T. Relationships between soil test phosphorus, soluble phosphorus, and phosphorus saturation in Delaware soils. Soil Science Society of America Journal, 2000, 64: 765-773.
    43. Polyakov V, Fares A, Kubo D, et al. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed. Environmental Modelling & Software, 2007, 22(11): 1617-1627.
    44. Prein W. The role of ranch drainage ditches in phosphorus management of subtropical Florida. MS thesis, Univ.-Doz. Http://www.archbold-station.org/abs/publicationsPDF/Prein-2005- Thesis.pdf. 2005.
    45. Randall G W, Goss M J. Nitrate losses to surface water through subsurface, tile drainage.2001, p.95-121. In Nitrogen in the Environment: Source, Problems, and Management, ed. Keeney D R AND Hatfield J L. New York: Elsevier.
    46. Sallade Y E, Sims J T. Phosphorus transformation in the sediments of Delware's agricultural drainageways:ⅠPhosphorus forms and sorption. Journal of Environmental Quality, 1997a, 26: 1571-1579.
    47. Sallade Y E, Sims J T. Phosphorus transformation in the sediments of Delware's agricultural drainageways: Ⅱ Effect of reducing conditions on phosphorus release. Journal of Environmental Quality, 1997b, 26: 1579-1588.
    48. Satya S R G. HSPF Modeling of Nonpoint Sources in Tickfaw River Watershed. dissertation of PHD, the University of New Orleans,2007.
    49. Schilling K E, Libra R D. The relationship of nitrate concentration in streams to row crop land use in Iowa. Journal of Environmental Quality, 2000, 29(6): 1846-1951.
    50. Schmidt J P, Dell C J, Vadas P A. Nitrogen export from Coastal Plain field ditches.Journal of Soil and Water Conservation, 2007, 62(4): 235-243.
    51. Sharma E, Rai S C, Sharma R. Soil, water and nutrient conservation in mountain farming systems:Case-study from the Skikim Himalaya. Journal of Environmental Management, 2001, 61(2): 123-135.
    52. Sharpley A N,Kleinman P J A. Phosphorus loss from an agricultural watershed as a function of storm size. Journal of Environmental Quality, 2008, 37: 362-368.
    53. Sharpley A N. Depth of surface soil-runoff interaction as affected by rainfall, soil slope and management. Soil Science Society of America Journal, 1985, 49:1010-1015.
    54. Smith D R, Pappas E A. Effect of ditch dredging on the fate of nutrients in deep drainage diches of the Midwestern United States. Journal of Soil and Water Conservation, 2007, 62(4): 252-261.
    55. Smith D R, Warnemuende E A, Haggard B E, et al. Dredging of drainage ditches increases short-term transport of soluble phosphorus. Journal of Environmental Quality, 2006, 35: 611-616.
    56. Spaling H. Analyzing cumulative environmental effects of agricultural land drainage in southern Ontario, Canada. Agriculture, Ecosystems and Environment, 1995, 53:279-292.
    57. Staver K W, Brinsfield R B. Using cereal grain winter cover crops to reduce ground water intrate contamination in the mid-Atlantic coastal plain. Journal of Soil and Water Conservation, 1998, 53: 230-240.
    58. Storey R G, Williams D D, Fulthorpe R R. Nitrogen processing in the hyporheic zone of a pastoral stream. Biogeochemistry, 2004, 69: 285-313.
    59. Stuck J D, Lzuno E T, Campbell K L, Bottcher A B, et al. Farm-level studies of particulate phosphorus transport in the Everglades Agricultural Area. Transactions of the American Society of Agricultural Engineers, 2001, 44: 1105-1116.
    60. Tan C S, Drury C F, Reynolds W D, et al. Water and nitrate loss through tiles under a clay loam soil in Ontario agrer 42 years of consistent fertilization and crop rotation. Agriculture, Ecosystems and Environment, 2002, 93: 121-130.
    61. Thorburn P J, Biggs J S, Weier K L, et al. Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems and Environment, 2003, 94: 49-58.
    62. Torbert H A, Daniel T C, Lemunyon J L. Relationship of Soil Test Phosphorus and Sampling Depth to Runoff Phosphorus in Calcareous and Noncalcareous Soils. Journal of Environmental Quality, 2002, 31: 1380-1387.
