油气藏潮汐重力勘探研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潮汐重力方法是利用时间域高精度重力勘探研究油气藏内流体(油气)储集情况的一种全新地球物理勘探方法。本文在参考俄罗斯学者提出的油气藏潮汐重力勘探思想下,把地下水的潮汐现象特征引入课题,建立了潮汐重力理论数值模型。并提出差值密度模型概念,以系统分析模型与潮汐重力数值之间的相互关系。本文在理论模型分析基础上,研究了潮汐重力的野外观测、数据处理及误差评价方法。获得实际数据并经过相应的处理后,结合巴楚地区资料,对结果曲线进行了初步的评价解释。从直观上分析得到了潮汐重力剖面,分析出地下构造内储油的可能性。文章最后提出了一种改进的高精度视密度反演方法,该方法利用徐世浙先生开发的迭代向下延拓代替原有方法中的延拓算子,使方法的精度和稳定性都得到极大的提高,满足了现阶段对高精度重力勘探的要求。利用该方法对实际潮汐重力数据反演了油气藏的差值密度分布情况。
The studying on tidal gravity of oil and gas reservoir is a completely new issue inland. The river, ocean and ground water bring tidal phenomenon at the effect of universal gravitation, which brought some Russian scholars considered that the liquid in oil and gas reservoir would also arose tidal phenomenon. By some reasons, there is little research of the model mechanism, observation method, data processing, datum interpretation of the idea inland. Based on the information of oil-geology and geophysics, we put forward a numeric oil and gas reservoir model firstly, and calculate tidal gravity accordingly. Diff-density model has been advanced in the paper to better discuss the relationship which is between the tidal gravity and the numeric model. And then we analyze the course of observation and processing of the practical data. Combining with the oil-geology information of the work area, the results have been interpreted simply. At the end of this paper, an improved high precision apparent density inversion method is advanced to meet the order of work of high precision in the gravitational prospecting, the downwards continuation operator in the method was substituted by iterative-downwards continuation technique, which was exploited by Xu Shizhe. The method was used to inverse diff-density of an oil and gas reservoir.
     1. Anticline, which is the basic of the paper, is one of the most familiar types in the family of oil and gas reservoirs. At first we import tidal mechanism of ground water, and put forward a model, which is comparatively accorded to the fact, by analyzing the characteristics of oil and gas reservoir know from ground water(such as great deepness, good enclosing, nonuniform density in the reservoir etc)in order to study tidal gravity of oil and gas reservoir. We consider that the high density component of nonuniform liquid in the reservoir will assemble in the east effected by universal gravitation when the heavenly bodies (Sun or Moon) set up.
     2. We used the Parker method to forward gravity abnormity from numeric oil and gas model in this paper; with this understanding we calculate the model's tidal gravity. And then we analyze the relationship between the model parameters and the tidal gravity. The relationship is complex correspondingly: The more model interface rise, the more maximum (minimum) of tidal gravity become bigger, also they are linear. The tidal gravity curve will smooth down with the depth increasing of model, the distance between the maximum and minimum of it will augment with the depth increasing of model, but the relationship of the anticline depth and maximum (or minimum) is not line variation yet. All of the results above obtain from model forward. To obtain better explaining purpose, we advance a diff-density model, which is the virtual source that arouses the tidal gravity on the ground.
     3. Before tidal gravity surveying, studying geological structure is the most important work in the schedule. Based on the known geological structure, corresponding to those models were work out to judge that whether it is possible to tidal gravity surveying in the area. Then we should design several east-west lines on the structure boundary. There are two sixty-four-dollar questions to which should be paid more attention after all the preparations done: confirm the survey manner and time. After analyzing the up and down of the heavenly bodies and the changing with time of the tide-generating force, we consider that two rules should be observed: one is that the survey time should be in the several hours fore-and-aft the time heavenly bodies up or down, another is that the survey time should be after the time when tide-generating force reach maximum (or minimum). The first rule assures that the cutting force reach maximum, and the second rule is adopted because of the lag relationship between hydrocarbon migration and tide-generating force. In order to obtain optimal datum, two manners could be adopted: fixed point manner and line manner. The former is a more accurate, but it is more expansive either. The later is a cheaper manner oppositely, and its precision improved by adopting a back and forth synchronous manner. We should adopt the later manner in practice.
