国产化淀粉样蛋白显像剂[~(11)C]6-OH-BTA-1结合~(18)F-FDG PET在阿尔茨海默病中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分淀粉样蛋白显像剂11C-PIB国产化及临床应用可行性分析
     目的:在原有的化学合成模块基础上,研究淀粉样蛋白显像剂[N一甲基-11C]2-[4’-(甲氨基)苯基]-6-羟基苯并噻唑(11C-6-OH-BTA-1, 111C-PIB,即匹兹堡化合物)自动化制备,实现PIB前体及制备的完全国产化。并对制备的PIB质量控制,进行药物临床应用的可行性分析。方法:采用氢化锂铝/四氢呋喃(LAH/THF)还原法制得的“C-碘代甲烷(11CH3I)在线转换成活性更高的“C-三氟磺酸甲酯(11CH3OTf),通入锥形反应瓶内和PIB前体(6-OH-BTA-O,进口及自制前体)丁酮溶液在盐冰浴条件下反应,利用改进的HPLC方法纯化产品,并对最终产品进行质量控制;比较国产化和进口前体的PIB生物学特性及安全性;进行不同人群脑部PET显像,验证国产化PIB的可行性、图像质量及注射后病人的不良反应评估。结果:通过改进自动化制备工艺,最终得到可供注射的11C-PIB10%乙醇溶液,产品中完全不含乙腈;合成的1'C-PIB在物理学、化学、生物学方面的鉴定结果均符合SFDA颁布的《正电子放射性药物质量控制指导原则》。自制前体(6-8mg)的用量相对于进口前体(1mg)用量较大,但价格相对便宜;在合成成功率、放化产率、放化纯度、产率方面,自制前提分别为95.4%、(40±4)%、92%-93%、(27±5)%,进口前提分别为87.5%、(40±4)%、92%-93%、(25±5)%;二者相似。在注射后患者除出现不同程度的疼痛(含有少量的乙醇溶液),均无其他不良反应(如过敏反应、头痛、静脉炎等症状)。自制前体的PIB显像剂脑部显像图像质量清晰,各脑区的放射性分布情况在与文献报道一致,与进口前体制备无明显差异;国产化试剂及进口前体制备的PIB PET脑部显像的全脑放射性-时间曲线变化一致。结论:自制国产化前体的11C-PIB制备路线稳定;对人体显像安全可靠;证明自行研制PIB前体制备及PIB完全国产化的可行性。
     第二部分aMCI及AD基于统计参数图的FDG PET研究
     目的:利用氟-18标记的脱氧葡萄糖正电子发射断层成像(18F-FDG PET)研究阿尔茨海默病(Alzheimer's disease, AD)、遗忘型轻度认知障碍(amnestic-typemild cognitive impairement, aMCI)患者相对于正常老年人脑部葡萄糖代谢改变的特点。方法:运用PET对27例轻度AD患者、10例aMCI患者及21例年龄匹配人群进行脑葡萄糖代谢成像,基于Matlab平台上SPM8对扫描获得的脑葡萄糖代谢图像进行预处理,再对AD组、aMCI组和对照组的葡萄糖代谢水平进行基于体素的统计学分析。结果:与正常老年组比较,AD组大脑葡萄糖代谢减低的脑区包括后扣带回(BA23、31)及楔前叶(BAl9)、双侧顶叶(BA40)、双侧颞叶(BA20、21、22、37)、双侧额叶(BA6、9、10)等部位(p<0.001, uncorrected, K≥50 voxels)。AD组大脑葡萄糖代谢相对于aMCI组减低的脑区包括后扣带回(BA23、31)及楔前叶(BAl9)、颞顶叶(BA40、20、21、22、39)及额叶(BA6、8、9)等部位(p<0.001, uncorrected,K≥50体素)。AD组与aMCI组葡萄糖减低的体素数目要少于AD组与正常对照组的体素数目。aMCI组葡萄糖代谢相对于正常组仅右侧枕叶的舌回(BAl7)有局部减低(p<0.05, uncorrected)。结论:基于像素水平的分析研究能早期发现AD患者的葡萄糖代谢减低模式改变。对轻微的认知功能障碍人群的脑部葡萄糖代谢有所减低但不显著,与AD有一定的区别。
     第三部分“C-PIB PET结合FDG在认知功能改变人群中的临床应用研究
     目的:运用自主合成的PIB进行脑部PET显像,分析AD、aMCI、正常对照组及其他认知功能障碍的PIB显像的脑部分布特征,并结合FDG代谢的变化对AD的早期诊断提供参考价值。方法:运用PET对13例轻度AD患者、6例aMCI患者及6例正常老年人进行脑PIB及FDG代谢显像。视觉分析不同人群PIB的分布特点,比较FDG、PIB对AD、aMCI、正常人及其他认知功能障碍的鉴别价值。Listmode软件RO1分析不同人群的脑皮质区的时间一放射性曲线、脑皮质/小脑的SUVR的变化曲线;基于Matlab平台上SPM8对扫描获得的脑PIB图像进行预处理,比较轻度AD组、aMCI组和对照组PIB基于体素差异的统计学分析。结果:所有人群早期都呈现快速血流相分布,随后小脑区域PIB快速洗脱;40分钟后不同人群PIB分布出现差异。所有AD及4例MCI的额叶、外侧颞叶、后扣带回及楔前叶PIB滞留明显,而正常对照组的相关区域PIB滞留量较少。正常人群的皮质功能区与小脑比值SUVR曲线显示呈下降趋势,而AD患者与小脑的SUVR比值提示30min后曲线呈上升趋势。PIB对AD诊断的敏感度为100%,而FDG为84.6%;正常对照组PIB与FDG诊断的具有一致性。但对aMCI的判断上有较大的差异,6例aMCI的FDG无明显特异性的改变而不能判断,而PIB有4例呈类AD表现。其他3例因进行性核上性麻痹、额颞叶痴呆、血管性痴呆无淀粉样蛋白沉积呈阴性表现,FDG有不同程度的改变。与正常对照组比较,AD组的额叶、外侧颞叶、顶叶、前后扣带回、楔前叶、基底节区域的PIB滞留量增加,内侧颞叶无增加(p<0.001, uncorrected, K≥50像素);aMCI组的额叶、外侧颞叶、后扣带回、楔前叶、前扣带回的PIB治疗增加。40分钟后SUVR表明,AD患者呈上升趋势而正常人群呈下降趋势。结论:40分钟后PIB在AD中滞留量多,与小脑的SUVR曲线呈上升趋势,并与正常人及其他认知功能障碍分布不同,PIB对AD诊断和鉴别诊断是可行的;FDG代谢未见改变的aMCI人群PIB PET分布模式“类AD”表现;PIB在早期AD诊断方面有可能成为常规影像诊断的可能。
ENGLISH ABSTRACT
     PartⅠ
     The research of Beta amyloid imaging with domestic 11C-PIB and evaluation the efficiency in clinical utilities
     Purpose:Based on the former chemical synthesis module, we investigated the automated synthesis of AD amyloid imaging agent [11C]6-OH-BTA-1 (11C-PIB), aimed at completely domestic produce of PIB and its precursor. In addition, we took quality control of PIB and verified the clinical efficacy of drugs by the clinical applications. Material and methods:Turn 11C-iodo methane (11CH3I) deoxidized from lithium aluminum hydride/THF (LAH/THF) ion into 11C-trifluoro-methanesulfonate (11CH3OTf) with higher activity, then introduced into conical reaction flask with PIB precursor (6-OH-BTA-O, imported and home-made precursors) inside. Reaction is on ice-salt conditions in butanone solution. Then