轻集料—基体协同作用对混凝土性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻集料可以改善混凝土的轻质、抗渗、抗震等性能,饱水轻集料的“内养护”作用还可以有效地降低高性能混凝土的自收缩,但是轻集料密度较小、强度较低、吸水性较大的特点,使轻集料与基体间的作用方式与普通集料明显不同,可能会对混凝土的工作性、均匀性、强度、收缩等产生不利影响。因此,从轻集料与基体之间协同作用的角度出发,研究轻集料-基体之间的水分传输、强度协调和密度协调的作用规律与对混凝土性能的影响,有利于充分发挥轻集料在混凝土中的作用。课题主要从轻集料-基体间的水分传输、强度协调和密度协调三方面研究了对混凝土性能的影响,并针对一些不利影响提出了相应的解决技术途径。
     首先,研究了混凝土拌合过程中轻集料-基体之间,特别是在压力作用时,水分传输特性及混凝土工作性。试验采用压力泌水仪对混凝土拌合物施加压力作用,然后将混凝土拌合物中的轻集料和水泥浆体分离出来,测试了轻集料的含水率和水泥浆体的水灰比,通过轻集料和水泥浆体的含水变化反映轻集料-基体水分传输作用,并测试了压力下的混凝土拌合物的体积变化情况。结果显示,压力作用下轻集料-基体的水分传输更明显,同时会使混凝土拌合物存在较明显的体积压缩现象,轻集料饱水处理后,压力作用下水分传输量和体积压缩量都明显减少;压力作用后混凝土的工作性会显著降低。
     试验还研究了混凝土水化硬化中轻集料-基体水分传输对收缩性能的影响。在低水灰比条件下,采用饱水轻集料和膨胀剂复合使用,对比了与单独使用时的减缩效果,并结合混凝土内部相对湿度和XRD图谱分析复合使用时的减缩机理。结果表明,单独使用饱水轻集料或膨胀剂对干燥收缩的减缩效果不明显,甚至干燥收缩还会增加,通过饱水轻集料与膨胀剂复合使用,可以显著提升减缩效果;饱水轻集料和膨胀剂复合使用时,混凝土内部湿度相对较高,膨胀剂的反应程度提高。
     其次,研究了轻集料-基体的强度与密度协调作用对混凝土强度的影响。试验通过调整基体的水灰比控制基体强度,然后采用不同强度轻集料和不同强度基体搭配配制混凝土。结果表明,采用强度较低的轻集料时,通过提高基体强度来提高混凝土强度的方法并不可行。同时,试验在相同水灰比条件下,通过调整不同类型陶粒和陶砂的搭配,发现在基本保持混凝土同等密度下,合理协调搭配陶粒和陶砂,混凝土强度可较为明显地提高。试验还研究了轻集料-基体的密度协调作用对混凝土强度的影响,发现轻集料-基体间的密度差值越大,轻集料的上浮分层会使混凝土强度明显降低,并且在垂直方向比侧向强度降低程度更大。
     另外,针对超轻轻集料混凝土中轻集料-基体间的水分传输作用更明显,强度、密度差异更大,对混凝土的工作性、强度的不利影响较突出的问题,考虑轻集料-基体之间的水分传输、强度和密度的协同作用,提出高水灰比配制超轻轻集料混凝土的技术途径。试验采用不同密度的陶粒和陶砂配制超轻轻集料混凝土,研究随水灰比增加轻集料混凝土坍落度损失、轻集料分层度以及强度与密度关系的变化,并研究高水灰比对轻集料混凝土收缩和吸水性的影响。结果显示,提高水灰比能明显降低轻集料混凝土的坍落度损失与轻集料分层度;采用表观密度738kg/m~3的陶粒以及破碎后制备的陶砂,水灰比0.75时,配制了干密度低于900kg/m~3,28d抗压强度为14MPa左右的超轻轻集料混凝土;高水灰比轻集料混凝土收缩和吸水性可控制在相对较低范围内。结果还表明,采用的轻集料越轻,水灰比增加幅度应越大,不仅可以显著降低轻集料混凝土的坍落度损失和轻集料上浮,还能较大幅度降低混凝土密度下保持较高强度。实际工程应用也表明,高水灰比方法生产超轻轻集料混凝土用于楼面保温工程有较好的技术经济优势。
     研究结果显示,轻集料应用于混凝土时,不应仅仅着眼于某一方面性能的改善,应综合考虑轻集料-基体间水分传输、强度、密度等多因素的协同作用以及对混凝土各方面性能的影响,才能更有效地发挥轻集料的有利作用,同时降低可能带来的不利影响。
A lighter, less water-permeable and higher earthquake-resistant concrete can beproduced by using light weight aggregate (LWA). Meanwhile, the autogenous shrinkageof high performance concrete can be mitigated by the internal curing effect induced bysaturated LWA. However, the interaction between LWA and concrete matrix in LWAconcrete is obviously different from that in concrete made of ordinary aggregatebecause of the lower density, lower mechanical property and high water-absorbingcapacity of LWA, leading to adverse influences on the workability, homogeneity,strength development and volume stability of concrete. Therefore, a study ofwater-transfer, mechanical property coordination and density coordination betweenLWA and concrete matrix based on the interaction of the two is of great importancewhen making good use of the advantages of LWA on concrete. The influence ofwater-transfer, strength coordination and density coordination between LWA andconcrete matrix on the performance of concrete was studied in this work and sometechniques were proposed to tackle with the adverse influences.