    63. Vadas P A, Srinivasan M S, Kleinman P J A, et al. Hydrology and groundwater nutrient concentrations in a ditch-drained agroecosystem. Journal of Soil and Water Conservation, 2007, 62(4): 178-188.
    64. Vadas P A, Kleinman P J, Sharpley A N, Turner B L. Relating soil phosphorus to dissolved phosphorus in runoff: a single extraction coefficient for water quality modeling. Jonrnal of Environmental Quality, 2005, 34(2): 572-80.
    65. Vaughan R E.Agricultural drainage ditches: Soils and their implication for nutrient transport. Master's thesis, University of Maryland, College Park, 2005.
    66. Vuorenmaa J, Rekolainen S, Lepisto A, et al. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s. Environmental Monitoring and Assessment, 2002, 76 (2): 213-248.
    67. Zaimes C N, Schultz R C. Phosphorus in agricultural watersheds: A literature review. Dep of For., Iowa State Univ, Ames. 2002.
    68. Zamplla R A. Charateriztion of surface water quality along a watershed disturbance gradient. Water Resource Bulletin, 1994, 30:605.
    69. Zhang W L, Tian Z W, Zhang N, et al. Surface water quality of factory-based and vegetable-based peri-urban areas in the Yangtze River Delta region, China. Gatena, 2007, 69: 57-64.
    70. 曹志洪,林先贵,杨林章,等.论“稻田圈”在保护城乡生态环境中的功能—Ⅰ.稻田土壤磷素径流迁移流失的特征.土壤学报,2005,(5):799-804.
    71. 曹志洪,林先贵,等.太湖流域土-水间的物质交换与水环境质量.北京:科学出版社,2006.
    72. 曹志洪.施肥与水体环境质量-论施肥对环境的影响.土壤,2003,35(5):353-363.
    73. 陈广,黄祥峰,安丽,等.高效藻类塘系统处理太湖地区农村生活污水的中试研究.给水排水,2006,32(2):37-40.
    74. 陈丽娟.畜禽场退养前后周围水域水质变化分析研究.上海农业科技,2006(5):103-104.
    75. 陈利顶,氏君,张淑荣,等.复杂景观中营养型非点源污染物时空变异特征分析.环境科学,2003,24(3):85-90.
    76. 陈伦寿,陆景陵.蔬菜营养与施肥技术.北京:中国农业出版社,2002.
    77. 陈能汪,张珞平,洪华生.九龙江流域农村生活污水污染定量研究.厦门大学学报(自然科学版),2004,43(增刊):249-253.
    78. 陈西平.计算降雨及农田径流污染负荷的三峡库区模型.中国环境科学,1992,12(1):48-52.
    79. 陈优平,余志豪,杨修群.嘉兴市高温和夏季降水的气候特征分析.气象科学,2005,25(2):118-123.
    80. 单保庆,尹澄清,于静.降雨-径流过程土壤表层磷迁移过程的模拟研究.环境科学学报,2001,21(1):7-12.
    81. 傅涛, 倪九派,魏朝富,等.不同雨强和坡度条件下紫色土养分流失规律研究.植物营养与肥料学报,2003,9(1):71-74.
    82. 高超,张桃林.面向环境的土壤磷素测定与表征方法研究进展.农业环境保护,2000,19(5):282-285.
    83. 高超,朱继业,窦贻俭,等.基于非点源污染控制的景观格局优化方法与原则.生态学报,2004,24(1):109-116.
    84. 高超,朱继业,朱建国.不同土地利用方式下的地表径流磷输出及其季节性分布特征.环境科学学报,2005,25(11):1543-1549
    85. 辜来章,郝淑英.农田径流污染特征及模型化研究.中国农村水利水电,1996(09):32-35
    86. 郭春华,伍喜林.减少猪场粪水污染保证养猪业可持续发展.四川畜牧兽医,2003(6):30-32
    87. 国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1998.
    88. 郝芳华.非点源污染模型——理论方法与应用.北京:中国环境科学出版社,2006.
    89. 洪华生,黄近良,张珞平,等.AnnAGNPS 模型在九龙江流域农业非点源污染模拟应用.环境科学,26(4):63-69.