employed the improved HPLC to purify the products, and took quality control finally. Biological characteristics and safety of the self-produced PIB precursors and the import ones were compared; Groups of subjects took brain PET imaging to verify the feasibility of self-produced PIB, image quality and adverse reactions after injection were assessed. Results:With the improved automatic produce process,11C-PIB in 10% ethanol solution available for injection was ultimately produced, which is completely free of acetonitrile. Physical, chemical, biological qualities of 11C-PIB were consistent with SFDA issued "positron radiopharmaceutical quality control guidelines". Relative to the produce amount of imported precursor (1mg), Self-produced precursor (6-8mg) needed a larger amount, but the price is relatively cheaper, while the success rate of synthesis, the radiochemical yield, radiochemical purity, production rate were similar. Except distinctive pain occur after injection (with a small amount of ethanol solution), no other adverse reactions observed. Brain PET imaging with agent self-produced PIB showed high quality and the distribution of radioactivity were consistent with former literature. No significant difference was noticed in the curve of time-global activity between self-produced and imported PIB. Conclusions:The self-produced precursors of 11C-PIB production route is stable and safe for human brain imaging, which support proof of feasibility of self production of PIB and its precursor. Key words:Positron emission tomography; quality control; [N-methyl-11C]2-[4'-(methylamino)phenyl]-6-hydroxyphenylbenzothiazole CLC number:R817.4
     Part II
     Research of FDG PET in Alzheimer's disease and mild cognitive impairment using Statistical Parametric Mapping
     Purpose:Voxel-based analysis of the regional cerebral glucose metabolism in patients with mild Alzheimer's disease (AD), amnestic-type mild cognitive impairment (aMCI) compared to normal aging as control associated with characteristic and progressive reductions with Fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET).
     Material and Methods:Twenty-seven patients with mild AD patients,10 aMCI patients and 21 age-matched normal aging were enrolled in this study. Glucose metabolism differences of brain were assessed by Statistical Parametric Mapping 8 (SPM8) based on the Matlab platform to compare the normal aging with the cognitive declined. Results:In comparison with the normal aging group, the AD group had significantly lower brain glucose metabolism in posterior cingulate (BA23,31), precuneus (BA19), bilateral parietal (BA40), bilateral temporal lobe (BA20,21,22,37) and bilateral frontal cortex (BA6,9,10) (p<0.001, uncorrected, K≥50 voxels). Compared with the aMCI group, the AD group had hypometabolism in posterior cingulate (BA23, 31), precuneus (BA19), temporal lobe (BA40,20,21,22,39) and frontal cortex (BA6,8,9) (p<0.001, uncorrected, K≥50 voxels). Decreased voxels of glucose metabolism between the AD group and the aMCI group were less than those between the AD group and the normal aging group. Brain glucose metabolism in aMCI group compared to the normal aging group decreased only in the right occipital cortex (BA17) (p<0.05, uncorrected). Conclusion: Voxel-wise comparison of glucose metabolism in whole brain between the patients and the normal aging can reveal widespread hypomeabolism in mild Alzheimer's disease. However aMCI had less metabolism reduction than the normal aging.