     Firstly, the water-transfer action between LWA and concrete matrix, as well as theworkability of concrete mixture was studied under normal and extra-pressure. LWA andcement paste of LWA-concrete were separated by using pressure bleeding instrumentand the water-transfer action between LWA and concrete matrix was illustrated by thealternation of water content of LWA and cement paste. The volume variance of concretemixture under pressure was measured as well. It is shown that more water transfersfrom concrete matrix to LWA under pressure and concrete volume has been remarkablyreduced as well, but the variations are less noticeable when LWA is pre-saturated. It isalso shown that concrete workability is remarkably reduced when extra-pressure isapplied.
     The influence of water-transfer action between LWA and concrete matrix on thevolume stability of concrete during hydration and hardening processes was studied. Andthe shrinkage-reducing effects of saturated-LWA and expanding agent were investigatedunder the unique and combined usage at a low water-to-binder ratio. Furthermore, theshrinkage-reducing mechanism was analyzed through concrete internal humiditymeasurement and XRD spectrum investigation. It reveals that no good drying shrinkage-reducing effect is seen when the saturated-LWA and expanding agent is solelyused if no increase in drying shrinkage is shown, however, the shrinkage-reducing effectis remarkably improved when the two are incorporated together, which leads to a higherinternal humidity of concrete and a greater hydration degree of expanding agent.
     Secondly, the coordination effects of mechanical property, as well as bulk densityof LWA and concrete matrix was studied. Concrete matrixes with various mechanicalproperties were made by altering water-to-cement ratio, and then they were mixed withLWAs of various mechanical properties. Results show that it is not practicable toimprove the mechanical property of concrete by increasing the mechanical property ofconcrete matrix when LWA of low mechanical property is used. It also shows that themechanical property of concrete can be significantly improved by optimizing thecompatibility of coarse and fine expanded shale under a comparable density when aconstant water-to-cement ratio is applied. Effect of density coordination of LWA andconcrete matrix on the compressive strength of concrete was also studied and it revealsthat a greater variance of bulk density of LWA and concrete matrix results in a moresignificant reduction of compressive strength resulting from segregation of concretecomponents and the strength loss is more significant in the vertical direction than that inthe lateral direction.
     Considering a greater water-transfer action between LWA and concrete matrix inthe ultra-light LWA concrete and greater variances of the strength and bulk density ofthe two will induce greater adverse side effects on the workability and mechanicalproperty of ultra-light LWA concrete, a new technical way was proposed to produceultra-light LWA concrete, in which a high water-to-cement ratio was used byconsidering the synergic actions of water-transfer, mechanical property and bulk densityof LWA and concrete matrix. Various types of LWA were used to prepare concrete.Variations of the slump loss, segregation of LWA, relationship between strength anddensity of the concrete with the water-to-cement ratio were investigated. The shrinkageand water absorption of the concrete with higher water-to-cement ratio were tested. It isshown that increasing the water-cement ratio reduces the segregation of lightweightaggregate and slump loss of the concrete; when W/C is0.75, a lightweight aggregateconcrete with bulk density of less than900kg/m~3and compressive strength of14MPa isobtained by using a coarse expanded shale with apparent density of738kg/m~3andresulting fine aggregate by crushing. The shrinkage and water absorption of lightweight aggregate concrete, prepared by using higher W/C, are within an acceptable range. It issuggested that the lighter the lightweight aggregate, the higher the W/C, the less thesegregation of the aggregate and slump loss of the concrete, and the higher the retainedstrength. It has been proved that there are great technical and economic advantages ofutilizing ultra-light LWA concrete on floor insulation works in practical engineeringapplications.