    90. 胡连伍,王学军,罗定贵,等.基于 SWAT2000 模型的流域氮营养素环境自净效率模拟-以杭埠-丰乐河流域为例.地理与地理信息科学,2006,22(2):35-38.
    91. 胡雪峰.上海市郊中小河流水污染现状及对策.华东师范大学,博士后研究工作报告,2001.
    92. 黄金良,洪华生,张珞平,等.基于 GIS 的九龙江流域农业非点源氮磷负荷估算研究.农业环境科学学报,2004,23(5):866-871.
    93. 黄金量,洪华生,张珞平,等.基于 GIS 和 USLE 的九龙江流域土壤侵蚀量预测研究.水土保持学报,2004,18(5):75-79.
    94. 黄沈发,陆贻通,沈根祥,等.上海郊区旱作农田氮素流失研究.农村生态环境,2005,21(2):50-53.
    95. 黄云凤,张珞平,洪华生,等.不同土地利用对流域土壤侵蚀和氮、磷流失的影响.农业环境科学学报,2004,23(4):735-739.
    96. 黄云凤.九龙江典型小流域农业非点源污染流失特征研究[硕士学位论文].厦门:厦门大学,2004.
    97. 黄宗楚.上海旱地农田氮磷流失过程及环境效应研究[硕士学位论文].上海:华东师范大学,2005.
    98. 嘉兴市土壤普查办公室,嘉兴土壤.嘉兴:1984.
    99. 姜翠玲,崔广柏.湿地对农业非点源污染的去除效应.农业生态环境,2000,16(3):55-57.
    100. 焦少俊.不同农业措施下东太湖水稻土 N、P 养分年流失比较[硕士学位论文] .南京:南京农业大学,2005.
    101. 蕉荔.USLE 模型及营养物流失方程在西湖非点源污染调查中的应用.环境污染与防治,1991,13(6):5-8.
    102. 金相灿,业春,颜昌宙.太湖重点污染控制区综合治理方案研究.环境科学研究,1999,12(5):1-5.
    103. 井艳文.畜禽养殖业污水控制与粪污资源化利用.北京水利,1998(6):37-41.
    104. 景金星,王幸福.村落径流污水的生态处置方式沟塘系统技术介绍.海河水利,2004(10):46-48.
    105. 康玲玲,朱小勇,王云璋,等.不同雨强条件下黄土性土壤养分流失规律研究.土壤学报,1999,36(4):536-543.
    106. 雷秋良.上海水网地区平方公里尺度下农田氮磷流失特征研究[博士学位论文].北京:中国农业科学研究院,2007.
    107. 李国栋,胡正义,杨林章,等.太湖典型菜地土壤氮磷向水体径流输出与生态草带拦截控制.生态学杂志,2006,25(8):905-910.
    108. 李恒鹏,刘晓玫,黄文钰.太湖流域浙西区不同土地类型的面源污染产出.地理学报,2004,59(3):401-408.
    109. 李恒鹏,杨桂山,黄文钰,等.不同尺度流域地表径流氮、磷浓度比较.湖泊科学,2006,18(4):377-386.
    110. 李俊然,陈利顶,郭旭东.土地利用结构对非点源污染的影响.中国环境科学,2000,20(6):
    506-510.
    111. 李佩武.氮、磷输出与土地利用类型相关性研究.农业环境与发展,1998(3):1-3.
    112. 李卫正,王改萍,张焕朝,等.两种水稻土磷素渗漏流失及其与 Olsen P 的关系..南京林业大学学报(自然科学版),2007,31(3):52-56.
    113. 刘晓利,许俊香,王方浩.畜禽系统中氮素平衡计算参数的探讨.运用生态学报,2006,17(3):417-423.
    114. 刘远金,卢瑛,陈俊林,等.广州城郊菜地土壤磷素特征及流失风险分析.土壤与环境,2002,11(3):237-240.
    115. 刘忠翰,贺彬,王宜明,等.滇池不同流域类型降雨径流对河流氮磷入湖总量的影响.地理研究,2004,23(9):593-604
    116. 鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    117. 陆海明,尹澄清,王夏晖,等.于桥水库周边农业小流域氮素流失浓度特征研究.环境科学学报,2008,28(2):349-355.