     4. On one hand, tidal gravity belongs to high precision gravity surveying; some corrections used in high precision gravity surveying are the same with tidal gravity, such as solid tidal correction, zero correction etc. On the other hand, because we obtain the temporal change component of the gravity abnormity, some corrections in high precision, which contact with space change, are invalid, such as topographic-correction, spherical external correction, free-air correction, normal field correction etc. The course of calculating tidal gravity is lattice-valued change->tidal gravity correction->calculating the change of data from each instrument->calculating the difference of data from two time of each instrument->smoothing->averaging. And then we estimate the correction level of the results.
     5. Frequency apparent density inversion is a fast method, because that the core operation is an unstable downwards continuation operator, the method could not meet the order of high precision gravity measure now. An iterative-downwards continuation technique, which was exploited by Xu Shizhe, was used to substitute the downwards continuation operator in the method to improve the precision and stability of the method. We have forward two numeric models in the paper: one is a 2D density-layer model whose top plane and bottom plane are horizontal. The other is a 3D density-layer model whose top plane is up-and-down. Contacting the inverse density and the model density, we know that the precision will below 5% if the change of density continuous, even if the change of density breaks, the precision will below 10%.
     6. There are two sections in the tidal gravity interpretation: primary qualitative interpretation and inversion interpretation. Analyzing the four tidal gravity curves, we consider that the third of them reaction oil or gas, and the curves are high Signal-to-Noise. The No. 1 and No.4 curves lay on the west boundary of the construct, putting up positive abnormity. The No.3 curve lay on the east boundary of the construct, putting up negative abnormity. Because of some reasons, the No.2 curve could not present oil or gas. After the primary qualitative interpretation, we inverse the No.4 curve to gain the diff-density distributing of oil and gas reservoir,
引文
1. 曹健.高精度重力资料剩余密度反演与孔隙裂缝发育带分析[J].石油物探,1993,32(4):66-175:
    2. 陈生昌.空问域变深度视磁化强度达代反演[J].石油物探,1993,32(3),87-95;
    3. 范振普,李光耀.高精度重力勘探在柴达术盆地东部测区的应用[J].石油地球物理勘探,1997,32(2):125-133,139:
    4. 管志宁,阳明,安玉林.视磁化强度填图方法及应用[J].物探与化探,1990,14(3),173-18l:
    5. 管志宁,张昌达,程方道,中宁华编著.磁法勘探重要问题理论分析与应用[M].地质出版礼,1993
