德国小蠊对大型有毒真菌生物杀虫剂的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
德国小蠊(Blattella germanica)是目前蜚蠊中抗药性最强,最难防治的世界性城市卫生害虫之一。在生物防治中,利用天然源物质是一个极有开发潜力的研究领域。本文以德国小蠊为供试昆虫,通过对比试验分别筛选出毒饵载体、杀虫活性较好的大型有毒真菌及不同处理产物、然后再进行大型有毒真菌复合制剂最佳配比的筛选,最终确定出对德国小蠊毒杀效果较好的大型有毒真菌复合配方。研究结果如下:
     (1)经过对8种毒饵引诱剂的筛选,在144h内德国小蠊对鼠饲料的摄取食量最高且稳定,再加上其成分多样化,成本低廉,因此将其作为毒饵载体。然后经过对4种增效辅料的筛选,得出加入5%红糖的效果较好,确定最终的毒饵载体为加入5%红糖的鼠饲料。在对德国小蠊饲养过程中发现,德国小蠊对高密度种群具有较强的抵抗性,而且水对蜚蠊每个生长阶段的作用尤为重要。
     (2)在大型有毒真菌对德国小蠊毒杀试验中,首先将采集到的19种毒菌进行了菌种的分离与纯化培养,然后利用胃毒法将19种毒菌的野生子实体和室内培养产物对德国小蠊进行毒杀试验,得出残托斑鹅膏菌、鳞柄白毒鹅膏菌、豹斑毒鹅膏菌、条纹鹅膏菌、橙黄硬皮马勃的液体培养产物杀虫效果较好。对以上5种毒菌分别进行五个浓度梯度试验,得出LCso为残托斑鹅膏菌9.22480mg/g>鳞柄白毒鹅膏菌12.30383mg/g>豹斑毒鹅膏菌16.40019mg/g>橙黄硬皮马勃20.80282mg/g>条纹鹅膏菌23.22490mg/g。
     (3)在大型有毒真菌杀虫毒饵稳定性的试验中,分别对毒饵进行高温和强光照处理,然后进行杀虫试验得出,毒饵热贮稳定性较强,而光照稳定性较差。
     (4)从单剂中选出毒效较好的残托斑鹅膏菌、鳞柄白毒鹅膏菌、豹斑毒鹅膏菌三种毒菌,运用交互测定法进行最佳配比的筛选,联合毒力作用较强的三种复配方式的共毒系数分别为残托斑鹅膏菌+豹斑毒鹅膏菌143.98>残托斑鹅膏菌+鳞柄白毒鹅膏菌130.09>鳞柄白毒鹅膏菌+豹斑毒鹅膏菌124.55,表现为增效作用。半致死中浓度LC_(50)为残托斑鹅膏菌+豹斑毒鹅膏菌7.89112mg/g>残托斑鹅膏菌+鳞柄白毒鹅膏菌7.95337mg/g>鳞柄白毒鹅膏菌+豹斑毒鹅膏菌11.18759mg/g。
The German cockroach9(Blattella germanica)is one of the most stubbon urban pests worldwide to pesticide and hard to prevent Using natural materials is the most promising scientific field to be developed in biological control. The article carries out multigroup test and research in feeding.German cockroaches and the selecion of the poisonous baits,the seletion of the toadstool type and the different toxic effect of products on the German cockroaches,the test on bait stability,the sceening of the best ratio of the mixed toxic fungal.The results are following:
     (1) With the screening of 8 kinds of food from powdered milk,corn flour,soybean flour,crumbs of bread,rodent feed,flour,biscuit,millet flour tested by 3 groups of duplicate tests, rodent feed is chosen as the vector of poison bait for its large and steady amount eaten by German cockroach and its additional diverse components and cheap cost. By screening 4 kinds of assisting material,we have a conclusion that another 5% brow sugar is best for the vector of poison bait composed of rodent feed with 5% brow sugar.In the course of feeding German cockroach, we find that it has a strong resistance to the parasite of high-density and particularly liable to the water.
     (2)In the test of killing German cockroaches by toxic toadstools,19 kinds of collected toadstools are firstly isolated and purifilized cultivated,secondly,4 kind products of toadstools which includ fresh fruiting body,powder fruiting body,the products of liquid and solid culture,are used to experiment of insecticidal activity by the method of,which has 3 groups of duplicate tests.Ultimately decided that the insecticidal activity of toadstools are more better,including that Amanita kwangsinsis,Amanita pantherina,Amanita virosa,Scleroderma citrinum, Amanita phalloides. And the results of insecticidal activity was the best which are the liquid fermentation of 5 kind toadstools.The above,5 kinds of toadstools were experienced of insecticidal activity to German cockroach,respectively,so we have a conclusion that the LC_(50) of Amanita kwangsinsis is 9.22480mg/g,Amanita virosa's LC_(50) is 12.30383mg/g,Amanita pantherina's LC_(50) is 16.40091mg/g,Scleroderma citrinum's LC_(50) is 20.80282mg/g,Amanita phalloides's LC_(50)is23.22490mg/g.