    118. 陆海明,尹澄清,王夏晖,等.于桥水库周边农业小流域地表径流和亚表层流的磷素流失浓度特征.环境科学学报,2007,27(10):1702-1708.
    119. 陆海明.华北半干旱地区农业流域养分分布与迁移过程研究[博士学位论文].北京:中国科学院生态环境研究中心,2007.
    120. 吕唤春,陈英旭,方志发.千岛湖流域坡地利用结构对径流氮、磷流失量的影响.水土保持学报,2002,16(2):91-93..
    121. 吕家珑.农田土壤磷素淋溶及其预测.生态学报,2003,23(12):2689-2701.
    122. 吕耀.农业生态系统中氮素造成的非点源污染.农业环境保护,1998,17(1):35-39.
    123. 马琨,陈欣,王兆骞.模拟暴雨下红壤坡面产流产沙及养分流失特征研究.宁夏大学学报(农业科学版),2004,(01):1-4.
    124. 任磊,黄廷林.水环境非点源污染的模型模拟.首都师范大学学报(自然科学版),1996,17(1):91-95.
    125. 宋歌,孙波,教剑英.测定土壤硝态氮的紫外分光光度法与其它方法的比较.土壤学报,2007,44(2):288-293.
    126. 宋静,骆永明,乔显亮,等.苏南典型水稻丰产方施肥与地表水浓度动态变化-以苏州市旺山村为例.土壤,2002(4):210-214.
    127. 孙小镜,秦伯强,朱广伟,等.持续水动力作用下湖泊底泥胶体态氮、磷的释放.环境科学,2007,28(6):1223-1229.
    128. 陶富强.嘉兴市平原河网潮区界位变化分析.浙江水利科技,2006,145(3):46-48.
    129. 王彩绒.太湖典型地区蔬菜地氮磷迁移与控制研究[博士学位论文].杨陵:西北农林科技大学,2006.
    130. 王海龙,韩英.非点源污染环境模型(ANSWERS-2000)研究现状.水土保持应用计算,2006(6):5-7.
    131. 王继增,万洪富,吴志峰,等.小流域非点源污染负荷流失特征监测研究.水土保持通报,2003,16(1):16-19.
    132. 王晓燕,王晓峰,汪清,等.北京密云水库小流域非点源污染负荷估算.地理研究,2004,
    24(2):227-231.
    133. 王晓燕,王一峋,王晓峰.密云水库小流域土地利用方式与氮磷流失规律.环境科学研究,2003,16(1):30-33.
    134. 沃飞,陈效民,吴华山,等.太湖流域典型地区农村水环境氮、磷污染状况的研究.农业环境科学学报,2007,26(3):819-825.
    135. 邬建国.景观生态学-格局、过程、尺度与等级.北京:高等教育出版社,2000.
    136. 邬伦,李佩武.降雨-产流过程与氮、磷流失特征研究.环境科学学报,1996,16(1):111-116.
    137. 武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[博士学位论文].北京:中国农业科学院,2005.
    138. 夏星辉,周劲松,杨志峰.黄河流域河水氮污染分析.环境科学学报,2001,21(5):563-568.
    139. 肖强,张维理,王秋兵,等.太湖流域麦田土壤氮素流失过程的模拟研究.植物营养与肥料学报,2005,11(6):731-736.
    140. 肖强.太湖平原地区模拟降雨条件下麦田径流氮磷流失研究[硕士学位论文].沈阳:沈阳农业大学,2004.
    141. 谢学俭,陈晶中,宋玉芝.磷肥施用量对稻麦轮作土壤中麦季磷素及氮素径流损失的影响.农业环境科学学报,2007,26(6):2156-2161.
    142. 邢可霞,郭怀成,孙延枫,等.基于 HSPF 模型的滇池流域非点源污染模型.中国环境科学,2004,24(2):229-232.
    143. 胥彦玲,李怀恩,倪永明,等.基于 USLE 的黑河流域非点源污染定量研究.西北农林科技大学学报(自然科学版),2006,34(3):138-142.
    144. 徐爱兰.太湖流域典型圩区农业非点源污染产污规律及模型研究[硕士毕业论文].南京:河海大学,2007.