     It is concluded from the results that the advantages of LWA on concrete can bemore effectively achieved by considering both the coordination actions of water-transfer,strength and bulk density between LWA and concrete matrix and their influences on theperformance of concrete, rather than a mere focus on one certain property. Moreover,the disadvantages can be mitigated as well.
引文
[1] Ramazan Demirboga, Ru stem Gul. The effects of expanded perlite aggregate, silica fume andfly ash on the thermal conductivity of lightweight concrete[J]. Cement and Concrete Research,2003,(33):723–727
    [2] FARRAN J. The transition zone discovery and development[C]. Interfacial transition zone inConcrete, RILEM Report. London,1996,17-22.
    [3] SHAH S P, LI Z, LANGE D A. Properties of aggregate-cement interface for high performanceconcrete[C]. Proceedings of Engineering Mechanics, New York,1992:852-855.
    [4] VRETON D, CARLES-GIBERGUES A, BALLIVY Getc. Contribution to the formationmechanism of the transition zone between rock-cement paste[J]. Ecm Concr Res,1993,23(2):335-346.
    [5] METHA P K, Hardened cement paste-microstructure and tis relationship to properties[A]. InProceedings of8th Enternational Congress on the Chemistry of Cement[C]. Vol I. Rio deJaneiro: Finep,1986,113-121.
    [6]刘峥,凌志达,唐明述.水泥石-白云石集料界面的显微结构[J].硅酸盐学报,1986,14(4):400-405.
    [7] ZAMPINI D, SHAH S P. Early age microstructure of the paste-aggregate interface and itsevolution[J]. J Mater Res,1998,13(7):1888-1898.
    [8] ZAMPINI D, SHAH S P. Early age microstructure of the paste-aggregate interface and itsevolution[J]. Journal of Materials Research,1998,13(7):1888-1898.
    [9] BENTUR A, OLDER I. Development and nature of interfacial microstructure[R]. InterfacialTransition Zone in Concrete. RILEM ReportⅡ, London,1996:18-44.
    [10]解松善.水泥基复合材料中界面粘结的研究[J].硅酸盐学报,1983,11(4):489-497.
    [11]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [12]陈惠苏,孙伟, Stroeven Pie.计算混凝土中平均最邻近集料表面间距的正十二面体模型[J].硅酸盐学报,2003,31(11):1048-1052.
    [13]陈惠苏,孙伟,赵庆新.混凝土中邻近集料表面最近间距分布的计算机模拟[J].硅酸盐学报,2004,32(4):429-435.
    [14] LAGERBLAD B, KJELLSEN K O. Effect of mineralogy of filler on cementhydration[C]//The Modelling of Microstructure and Its Potential for Studying TransportProperties and Durability. Dordrecht: Kluwer Academic Publisher,1996:157-165.
    [15] SHENY, XUZ, XIEP. A new method of enhancing cement-aggregate interfaces: An idealaggregate and its effects on interfacial microstructures[J]. Cement Concrete Research,1992,22(4):612-618.
    [16] ALEXANDER M G. Two experimental techniques for studying the effects of the interfacialzone between cement paste and rock[J]. Cement Concrete Research,1993,23(3):567-575.
    [17] ALEXANDER M G. Aggregate and the deformation properties of concrete[J]. Journal of ACIMaterial,1996,93(6):569-577.
    [18] TANDNGW A, LYNSDALECL, CRIPPSJ C. Aggregatecement chemical interactions[J].Cement Concrete Research,1998,28(7):1037-1048.
    [19] BENTZ D P, GARBOCZI E J. Experimental and simulation studies of the interface zone inconcrete[J]. Cement Concrete Research,1992,22(5):891-902.
    [20] BENTZ D P, GARBOCZI E J. Experimental and simulation studies of the interface zone inconcrete[J]. Cement Concrete Research,1992,22(5):891-902.
    [21] SCRIVENER K L. Characterization of the ITZ and its quantification by test methods[C]Enginering and Transport Properties of the Interfacial Transition Zone in CementitiousComposites. Cachan,1999:3-15.
    [22] TRENDE U, BUYUKOZTURK O. Size effect and influence of aggregate roughness oninterface fracture of concrete composites[J]. ACI Materials Journal,1998,95(4):331-338.
    [23] STROEVEN P, STROEVEN M. Reconstructions by space of the interfacial transitionzone[J]. Cement Concrete Composites,2001,23(2):189-200.
    [24] GARBOCZI E J, BENTZ D P, DIGITA J. Simulation of the aggregate-cement pasteinterfacial zone in concrete[J]. Journal of Material Research,1991,6:196.