     Part III
     The research of 11C-PIB amyloid imaging combined with 18F-FDG PET in normal aging and cognitive declined
     Objective:Beta amyloid plaques and impaired glucose metabolism are the most prevalent pathological characteristics of Alzheimer's disease (AD). The aim was to reveal the characteristics of positron emission tomography (PET) imaging using radiotracers (11)C-Pittsburgh compound B (PIB) in normal aging and the cognitive declined combined with fluoro-deoxyglucose (FDG) PET.
     Material and Methods:Six normal aging,6 aMCI patients,13 mild AD patients and 3 other cognitive declined patients were enrolled in this study. The normal aging and the cognitive declined was compared by the distribution of PIB in the whole brain. It was assessed by visual analysis, regional of interest (ROI) analysis and Statistical Parametric Mapping 8 (SPM8) based on the Matlab platform. Results:The distribution of PIB showed rapid blood flow in early phase and then washed out quickly especially in cerebellum in all subjects. The type of distribution was different 40 minutes later after injection in AD and the normal aging. PIB retention was high in frontal, lateral temporal lobe, posterior cingulate and precuneus in the AD and four aMCI. Only little PIB was distributed in white matter and pons in the normal aging. The sensitivity of PIB was 100% while FDG was 84.6% in AD; PIB was negative in progressive supranuclear palsy, frontotemporal dementia and vascular dementia while FDG had changes. Compared with the normal aging, frontal, lateral temporal lobe, parietal lobe, cingulate, precuneus, and basal ganglia increased in AD and MCI(p<0.001, uncorrected, K≥50 pixels). No difference was found in medial temporal lobe. The curve of SUVR increased in AD while decreased in the normal aging from 40 to 60 minutes. Conclusions:The amount of PIB retention was different in AD other than the normal aging after 40 minutes post-injection which can diagnose and differentiate the different types of cognitive dysfunction. The SUV Ratio curve rase after 40 minutes which tested the feasibility of PIB in diagnosis of AD. The distribution of PIB was positive in all subjects. But 4 AD-like MCI patients were negative with glucose metabolism. Based on the above, we can conclude that PIB might be useful in the early stage of possible AD (aMCI).
引文
[1]Mathis CA, Bacskai BJ, Kajdasz ST, et al. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain[J]. Bioorg Med Chem Lett,2002,12(3):295-298.
    [2]Mathis CA, Wang Y, Holt DP, et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents [J]. J Med Chem,2003,46(13):2740-2754.
    [3]Solbach C, Uebele M, Reischl G, et al. Efficient radiosynthesis of carbon-11 labelled uncharged Thioflavin T derivatives using [11C]methyl triflate for beta-amyloid imaging in Alzheimer's Disease with PET[J]. Appl Radiat Isot,2005,62(4):591-595.
    [4]姚志文,丁正同,张政伟,等.阿尔茨海默病正电子显像剂11C-6-OH-BTA-1的制备[J].中华核医学杂志,2007,27(6):327-329.
    [5]张锦明,郭喆,田嘉禾,等.淀粉样蛋白显像剂2-(4’-N甲胺苯基)-6-羟基苯并噻唑的研究[J].中华核医学杂志,2008,28(6):397-400.
    [6]张锦明,田嘉禾,王武尚,等.在线制备11C-Triflate-CH3[J]同位素,2006,19(2):124-128.
    [7]中华人民共和国国家药典委员会.中华人民共和国国家药典(二部).北京:化学工业出版社附,E:86,H:89.
    [8]Pasero CL. Using the Faces scale to assess pain[J]. Am J Nurs,1997, 97(7):19-20.
    [9]Ng S, Villemagne VL, Berlangieri S, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease[J]. J Nucl Med,2007,48(4):547-552.
    [10]Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population:potential antecedent marker of Alzheimer disease[J]. Neurology,2006,67 (3):446-452.
    [11]郭喆,姚树林,张锦明,等.阿尔茨海默病"C-PIB PET连续动态显像结果分析[J].军医进修学院学报,2010,31(7):637-639.
    [12]郭喆,姚树林,张锦明,等.轻度认知功能障碍"C-PIB PET连续动态显像结果分析[J].科技导报,2010,28(15):21-25.
    [13]Nordberg A. PET imaging of amyloid in Alzheimer's disease[J]. Lancet Neurol,2004,3(9):519-527.
    [14]McNamee RL, Yee SH, Price JC, et al. Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements [J]. J Nucl Med,2009,50(3):348-355.
    [15 Mikhno A, Devanand D, Pelton G, et al. Voxel-based analysis of 11C-PIB scans for diagnosing Alzheimer's disease [J]. J Nucl Med,2008, 49(8):1262-1269.
    [16]Gomperts SN, Rentz DM, Moran E, et al. Imaging amyloid deposition in Lewy body diseases[J]. Neurology,2008,71(12):903-910.