    145. 许其功,刘鸿亮,沈珍瑶,等.三峡库区典型小流域氮磷流失特征.环境科学学报,2007,27(2):326-331.
    146. 杨金玲,张甘霖,张华.亚热带地区土地利用对磷素径流输出的影响.农业环境科学学报 ,2003,22(1):16-20.
    147. 杨劲松,陈德明,刘广明,等.江苏省案例地区牧畜养殖养分循环与环境效应.中国环境科学,2001,21(5):68-471.
    148. 杨丽霞,杨桂山,苑韶峰.施磷对太湖流域典型蔬菜地磷素流失的影响.中国环境科学,2007,27(4):518-523.
    149. 杨丽霞,杨桂山,苑韶峰,等.不同雨强条件下太湖流域典型蔬菜地土壤磷素的径流特征.环境科学,2007,28(8):1763-1769.
    150. 杨利玲,杨学云.土壤磷素形态研究现状评述.安徽农业科学,2006,34(19):4996-4997.
    151. 杨林章,王德建,夏立忠.太湖地区农业面源污染特征及控制途径.中国水利,2004,20:29-30.
    152. 杨松彬.嘉兴市区河网汇流数值模拟[硕士学位论文].杭州:浙江工业大学,2007.
    153. 姚来银,许朝晖.养猪废水氮磷污染及其深度脱氮除磷技术探讨.福建环境,2003,20(1):23-26.
    154. 俞慧明.嘉兴市蔬菜基地施肥状况分析与对策探讨.上海蔬菜,2007,(4):82-84.
    155. 苑韶峰,吕军.流域农业非点源污染研究概况.土壤通报,2004,35(4):507-511.
    156. 曾远,张永春,范学平.太湖流域典型平原河网区降雨径流氮磷流失特征分析.水资源保护,2007,23(1):25-27.
    157. 张国林,钟继洪,蓝佩玲,等.蔬菜地土壤磷提取及模拟径流中磷素潜在流失的影响.生态环境,2007,16(1):170-175
    158. 张换朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其 Olsen 磷的“突变点”.南京林业大学学报(自然科学版),2004,28(5):6-10.
    159. 张继宗.太湖河网地区不同类型农田氮磷流失特征[博士学位论文].北京:中国农业科学院,2006.
    160. 张继宗.太湖平原地区稻麦轮作方式下农田径流氮素流失研究[硕士学位论文].沈阳:沈阳农业大学,2003.
    161. 张认连.模拟降雨研究水网地区农田氮磷的流失[硕士学位论文].北京:中国农业科学院,2004.
    162. 张水铭,马杏法,汪祖强.农田排水中磷素对苏南太湖水系的污染.环境科学,1993,14(6):24-30.
    163. 张维理,田哲旭,张宁.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87.
    164. 张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策 Ⅲ 中国农业面源污染控制中存在问题分析.中国农业科学,2004,37(7):1026-1033.
    165. 张志剑,王珂,朱荫湄,等.水稻田表磷素的动态特征及其潜在环境效应的研究.中国水稻科学,2000,14(1):55-57.
    166. 张志剑,王珂,朱荫湄,等.浙北水稻主产区田间土-水磷素流失潜能.环境科学,2001,22(1):98-101.
    167. 章明奎,周翠,方利平.水稻土磷环境敏感临界值的研究.农业环境科学学报,2006,25(1):170-174.
    168. 郑涛,穆环珍,黄衍初,等.降雨促渗对地表径流污染物负荷影响模拟试验研究.环境污染治理技术与设备,2006,7(2):84-88.
    169. 中国环境年鉴编辑委员会.中国环境年鉴.北京:中国环境年鉴社,2003.
    170. 朱立安,王继增,胡耀国,等.畜禽养殖非点源污染及其生态控制.水土保持通报,2005,25(2):40-43.
    171. 朱铁群.我国水环境农业非点源污染防治研究简述.农村生态环境,2000,16(3):55-57.
    172. 朱新开,盛海君,夏小燕,等.稻麦轮作田氮素径流流失特征初步研究.生态与农村环境学报,2006,22(1):38-41,66
    173. 朱兆良.关于土壤氮素研究中的几个问题.迈向 21 世纪的土壤科学.南京中国土壤学会编,1999,58-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700