    6. 韩道范等.利用重力异常反演多层密度分界面的理论和方法[J].地球物理学报,1994,37(1):272-28l;
    7. 蒋福珍,方剑.康滇地区重力场分离、密度反演与地壳构造[J].地震学报,2001,23(4):391-397:
    8. 籍利平、用EXCEL2000计算同体潮改正理论值[J].铁路航测,2002,(1):30一32:
    9. 冀连胜,史付生.重磁力方法在石油勘探111的应用效果[J].石油地球物理勘探,2001,36(3):326-333:
    10.刘金稳,陈景山等.地球的潮汐力[J].两安石油学院学报(自然科学版),200l,16(3):
    1-11:
    11.刘展,李云平、赵文举等.济阳坳陷花沟地区火成岩重磁反演方法[J].油气地球物 理,2005,3(3):31-37:
    12.李明,侯连华等著.岩性地层油气藏地球物理勘探技术与应用[M].北京:石油T业 出版礼,2005:
    13.李新民,丁勇,张旭等.巴楚-麦盖提地区不整合口面特征与油气分布关系[J].新疆石汕地质,2001,22(6):475-477;
    14.刘元生,张昭栋,崔桂梅等.由起潮力反演含油(水)层的应力变化[J].两北地震 学报,2000,22(3):329-342;
    15.刘元生,张昭栋,何钧等.油井动态与地震关系研究的新进展[J].华北地震科学,2004,22(4):1-7:
    16.吕修祥,周新源,皮学年.塔里术盆地巴楚凸起油气聚集及分布规律[J].新疆石油地质,2002,23(6):489-492;
    17.马红强,王恕一,蔺军.塔里小盆地巴楚。麦盖提地区油气运聚与成藏[J].石油实验地质,2006,28(3):243-248;
    18.马立祥.烃类聚集系统的层次性与塔里术盆地巴楚隆起区汕气系统分析[J].海柏油气地质,.2000,5(3):8l-90:
    19.需令顺,朱仁学,周云轩等.泛克里金法在大庆油田徐家围子地区密度建模上的心用[J].石油物探,200l,40(1):88-96:
    20.穆石敏,中宁华,孙运生.区域地球物理数据处理方法及其应用[M].吉林:吉林科 学技术出版社,1990:
    21.孙少安,项爱民,李辉.三峡工程库首区的重力场变化与构造活动[J].人地测晕与地球动力学,2002,22(3):56-59:
    22.孙少安,项爱民,刘冬至等.三峡T程蓄水前后的精密重力测量[J].人地测罩与地球动力学,2004,24(2):30-33;
    23.田舍,宋宇辰.剖面重力高阶水平导数在地热勘探中的应用[J].勘探地球物理进展,2006,29(5):373-376;
    24.汪成民,车用太,万迪垫等.地下水微动态研究[M].北京:地震出版礼,1988;
    25.王宝仁,徐公达.高精度重力测最[M].北京:地质出版社,1995:
    26.工庆宾,吴晓平.绝对重力测量值的改正[J].测绘学院学报,200la,18(3):160—163:
    27.王庆宾,吴晓平.相对重力测量值的改正[J].测绘学院学报,2001b,18(9):8—10;
    28.王家林,王一新,万明浩.石油重磁解释[J].北京:石油工业出版礼,1991;
    29.王两文,I.N.米哈依诺夫.俄岁斯高精度重力法直接预测油气臧(GONG)技术的原理及其应用效果[J].两安地质学院学报,1996(a),18(1),85—92;
    30.王两文,I.N.米哈依诺夫.高精度重力勘探直接预测油气藏的方法[J].石油地球物理勘探,1996(b),31(4):569—574:
    31.王两文.高精度重力及地震预测汕气臧(GONG)技术在某工区心用实例[J].两安程学院学报,1998,20(1):61-66;
    32.肖鹏飞,李明,徐世浙等.重力归‘化总梯度的稳定算法[J].石汕地球物理勘探,2006,41(5):596—600:
    33.肖鹏飞,陈生昌,杨长福,孟令顺.油气藏潮汐重力的初步研究[J].石油物探,2007a,46(2):74-78;
    34.肖鹏飞,陈生昌,孟令顺,杨金玉.高精度重力资料的密度界面反演[J].物探与化探,2007b,31(1):29—33;
    35.许德树,曾华霖,万天丰.中国视密度图与大地构造单元[J].地学前缘,2001,8(2),407—413:
    36.徐世浙.位场延拓的秋分一迭代法[J].地球物理学报,2006a,49(4):1176:
    37.徐世浙.位场大深度向下延拓[J].物探化探计算技术,2006b,28:29:
    38.徐世浙,曹洛华,姚敬金.重力异常三维反演一视密度成像方法技术的应用[J].物探与化探,2007,3l(1):25—28;
    39.徐晓芳,何国金,张生等.重力勘探新技术在寻找古潜山中的应用[J].物探与化探,2006,30(5):397—400:
    40.徐元芳,安振昌,黄宝春,V.P.Goiovkov,N.M.Rotanova.,A.L.Kharitonov.亚洲地区视磁化强度分布[J].中国科学,2000,30(4),388—392;
    41.杨占宝,尹志清,尤少燕等.胜利油田油(水)井动态观测网及映震效能初探[J].两北地震学报,2000,22(3):3l7—320:
    42.叶青,王瑞杰.高精度重力勘探方法在预测煤矿水害上的应用[J].中国煤田地质,1997,9:64-70:
    43.尹正武,刘天佑.如何评价重力在镇巴地区油气勘探中的应用[J].南方油气,2005,18(4): 40一42:
    44.袁业培等.高精度重力探测油气藏的可能性[J].石油地球物理勘探,1995,30(1):139一144:
    45.曾华霖.石油重力勘探的进展[J].石油地球物理勘探,1999a,34,115-124;
    46.曾华霖.重力场与重力勘探[M].北京:地质出版社,2005:
    47.曾华霖.重力仪现状及发展[J].物探与化探,1999b,23(2):84—89:
    48.张风旭,张凤琴,孟令顺等.基于余弦变换的密度界面重力异常正反演研究[J].石油地球物理勘探,2005,40(5):598—602;
    49.张厚福.石油地质学新进展[M].北京:石油工业出版礼,1998;
    50.张会战,方剑,张子占.小波分析在重力界面反演中的应用[J].武汉人学学报(信息科学版),2006,31(3):233—236;
    51.张金亮,常象春.石油地质学[M].北京:石油工业出版礼,2004;
    52.张新海,王晓东,杨国进等.巴楚地区上寒武一下奥陶统丘里塔格群碳酸盐岩储层特征[J].地质力学学报,2002,8(3):257-264:
    53.张昭栋.地下水潮汐分析[M].济南:山东人学出版社,1988;
    54.张昭栋,郑金涵等.承压井水何对地表水潮汐的响应[J].地震研究,1990,13(4):378-388:
    55.张昭栋,工尤培,张教祥.地震地下水潮汐研究综述[J].地震学报,199l:29—35:
    56.张昭栋,高玉斌,王昌文.地下水位潮汐观测资料的Nakai预处理[J].内陆地震,1992,6(3):274—280:
    57.张昭栋,耿杰,高玉斌等.计算井水位对固体潮和气压潮滞后响应的新方法[J].华南地震,1993,13(3):16—2l;
    58.张昭栋,陈学忠,陈建民等.井水位同体潮加卸载响心比的地震短临前兆[J].地震学报,1997,19(2):174—180:
    59.张昭栋,郑金涵.地下水潮汐现象的物理机制和统’‘数学方程[J].地震地质,2002,24(2):208—214:
    60.张昭栋,郑金涵,张广城.水井含水层系统的潮汐响应函数[J].两北地震学报,1995,17(3): 66—71
    61. Allis, R.Gand Hunt, T.M.. Analysis of exploration induced gravity changes at Wairakei GeothermalField[J]. Geophysics, 1986, 51(8): 1647-1660;
    62. Ander, ME., T. Summers, and ME. Gruchalla. LaCoster & Romberg gravity meter: System analysis and instrumental error[j]. Geophysics, 1999, 64:1708-1719;
    63. Barbosa,V.C.F., J.B.C.Silva, and W.E.Medeiros. Gravity inversion of basement relief using approximate equality constraints on depths[J]. Geophysics, 1997, 62: 1745 — 1757;
    64. Bate,D. . 4D reservoir volumetrics : a case study over the Izaute gas storage facility[J]. First Break, 2005, 23: 69-70;
    65. Bate, P.Versnel, P.Styles. 4D Reservoir Monitoring with gravity measurements and the potential application to carbon dioxide sequestration[A] . EAGE 68th Conference&Exhibition[C], 2006;
    66. Bear, G.W., Al-Shukri, H.j., and Rudman, A.J.. Linear inversion of gravity data for 3-D density distributions[J]. Geophysics, 1995,60:1354-1364;
    67. Bishop, I.i P.Styles, SJ.Elmsley and N.S. Ferguson. The detection of cavities using the microgravity technique : case histories from mining and karstic environments[J]. Geol.Soc.Enineering Geology Special Publication, 1997, 12: 153-166;
    68. Bott,M.H.R. The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins[J]. Geophysical Journal of the Royal Astronomical Society, 1960, 3: 63-67;
    69. Brady, J.L., Wolcott, D.S., and Aiken, C.L.V.. Gravity method: Useful techniques for reservoir surveillance[A]. Western Regional Mtg., Soc. Ptr. Eng., Expanded Abstracts[C], 1993:645-658;
    70. Brady, J.L., Wolcott, D.S., Daggett, P.H., etc.. Water movement surveillance with high resolution surface gravity and GPS, A model study with field test result[A]. Ann. Tech. Conf. and Exhibition, Soc. Ptr. Eng., Expanded[C], 1995:381-394;