    [17]Villemagne VL, Pike KE, Darby D, et al. Abeta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease[J]. Neuropsychologia,2008, 46(6):1688-1697.
    [18]Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B[J]. J Cereb Blood Flow Metab,2005,25(11):1528-1547.
    [19]张锦明,田嘉禾,刘伯里.影响PET放射性药物11C甲基化的因素[J].实验核医学,2006,30(5):271-274.
    [20]Klunk WE, Wang Y, Huang GF, et al. The binding of 2-(4'-methylaminopheny)benzothiazole to postmortem brain homogenates is dominated by the amyloid component[J]. J Neurosci,2003, 23(6):2086-2092.
    [21]姚志文,丁正同,王坚,等.β淀粉样蛋白显像剂[11C16-OH-BTA-1在转基因型痴呆鼠和正常猴体内的分布[J]. 中国临床神经科学,2009,17(4):365-370.
    [22]Ng S, Villemagne VL, Berlangieri S, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease [J]. J Nucl Med,2007,48(4):547-552.
    [23]Andersson JD, Varnas K, Cselenyi Z, et al. Radiosynthesis of the candidate beta-amyloid radioligand [(11)C]AZD2184:Positron emission tomography examination and metabolite analysis in cynomolgus monkeys [J]. Synapse,2010,64(10):733-741.
    [24]Furukawa K, Okamura N, Tashiro M, et al. Amyloid PET in mild cognitive impairment and Alzheimer's disease with BF-227:comparison to FDG-PET[J]. J Neurol,2010,257(5):721-727.
    [25]Serdons K, Verduyckt T, Vanderghinste D, et al. Synthesis of 18F-labelled 2-(4'-fluorophenyl)-1,3-benzothiazole and evaluation as amyloid imaging agent in comparison with [11C]PIB[J]. Bioorg Med Chem Lett, 2009,19(3):602-605.
    [26]Neumaier B, Deisenhofer S, Sommer C, et al. Synthesis and evaluation of 18F-fluoroethylated benzothiazole derivatives for in vivo imaging of amyloid plaques in Alzheimer's disease[J]. Appl Radiat Isot,2010, 68(6):1066-1072.
    [27]Vandenberghe R, Van Laere K, Ivanoiu A, et al.18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment:a phase 2 trial[J]. Ann Neurol,2010,68(3):319-329.
    [28]Gao M, Wang M, Hutchins GD, et al. [(11)C]Dimebon, radiosynthesis and lipophilicity of a new potential PET agent for imaging of Alzheimer's disease and Huntington's disease[J]. Bioorg Med Chem Lett,2010, 20(8):2529-2532.
    [29]Choi SR, Golding G, Zhuang Z, et al. Preclinical properties of 18F-AV-45:a PET agent for Abeta plaques in the brain [J]. J Nucl Med,2009, 50(11):1887-1894.
    [30]Carpenter AP, Jr., Pontecorvo MJ, Hefti FF, et al. The use of the exploratory IND in the evaluation and development of 18F-PET radiopharmaceuticals for amyloid imaging in the brain:a review of one company's experience [J]. Q J Nucl Med Mol Imaging,2009,53(4):387-393.
    [31]Yao CH, Lin KJ, Weng CC, et al. GMP-compliant automated synthesis of [(18)F]AV-45 (Florbetapir F 18) for imaging beta-amyloid plaques in human brain[J]. Appl Radiat Isot,2010,68(12):2293-2297.
    [32]Wong DF, Rosenberg PB, Zhou Y, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18)[J]. J Nucl Med,2010,51(6):913-920.
    [33]Liu Y, Zhu L, Plossl K, et al. Optimization of automated radiosynthesis of [18F]AV-45:a new PET imaging agent for Alzheimer's disease[J]. Nucl Med Biol,2010,37(8):917-925.
    [34] http://www.alz.co.uk/research/files/WorldAlzheimerReport2010Executive Summary.pdf.
    [35]McCaffrey P.7th annual mild cognitive impairment (MCI) symposium: Focus on early Alzheimer's disease and non-Alzheimer's prodromal dementia. Miami, Florida,27-28 March,2009[J]. J Alzheimers Dis,2009, 18(2):355-363.
    [36]McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease:report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease[J]. Neurology,1984,34(7):939-944.
    [37]Ala TA, Frey WH,2nd. Validation of the NINCDS-ADRDA criteria regarding gait in the clinical diagnosis of Alzheimer disease. A clinicopathologic study[J]. Alzheimer Dis Assoc Disord,1995, 9(3):152-159.
    [38]Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer's disease:revising the NINCDS-ADRDA criteria[J]. Lancet Neurol,2007,6(8):734-746.
    [39]Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome[J]. Arch Neurol,1999, 56(3):303-308.
    [40]Petersen RC, Smith GE, Waring SC, et al. Aging, memory, and mild cognitive impairment[J]. Int Psychogeriatr,1997,9 Suppl 1:65-69.
    [41]Ishii K, Willoch F, Minoshima S, et al. Statistical brain mapping of 18F-FDG PET in Alzheimer's disease:validation of anatomic standardization for atrophied brains [J]. J Nucl Med,2001,42(4):548-557.
    [42]Friston KJ, Frackowiak RS. Cerebral function in aging and Alzheimer's disease:the role of PET[J]. Electroencephalogr Clin Neurophysiol Suppl,1991,42:355-365.