     (3)In the course of testing stability of the poison baits,it is handled by high temperature and strong light.Then it has the test of insecticidal activity,so we have the concludsion that stability of the high temperture is more stronger, while the light is weaker.
     (4) Amanita kwangsinsis,Amanita virosa and Amanita pantherina,the three selected toadstools which have the best toxicity from a single dose,can get the best ratio by using the method of interactive.By mixing the three most powerful compound mode with co-toxicity parameter,Amanita kwangsinsis and Amanita pantherina is143.98,Amanita kwangsinsis and Amanita virosa is130.09,Amanita virosa and Amanita pantherina is124.55,the coefficient is more than100,showing the synergies.The LC_(50) that Amanita kwangsinsis and Amanita pantherina is7.89112mg/g,Amanita kwangsinsis is 7.95337mg/g,Amanita pantherina is 11.18759mg/g.
引文
[1]冯平章,郭予元,吴福祯.中国蟑螂种类及防治[M].北京:中国科学技术出版社,1997
    [2]吴福祯.我国室内蟑螂种类分布和防制技术概况[J].浙江预防医学,2002,14(1):35~41
    [3]姜志宽,吴光华.蟑螂防治(一)—螂的危害、形态特征与生活史.中华卫生杀虫药械[J].2009,15(1):25~27
    [4]Telmach I, J. Jerzynska, W. Stelmach, et al. Cockroach allergy and exposure to cockroach allergen in polish children with asthma[J]. Allergy,2002,57(8):701~705
    [5]Steven M, Valles, Charles A. A Microsomal Esterase Involved in Cypermethrin Resistance in the German cockroach [J]. Pesticide Biochemistry and Physiology,2001, (71):56~67
    [6]曾晓凡,柯海萍,胡建波,等.北京市区德国小蠊对4种杀虫剂的抗性测定.中国媒介生物学及控制杂志[J].1998,9(5):344~346.
    [7]Heal R E, M Williams. An insecticide-resistant strain of the German Cockroach from Dorpus Christi. Entomol,1953,46:385~386
    [8]Zhai J, W H Robinson. Instability of cypemethrin resistance in a field population of the German Cockroach(Orthoptera:Blattellidae). Entomol,1996,89(2):332~336
    [9]岳木生,张令要.蜚蠊防治中的高科技生物技术[J].中国媒介生物学及控制杂志,2001,4(1):16~21
    [10]岳木生,张令要.蜚蠊防治中的高科技新生物技术[J].中国媒介生物学及控制杂志,2002,3(2):46~52
    [11]赵家评.蟑螂的危害和防治[J].生物学教学,2002,6(10):25~26
    [12]郝蕙玲.国外蟑螂防制概况[J].中华卫生杀虫药械,2001,7(3):20~22
    [13]Ishii S. An aggregation pheromone of the German cockroach [J]. Zool,1970,5:33~41
    [14]Ishii S, Y. Kuwahara. An aggregation pheromone of the German cockroach, Zool,1967, 2:203~217
    [15]Brossut R. Gergarism in cockroaches and in Eublaberus in particular. In Ritter F.J.(Eds.).Chemical Ecology:Odour Communication in Animals. Elsevier/North-Holland Biomedical Press,1929,6:237~246
    [16]Glaser A E. Use of aggregation pheromones in the control of the German cockroach. Pest Control,1980,(1):7-8
    [17]Miller D M, P G Koehler. Novel extraction of German cockroach fecal pellets enhances efficacy of spray formulation insecticides[J]. Entomol,2000,93:107~111
    [18]Rust M K, D A Reierson. Using pheromone extract to reduce repellency of blatticides[J]. Entomol,1926,70(1):34~38
    [19]Rust M K, D A Reierson. Increasing blatticidal efficacy with aggregation pheromone[J]. Entomol,1976,70(6):693~696
    [20]钟伟,殷幼平.蜚蠊聚集信息素的研究进展[J].中国媒介生物学及控制杂志,2002,5(1):67~74
    [21]姜志宽,吴光华.蟑螂防治(二)—蟑螂的生态习性与常见种类[J].中华卫生杀虫药械,2009,15(1):25~27
    [22]Jerry Mix. Regulations dictate employment practices[J]. Pest Control,1996,64(1):40~45
    [23]张刚应.绿僵菌防治德国小蠊的初步研究[J].中国微生物防治,1996,12(3):100~102
    [24]陈守同.蜚蠊的危害、防治和利用[J].中央民族大学学报(自然科学版),1996,5(2):112~115
    [25]贾艳合,吴德森.蜚蠊防制进展[J].医学动物防制,2006,22(2):114~116
    [26]William H Robinson. Insecticide resistance in Geman cockroach populations[J]. Faopma Convention,1997,7:179~183