    71. Braile, L.W., Keller, GR., and Peeples, W.J. . Inversion of gravity data for two-dimensional density distributions[J]. J. Geophys. Res., 1974,79:2017-2021;
    72. Brcic, I., and H.O. Seigel. Recent performance evaluations and applications of the Scintrex CG-3M microgravimeter:Environmental and Industrial Geopysics Group Meetingf A]. Geological Society of London[C], 1998;
    73. Carr P A, Kamp V D . Determinning aquifer characteristics by the tidal method[J]. Resources Research, 1969, 5(5): 1023-1031;
    74. Chai,Y., and W. J.Hinze. Gravity inversion of an interface above which the density contrast varies exponentially with depth[J]. Geophysics, 1988, 53: 837-845;
    75. Chen, T., J.F. Ferguson, C.L.V. Aiken, and J.Brady. Real-time data acquisition and quality control for high accuracy relative gravity surveys[j]. The Leading Edge, 2005,24:702-704;
    76. Cheng,D.,Y.Li, and K.Larner. Inversion of gravity data for base salt[A]. 73th Annual International Meeting,SEG,Expanded Abstracts[C], 2003: 588-591;
    77. Eiken,O., M.Zumberge, T.Stenvold, GSasagawa and S.Nooner. Gravimetric monitoring of gas production from the Troll field[A]. 74th SEG International Exposition Extended Abstract[C], 2004;
    78. Ferguson J.F., T. Chen, Brady J. etc.. The 4D microgravity method for waterflood surveillance: Part II-Gravity mearsurements for the Prudhoe Bay reservoir[J]. Alaska, Geophyscis, 2007, 72(2):I33-I43;
    79. Guspi,F. . Three-dimensional Fourier gravity inversion with arbitrary density contrast[J]. Geophysics, 1992, 57: 131-135;
    80. Hare,J.L., J.F.Ferguson, C.L.V.Aiken and J.L.Brady. The 4D microgravity method for waterflood surveillance:A medel study for the Prudoe Bay reservoir[J] . 1999, Geophysics, 64(1): 78-87;
    81. Hsu Shu Kun, Sibuet Jean Claude, Shyu Chuen Tien. High-resolution detection of geologic boundaries from potential-field anomalies[J] . Geophysics, 1996, 61(2):373-386;
    82. Hugill, A. . Scintrex CG-3 auto mated gravity meter, Description and field results[A] . 60th Annual International Meeting, SEG, Expanded Abstracts[C], 1990:601-604;
    83. Hunt CD Jr., Spengler SR, and Gingerich SB. Lithologic influences on freshwater lens geometry and aquifer tidal response at Kwajalein Atoll[A]. Abstracts of the American Water Resources Association 1995 Annual Summer Symposium[C], 1995:25-28;
    84. Jacira F.Beltrao, Joao B.C.Silva. Mapping and depth ordering of residual gravity sources[J]. Geophysics, Vo.158, OCTOBER 1993, No.10, 1408-1416.