    [43]Friston KJ, Frith CD, Liddle PF, et al. Plastic transformation of PET images[J]. J Comput Assist Tomogr,1991,15(4):634-639.
    [44]Friston KJ, Frith CD, Liddle PF, et al. Comparing functional (PET) images:the assessment of significant change[J]. J Cereb Blood Flow Metab, 1991,11 (4):690-699.
    [45]Gur RC, Gur RE, Obrist WD, et al. Age and regional cerebral blood flow at rest and during cognitive activity [J]. Arch Gen Psychiatry,1987, 44(7):617-621.
    [46]Martin AJ, Friston KJ, Colebatch JG, et al. Decreases in regional cerebral blood flow with normal aging[J]. J Cereb Blood Flow Metab,1991, 11(4):684-689.
    [47]De Santi S, de Leon MJ, Convit A, et al. Age-related changes in brain: II. Positron emission tomography of frontal and temporal lobe glucose metabolism in normal subjects[J]. Psychiatr Q,1995,66(4):357-370.
    [48]Petit-Taboue MC, Landeau B, Desson JF, et al. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping[J]. Neuroimage,1998,7(3):176-184.
    [49]左传涛,刘永昌,管一晖,等.年龄对脑葡萄糖代谢的影响[J].中国医学计算机成像杂志,2001,7(3):204-206.
    [50]李祖贵,高硕,蔡莉,等.年龄对健康人大脑葡萄糖代谢率影响作用的初步研究[J].中国医学影像技术,2007,23(6):917-920.
    [51]陈丽敏,左传涛,黄晶憨,等.正常人脑葡萄糖代谢标准数据库建立[J].中国医疗设备,2010,2010(1):123-126.
    [52]司明珏,黄钢.正常人脑局部葡萄糖代谢随年龄变化的PET表现[J].中华核医学杂志,2008,28(1):3-7.
    [53]Herholz K, Salmon E, Perani D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET[J]. Neuroimage,2002,17(1):302-316.
    [54]Sakamoto S, Ishii K, Sasaki M, et al. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer's disease[J]. J Neurol Sci,2002,200(1-2):27-32.
    [55]Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD[J]. Eur J Nucl Med Mol Imaging,2005,32(4):486-510.
    [56]Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias[J]. J Nucl Med,2008,49(3):390-398.
    [57]Patwardhan MB, McCrory DC, Matchar DB, et al. Alzheimer disease: operating characteristics of PET--a meta-analysis[J]. Radiology,2004, 231(1):73-80.
    [58]Langbaum JB, Chen K, Lee W, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer's Disease Neuroimaging Initiative (ADNI)[J]. Neuroimage,2009,45(4):1107-1116.
    [59]Del Sole A, Clerici F, Chiti A, et al. Individual cerebral metabolic deficits in Alzheimer's disease and amnestic mild cognitive impairment: an FDG PET study[J]. Eur J Nucl Med Mol Imaging,2008,35(7):1357-1366.
    [60]李祖贵,高硕,蔡莉,等.SPM与ROI法用于AD患者18F-FDG PET脑显像[J].中华核医学杂志,2007,27(6):377-377.
    [61]Wu X, Chen K, Yao L, et al. Assessing the reliability to detect cerebral hypometabolism in probable Alzheimer's disease and amnestic mild cognitive impairment[J]. J Neurosci Methods,2010,192(2):277-285.
    [62]Ishii K, Sasaki H, Kono AK, et al. Comparison of gray matter and metabolic reduction in mild Alzheimer's disease using FDG-PET and voxel-based morphometric MR studies [J]. Eur J Nucl Med Mol Imaging,2005, 32(8):959-963.
    [63]Clerici F, Del Sole A, Chiti A, et al. Differences in hippocampal metabolism between amnestic and non-amnestic MCI subjects:automated FDG-PET image analysis [J]. Q J Nucl Med Mol Imaging,2009,53(6):646-657.
    [64]Chetelat G, Eustache F, Viader F, et al. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment[J]. Neurocase, 2005,11(1):14-25.
    [65]Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD:results from ADNI[J]. Neuroimage,2009, 44(4):1415-1422.
    [66]Karas G, Sluimer J, Goekoop R, et al. Amnestic mild cognitive impairment:structural MR imaging findings predictive of conversion to Alzheimer disease[J]. AJNR Am J Neuroradiol,2008,29(5):944-949.
    [67]Risacher SL, Saykin AJ, West JD, et al. Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort[J]. Curr Alzheimer Res,2009,6(4):347-361.
    [68]Devanand DP, Pradhaban G, Liu X, et al. Hippocampal and entorhinal atrophy in mild cognitive impairment:prediction of Alzheimer disease [J]. Neurology,2007,68(11):828-836.
    [69]Fritzsche KH, Stieltjes B, Schlindwein S, et al. Automated MR morphometry to predict Alzheimer's disease in mild cognitive impairment[J]. Int J Comput Assist Radiol Surg.
    [70]Jack CR, Jr., Shiung MM, Weigand SD, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI[J]. Neurology,2005,65(8):1227-1231.
    [71]Teipel SJ, Born C, Ewers M, et al. Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment [J]. Neuroimage,2007,38(1):13-24.