    [27]Stadler M, Sterner O. Production of bioactive secondary metabolism in the fruit bodies of macrofungi as a response to injury[J]. Phytochemistry,1998,49(4):193~196
    [28]卯晓岚.中国大型真菌[M].郑州:河南科学技术出版社,2000
    [291卯晓岚.中国毒菌物种及毒素多样性[J].菌物学报,2006,25(3):345~363
    [30]Kyan J, Berger M D, David A, et al. Mycotoxins revisited[J]. The Journal of Emergency Medicine,2005,28(2):175~183
    [31]黄兆勇,唐振柱,陈兴乐,等.2000~2005年广西毒蕈食物中毒情况分析[J].应用预防医学,2006,12(4):211~212
    [32]张富丽,宁红,张敏.毒蕈的毒素及毒蕈的开发利用[J].云南农业大学学报,2004,19(3):283~344
    [33]韩丽娟.吉林省的毒蘑菇[J].长春师范学院学报,2000,19(1):543~545
    [34]邓旺秋,李泰辉,宋斌,等.广东已知毒蘑菇种类[J].菌物研究,2005,3(1):7~12
    [35]高锦明,陈安良,汪玉秀,等.高等真菌杀虫成分研究进展[J].西北林学院学报,2002,17(2):64-68
    [36]冀瑞卿,祁金玉,宋瑞清.8个毒蘑菇菌株培养特性及生理学习性[J].菌物研究,2005,3(2):19~23
    [37]祁金玉,宋瑞清.毒蘑菇菌株及毒素粗提夜对樟子松枯梢病菌生长的影响[J].林业科技,2006,31(3):20~23
    [38]宋瑞清,冀瑞卿.四种毒蘑菇菌株及其毒素对杨树烂皮病菌生长的抑制作用[J].北京林业大学学报,2005,27(2):88~91
    [39]Londershausen M. Approaches to new parasiticides[J]. Pestic Science,1996,48:269~292
    [40]Mier N, Canete S, Klaebe A, et al. Insecticidal properties of mushroom and toadstool carpophores[J]. Phytochemistry,1996,41(5):1293~1299
    [41]Mayer A, Anke H, Sterner O. Omphalotin,a new cycle peptide with potent nematicidal activity from Omphalotus olearius I[J]. Nat Prod Lett,1997,10:25~32
    [42]高锦明.高等真菌代谢产物[J].西北农林科技大学出版社,2003
    [43]Wang M, Mier K S, Fourier D. et al. Proteins as active compounds involved in insecticidal activity of mushroom fruitbodies[J]. Acta Bot Yunnan,2002,24(2):253~240
    [44]Hayashi M, Wada K and Munakata K. New nematicidal metabolites from a fungus, Irpex lacteus[J]. Agric Biol Chem,1981,45:1527~1529
    [45]Kubo I, Kim M, Wood W F, et al. Clitocine a new insecticidal mucleoside from the mushroom Clitocybe inversa[J]. Tetrahedron Lett,1986,27:42~57
    [46]魏艳,高锦明,郝双红,等.担子菌黄硬皮马勃杀虫活性研究[J].西北植物学报,2005,25(2):382~385
    [47]魏艳,李文闯,郝双红,等.担子菌黄硬皮马勃农药活性的初步研究[J].青岛农业大学(自然科学版),2007,24(1):5~8
    [48]汪国轮,郭学武,龚建华.气升式液体培养假褐云斑鹅膏菌丝及毒素检测分析[J].菌物学报,2005,24(4):543~550
    [49]汪国轮,郭学武,龚建华.硫磺菌原变种液体培养代谢物生物活性分析[J].微生物学报,2005,45(5):702~706
    [50]何介元,杨仲亚,毛朝明.白毒鹅膏菌人工驯化及毒力变异试验[J].微生物学通报
    [51]Cochran D G. Monitoring for Insceilcide Resistance in Filed-Colleted Strains of the Gemen Cockroach (Dictypoera:Blattelliclae). Entomol,1982, (2):336~341
    [52]Tsao R, Romanchuk F E, Peterson C J, et al.Plant growth regulatory effect and insecticidal activity of the extracts of the tree of Heaven (Ailanthus altissim L). BMC Ecology,2002,2: 11-17
    [53]Mergen F. A toxic princip le in the leaves of Ailanthus. Bot Gaz,1959,12(1):32~36
    [54]Finney D J. Probit analysis. London:Cambridge University Press,1947
    [55]Sakai S, Sato M, Kojima K. Insect toxicological studies in the joint of insecticides. Joint action between contact insecticides[J]. Botyu Kagaku,1951,16:130~140
    [56]Bliss C. The toxicity of poisons applied jointly[J]. Annl.Appl.Biol,1939,26:585~615
    [57]Mansour N A, Eldefrawi M E, Toppozada A, et al. Toxicological studies on the Egyptian cotton leafworm, Potentiation and antagonism of organophosphorus and carbamate insecticides[J]. Entomol,1966,59:307~311
    [58]Sun Yun-Pei, Johnson E R. Analysis of joint action of insecticides against houseflies. J. Econ. Entomol.1960,53:887~892
    [59]周琼.美洲大蠊资源开发利用的研究[D].福建:福建农林大学博士学位论文,2008
    [60]梁峙.食用菌液体深层发酵参数控制的研究[J].食品科学,2001,22(1):38~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700