    85. Jorgensen,G., and J.Kisabeth. Joint 3D inversion of gravity,magnetic,and tensor gravity field for imaging salt formations in the deepwater Gulf of Mexico[A]. 70lh Annual International Meeting,SEG,Expanded Abstracts[C], 2000: 424—426;
    86. Longman, I.M.. Formulas for computing the tidal accelerations due to the moon and sun[J]. Journal of Geophysical Research, 1959,64:2351-2355;
    87. Melchior, P.. The tides of the planet earth[M]. Pergamon Press, Inc., 1983;
    88. MINISTRY OF ENERGY OF THE RUSSIAN FEDERATION Institute of Geology and Exploitation of Combustible Fuels (IGIRGI), STUDY OF THE GEOLOGICAL MAKEUP OF THE NORTHWESTERN PART OF LICENSE BLOCK MI CHUAN ON THE BASIS OF INTEGRATED ANALYSIS OF HIGH-PRECISION GRAVITY SURVEY DATA IN COMBINATION WITH THE AVAILABLE GEOLOGICAL AND GEOPHYSICAL INFORMATION, 2004;
    89. Ministry of industry and emergy of the Russian federation institute of geology and exploitation of combustible fuels(IGIRGl), studies of anomalous bodies deliminated by the seismic specific features on license block shutuoguoluo in tarim basin, 2005;
    90. Nabighian,M.N., etal.. 75th Anniversary: Historical development of the gravity method in exploration[J]. Geophysics, 2005, 70(6): 63ND-89ND;
    91. Nagendra R et al.. Forward and invers computer modeling of a gravity field resulting from a density interface using Parker-Oldenberg method[J]. Computers&Geosciences, 1996, 22(3): 227-237;
    92. Nagihara,S. , and S.A.Hall. Three-dimensional gravity inversion using simulated annealing:Constraints on the diapiric roots of allochthonous salt structures[J]. Geophysics, 2001, 66: 1438-1449;
    93. Oldenburg,D.W.. The inversion and interpretation of gravity anomalies[J]. Geophysics, 1974, 39: 526-536;
    94. Parker,R.L.. The rapid calculation of potential anomalies[J]. GeophysicalJournal of the Royal Astronomical Society, 1972, 37: 662—668;
    95. Pedersen,L.B. . Interpretation of potential field data-A generalized inverse approach[J]. Geophysical Prospecting, 1977, 25: 199-230;
    96. Reamer,S.K., and J.F.Ferguson. Regularized two-dimensional Fourier gravity inversion method with application to the Silent Canyon caldera[J]. Geophysics, 1989, 54: 486-496;
    97. Rhoads, G. H, Robinson, E.B.. Determination of aquifer parameters from well tides[J]. J. G. R., 1979, 84(B11): 6071-6082;
    98. Rymer,H , Brown,G.C . Gravity fields and the interpretation of volcanic structures;geological discrimination and temporal evolution[J]. J.Volcano Geotherm Res, 1986, 27: 229-254;
    99. Sun Shaoan, Xiang Aimin and Li Hui. Changes of gravity field and tectonic activity in head reginon of Thre Gorges project[J]. Journal of Geodesy and Geodynamics, 2002, 22(3):56-59;
    100. Talwani,M. , J.L.Worzel , and M.Landisman . Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone[J]. Journal of Geophysical Research, 1959, 64: 49-59;
    101. Wang H, Hsu H T, Zhu Y Z. Prediction of surface horizontal displacements and gravity and tilt changes caused by filling the Three Gorges reservoir[J]. Journal of Geodesy, 2002,76:105-114;
    102. Zhang Zhaodong, Zheng Jinhan, Zhang Guangcheng. Response of well-aquifer system and water level observation system to earth tides and seismic waves[J]. Acta Seismologica Sinica, 1989a, 2(2): 251-264;
    103. Zhang Zhaodong, Zheng Jinhan, Zhang Guangcheng, et al. Response of water level of pressure well to dynamic process of barometric pressure[j]. Acta Geophysica Sinica, 1989b, 32(3):405-418;
    104. Zhang Zhaodong, Wang Baoyin, Gao Yubin, et al, The observation. Research and analysis of underground water tide in China[J] . Acta Seismologica Sinica, 1990,3(4):477-490;
    105. Zhang Zhaodong, Zheng Jinhan, Feng Chugang. Effect of earth tide on deep well water level[J]. Acta Seismologica Sinica, 1992, 5(1): 115-125;
    106. Zhang Zhaodong, Zheng Jinan,Zheng Xiangyuan, et al.. Frequency characteristics and response to seismic waves for wellfJ]. Earthquake Research in China, 1993, 7( 1 ):85-92;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700