    [72]Chao LL, Buckley ST, Kornak J, et al. ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia[J]. Alzheimer Dis Assoc Disord,2010,24(1):19-27.
    [73]Fayed N, Davila J, Oliveros A, et al. Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia[J]. Acad Radiol,2008,15(9):1089-1098.
    [74]Messa C, Perani D, Lucignani G, et al. High-resolution technetium-99m-HMPAO SPECT in patients with probable Alzheimer's disease: comparison with fluorine-18-FDG PET[J]. J Nucl Med,1994,35(2):210-216.
    [75]Caroli A, Testa C, Geroldi C, et al. Cerebral perfusion correlates of conversion to Alzheimer's disease in amnestic mild cognitive impairment [J]. J Neurol,2007,254(12):1698-1707.
    [76]Diniz BS, Pinto Junior JA, Forlenza 0V. Do CSF total tau, phosphorylated tau, and beta-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer's disease? A systematic review and meta-analysis of the literature[J]. World J Biol Psychiatry,2008, 9(3):172-182.
    [77]Morinaga A, Ono K, Ikeda T, et al. A comparison of the diagnostic sensitivity of MRI, CBF-SPECT, FDG-PET and cerebrospinal fluid biomarkers for detecting Alzheimer's disease in a memory clinic[J]. Dement Geriatr Cogn Disord,2010,30(4):285-292.
    [78]Morbelli S, Piccardo A, Villavecchia G, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI:a voxel-based MRI and FDG-PET study[J]. Eur J Nucl Med Mol Imaging,2010, 37(1):36-45.
    [79]Walhovd KB, Fjell AM, Brewer J, et al. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease[J]. AJNR Am J Neuroradiol,2010, 31(2):347-354.
    [80]Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment:a meta-analysis[J]. AJNR Am J Neuroradiol, 2009,30(2):404-410.
    [81]Karow DS, McEvoy LK, Fennema-Notestine C, et al. Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease[J]. Radiology,2010, 256(3):932-942.
    [82]Jhoo JH, Lee DY, Choo IH, et al. Discrimination of normal aging, MCI and AD with multimodal imaging measures on the medial temporal lobe[J]. Psychiatry Res,2010,183(3):237-243.
    [83]Uemura T, Ishii K, Miyamoto N, et al. Computer-Assisted System for Diagnosis of Alzheimer Disease using Data Base--Independent Estimation and Fluorodeoxyglucose--Positron Emission Tomography and 3D-Stereotactic Surface Projection[J]. AJNR Am J Neuroradiol.2011, 32(3):556-559.
    [84]Walhovd KB, Fjell AM, Dale AM, et al. Multi-modal imaging predicts memory performance in normal aging and cognitive decline[J]. Neurobiol Aging,2010,31(7):1107-1121.
    [85]Cho ZH, Son YD, Kim HK, et al. Substructural hippocampal glucose metabolism observed on PET/MRI[J]. J Nucl Med,2010,51(10):1545-1548.
    [86]Archer HA, Edison P, Brooks DJ, et al. Amyloid load and cerebral atrophy in Alzheimer's disease:an 11C-PIB positron emission tomography study[J]. Ann Neurol,2006,60(1):145-147.
    [87]Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B[J]. Ann Neurol,2004, 55(3):306-319.
    [88]Li Y, Rinne JO, Mosconi L, et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer's disease [J]. Eur J Nucl Med Mol Imaging,2008, 35(12):2169-2181.
    [89]Jack CR, Jr., Lowe VJ, Senjem ML, et al.11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment[J]. Brain,2008,131(Pt 3):665-680.
    [90]Minoshima S, Giordani B, Berent S, et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease [J]. Ann Neurol,1997,42(1):85-94.
    [91]Gusnard DA, Raichle ME. Searching for a baseline:functional imaging and the resting human brain[J]. Nat Rev Neurosci,2001, 2(10):685-694.
    [92]Engler H, Santillo AF, Wang SX, et al. In vivo amyloid imaging with PET in frontotemporal dementia [J]. Eur J Nucl Med Mol Imaging,2008, 35(1):100-106.
    [93]Forsberg A, Engler H, Almkvist 0, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment [J]. Neurobiol Aging, 2008,29(10):1456-1465.
    [94]Devanand DP, Mikhno A, Pelton GH, et al. Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18 F-FDG) PET in patients with Alzheimer disease, mild cognitive impairment, and healthy controls[J]. J Geriatr Psychiatry Neurol,2010,23(3):185-198.
    [95]Kemppainen NM, Aalto S, Wilson IA, et al. Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease[J]. Neurology, 2006,67 (9):1575-1580.
    [96]Kemppainen NM, Aalto S, Wilson IA, et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment [J]. Neurology, 2007,68(19):1603-1606.
    [97]Markesbery WR, Schmitt FA, Kryscio RJ, et al. Neuropathologic substrate of mild cognitive impairment[J]. Arch Neurol,2006, 63(1):38-46.
    [98]Shin J, Lee SY, Kim SH, et al. Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer's disease[J]. Neuroimage,2008,43(2):236-244.
    [99]Shin J, Lee SY, Kim SJ, et al. Voxel-based analysis of Alzheimer's disease PET imaging using a triplet of radiotracers:PIB, FDDNP, and FDG[J]. Neuroimage,2010,52(2):488-496.
    [100]Teune LK, Bartels AL, de Jong BM, et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases[J]. Mov Disord,2010, 25(14):2395-2404.
    [101]Kalaitzakis ME, Walls AJ, Pearce RK, et al. Striatal Abeta peptide deposition mirrors dementia and differentiates DLB and PDD from other Parkinsonian syndromes[J]. Neurobiol Dis,2011,41(2):377-384.
    [102]Le Ber I, Guedj E, Gabelle A, et al. Demographic, neurological and behavioural characteristics and brain perfusion SPECT in frontal variant of frontotemporal dementia[J]. Brain,2006,129(Pt 11):3051-3065.
    [103]Dobert N, Pantel J, Frolich L, et al. Diagnostic value of FDG-PET and HMPAO-SPET in patients with mild dementia and mild cognitive impairment:metabolic index and perfusion index[J]. Dement Geriatr Cogn Disord,2005,20(2-3):63-70.
    [104]Charpentier P, Lavenu I, Defebvre L, et al. Alzheimer's disease and frontotemporal dementia are differentiated by discriminant analysis applied to (99m)Tc HmPAO SPECT data[J]. J Neurol Neurosurg Psychiatry, 2000,69(5):661-663.
    [105]Ishii K. Clinical application of positron emission tomography for diagnosis of dementia[J]. Ann Nucl Med,2002,16(8):515-525.
    [106]McMurtray AM, Chen AK, Shapira JS, et al. Variations in regional SPECT hypoperfusion and clinical features in frontotemporal dementia[J]. Neurology,2006,66(4):517-522.
    [107]Rabinovici GD, Furst AJ, O'Neil JP, et al.11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration[J]. Neurology, 2007,68(15):1205-1212.
    [108]王瑞民,田嘉禾,贾建军,等.阿尔茨海默病与血管性痴呆的18F—FDG PET脑显像[J].中华核医学杂志,2004,24(1):30-32,i002.
    [109]Johnson KA, Gregas M, Becker JA, et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy[J]. Ann Neurol,2007, 62(3):229-234.
    [110]Villemagne VL, Pike K, Pejoska S, et al. 11C-PiB PET ABri imaging in Worster-Drought syndrome (familial British dementia):a case report [J]. J Alzheimers Dis,2010,19(2):423-428.
    [111]Mathis CA, Lopresti BJ, Klunk WE. Impact of amyloid imaging on drug development in Alzheimer's disease[J]. Nucl Med Biol,2007, 34(7):809-822.
    [112]Rinne JO, Brooks DJ, Rossor MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab:a phase 2, double-blind, placebo-controlled, ascending-dose study[J]. Lancet Neurol,2010, 9(4):363-372.
    [1]Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population:potential antecedent marker of Alzheimer disease[J]. Neurology,2006,67(3):446-452.
    [2]Ng S, Villemagne VL, Berlangieri S, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease[J]. J Nucl Med,2007,48(4):547-552.
    [3]Gomperts SN, Rentz DM, Moran E, et al. Imaging amyloid deposition in Lewy body diseases[J]. Neurology,2008,71(12):903-910.
    [4]Villemagne VL, Pike KE, Darby D, et al. Abeta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease[J]. Neuropsychologia,2008, 46(6):1688-1697.
    [5]Engler H, Santillo AF, Wang SX, et al. In vivo amyloid imaging with PET in frontotemporal dementia[J]. Eur J Nucl Med Mol Imaging,2008, 35(1):100-106.
    [6]Devanand DP, Mikhno A, Pelton GH, et al. Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18 F-FDG) PET in patients with Alzheimer disease, mild cognitive impairment, and healthy controls [J]. J Geriatr Psychiatry Neurol,2010,23(3):185-198.
    [7]Mosconi L, Rinne JO, Tsui WH, et al. Increased fibrillar amyloid- {beta} burden in normal individuals with a family history of late-onset Alzheimer's[J]. Proc Natl Acad Sci U S A,2010, 107(13):5949-5954.
    [8]Klunk WE, Price JC, Mathis CA, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees[J]. J Neurosci,2007,27(23):6174-6184.
    [9]Koivunen J, Verkkoniemi A, Aalto S, et al. PET amyloid ligand [11C]PIB uptake shows predominantly striatal increase in variant Alzheimer's disease[J]. Brain,2008,131 (Pt 7):1845-1853.
    [10]Rinne JO, Brooks DJ, Rossor MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab:a phase 2, double-blind, placebo-controlled, ascending-dose study[J]. Lancet Neurol,2010, 9(4):363-372.
    [11]Kemppainen NM, Aalto S, Wilson IA, et al. PET amyloid ligand [C-11]PIB uptake is increased in mild cognitive impairment [J]. Neurology, 2007,68(19):1603-1606.
    [12]Forsberg A, Engler H, Almkvist 0, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment [J]. Neurobiol Aging, 2008,29(10):1456-1465.
    [13]Rabinovici GD, Furst AJ, O'Neil JP, et al.11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration[J]. Neurology, 2007,68(15):1205-1212.
    [14]Johansson A, Savitcheva I, Forsberg A, et al. [C-11]-PIB imaging in patients with Parkinson's disease:Preliminary results[J]. Parkinsonism & Related Disorders,2008,14(4):345-347.
    [15]Burack MA, Hartlein J, Flores HP, Taylor-Reinwald L, Perlmutter JS, Cairns NJ. In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia[J]. Neurology,2010,74(1):77-84.
    [16]Mok V, Leung EY, Chu W, et al. Pittsburgh compound B binding in poststroke dementia[J]. J Neurol Sci,2010,290(1-2):135-137.
    [17]Boxer AL, Rabinovici GD, Kepe V, et al. Amyloid imaging in distinguishing atypical prion disease from Alzheimer disease[J]. Neurology,2007,69(3):283-290.
    [18]Villemagne VL, McLean CA, Reardon K, et al. 11C-PiB PET studies in typical sporadic Creutzfeldt-Jakob disease [J]. J Neurol Neurosurg Psychiatry,2009,80(9):998-1001.
    [19]Johnson KA, Gregas M, Becker JA, et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy[J]. Ann Neurol,2007, 62(3):229-234.
    [20]Ly JV, Donnan GA, Villemagne VL, et al.11C-PIB binding is increased in patients with cerebral amyloid angiopathy-related hemorrhage[J]. Neurology,2010,74(6):487-493.
    [21]Villemagne VL, Pike K, Pejoska S, et al. 11C-PiB PET ABri imaging in Worster-Drought syndrome (familial British dementia):a case report [J]. J Alzheimers Dis,2010,19(2):423-428.
    [22]Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD:results from ADNI[J]. Neuroimage,2009, 44(4):1415-1422.
    [23]Karas G, Sluimer J, Goekoop R, et al. Amnestic mild cognitive impairment:structural MR imaging findings predictive of conversion to Alzheimer disease[J]. AJNR Am J Neuroradiol,2008,29(5):944-949.
    [24]Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC. Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort[J]. Curr Alzheimer Res,2009,6(4):347-361.
    [25]Devanand DP, Pradhaban G, Liu X, et al. Hippocampal and entorhinal atrophy in mild cognitive impairment:prediction of Alzheimer disease [J]. Neurology,2007,68(11):828-836.
    [26]Fritzsche KH, Stieltjes B, Schlindwein S, et al. Automated MR morphometry to predict Alzheimer's disease in mild cognitive impairment [J]. Int J Comput Assist Radiol Surg,2010,5(6):623-632.
    [27]Jack CR, Jr., Shiung MM, Weigand SD, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI[J]. Neurology,2005,65(8):1227-1231.
    [28]Teipel SJ, Born C, Ewers M, et al. Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment[J]. Neuroimage,2007,38(1):13-24.
    [29]Chao LL, Buckley ST, Kornak J, et al. ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia[J]. Alzheimer Dis Assoc Disord,2010,24(1):19-27.
    [30]Fayed N, Davila J, Oliveros A, Castillo J, Medrano JJ. Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia[J]. Acad Radiol,2008, 15(9):1089-1098.
    [31]Caroli A, Testa C, Geroldi C, et al. Cerebral perfusion correlates of conversion to Alzheimer's disease in amnestic mild cognitive impairment[J]. J Neurol,2007,254(12):1698-1707.
    [32]Diniz BS, Pinto Junior JA, Forlenza OV. Do CSF total tau, phosphorylated tau, and beta-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer's disease? A systematic review and meta-analysis of the literature[J]. World J Biol Psychiatry,2008, 9(3):172-182.
    [33]Morbelli S, Piccardo A, Villavecchia G, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI:a voxel-based MRI and FDG-PET study[J]. Eur J Nucl Med Mol Imaging,2010, 37(1):36-45.
    [34]Walhovd KB, Fjell AM, Brewer J, et al. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease[J]. AJNR Am J Neuroradiol,2010, 31(2):347-354.
    [35]Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment:a meta-analysis[J]. AJNR Am J Neuroradiol, 2009,30(2):404-410.
    [36]Okello A, Koivunen J, Edison P, et al. Conversion of amyloid positive and negative MCI to AD over 3 years:an 11C-PIB PET study[J]. Neurology,2009,73(10):754-760.
    [37]Koivunen J, Pirttila T, Kemppainen N, et al. PET amyloid ligand [11C]PIB uptake and cerebrospinal fluid beta-amyloid in mild cognitive impairment[J]. Dement Geriatr Cogn Disord,2008,26(4):378-383.
    [38]Tolboom N, van der Flier WM, Yaqub M, et al. Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding[J]. J Nucl Med,2009,50(9):1464-1470.
    [39]Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans[J]. Ann Neurol,2006,59(3):512-519.
    [40]Lorenzi M, Donohue M, Paternico D, et al. Enrichment through biomarkers in clinical trials of Alzheimer's drugs in patients with mild cognitive impairment[J]. Neurobiol Aging,2010,31 (8):1443-1451.
    [41]Gao M, Wang M, Hutchins GD, Zheng QH. [(11)C]Dimebon, radiosynthesis and lipophilicity of a new potential PET agent for imaging of Alzheimer's disease and Huntington's disease [J]. Bioorg Med Chem Lett, 2010,20(8):2529-2532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700