    [25] ALEXANDER M G. Two esperimental techniques for studying the effects of the interfacialzone between enment paste and rock[J]. Cem Concr Res,1997,27(7):1117-1122.
    [26] VAN MIER, J G M, VERVUURT A. Numerical analysis of interface fracture in concreteusing a lattice-type fracture model[J]. International Journal of Damage Mechanics,1997,6(4):408-432.
    [27] LEE, KWANG-MYONG, BUYUKOZTURK, ORAL. Fracture toughness ofmortar-aggregate interface in high strength concrete[J]. ACI Materials Journal,1995,92(6):634-642.
    [28]陈惠苏,孙伟, Stroeven Pie.水泥基复合材料界面对材料宏观性能的影响[J].建筑材料学报,2005,8(1):51-62.
    [29]张君,王林,孙明,等.粗细骨料比例和水泥石强度对混凝土断裂参数的影响[J].工程力学,2004,21(1):136-142.
    [30]周明凯,王稷良,关爱军.辉绿岩混凝土的强度与界面特征研究[J].武汉理工大学学报,2004,26(3):40-43.
    [31] BERGER R L, CAHN D S, McGregor J D. Calcium hudroxide as a binder in protlandcement paste[J]. J Am Ccrem Soc,1970,53(1):57-58.
    [32] METHA P K. Hardened cement paste-microstructure and its relationship to properties[A]. InProceedings of8th International Conress on the Chemistry of Cement[C]. Vol I. Rio d janeiro:Finep,1986,113-121
    [33] De ROOIJ MR. Syneresis in cement paste systems[D]. Delft: Delfu University Press,2000,83.
    [34]水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成、劣化机理及其影响因素[J].硅酸盐学报,2004,32(1):70-78.
    [35] EENTZ DP, GARBOCZI E J, HAECKER C J, et al. Effects of cement particle sizedistribution on performance properties of Portland cement based materials[J]. Cem ConcrRes,1999,29(0):1663-1671.
    [36] LARBI J A. The cement paste-aggregate interfacial zone in concrete[D]. Delfr: DelftUniversity Press,1991,127.
    [37]夏佩芬,王培铭,李平江,等.混合材料与水泥浆体界面的形貌特征[J].硅酸盐学报,1997,25(36):738-742.
    [38] NILSEN U, SANDBERG P, FOLLIARD K. Influence of Mineral Admixtures on theTransition Zone in Concrete[A] In: MASO JC ed. Interfacial Transition Zone inComposites[C]. RILEM Porceedings18, London: E and FN SPON,1992,65-70.
    [39]马一平.提高水泥石-集料界面粘结强度的研究[J].建筑材料学报,1999,2(1):29-32.
    [40] KIM J H, ROBERTOSN R E. Effect of polyvinyl alcohol on aggregate-paste bond strengthand the interfacial transition zone[J]. Adv Cem Based Mater,1998,8(2):66-76.
    [41]李雯霞.轻集料混凝土界面研究[J].建筑节能,2009,3:37-40.
    [42] Bentz DP, Stutzman PE. Internal curing and microstructure of high performance mortars,ACI SP-256. Internal curing of high performance concretes: laboratory and field experiences.American Concrete Institute, Farmington Hills, MI;2008. p.81–90.
    [43]胡曙光,王发洲,丁庆军.轻集料与水泥石的界面结构[J].硅酸盐学报,2005,33(6):713-717.
    [44] ZHANG M H, GJORV O E. Microstructure of the interfacial zone between lightweightaggregate and cement paste[J]. Cem Concr Res,1990,20(4):610–618.
    [45] Pietro Lura. Autogenous deformation and internal curing of concrete[D]. Delft:Delftuniversity of Technology,2003.
    [46] D. P. Bentz, K. K Hansen. Preliminary observations of water movement in cement pastesduring curing using X-ray absorption[J]. Cem Concr Res,2000,30(7):1157-1168.
    [47] Dale P. Bentz. Influence of internal curing using lightweight aggregates on interfacialtransition zone percolation and chloride ingress in mortars[J]. Cement&ConcreteComposites,2009,31:285-289.
    [48]王发洲,周斌,彭艳洲等.轻集料与水泥石界面区元素分布特征研究[J].武汉理工大学学报,2005,27(3):30-33.
    [49] Kok Seng Chia, Min-Hong Zhang. Water permeability and chloride penetrability ofhigh-strength lightweight aggregate concrete[J]. Cement and Concrete Research,2002,32:639–645.
    [50]丁以兵.高性能混凝土自养护研究[D].合肥:合肥工业大学,2006.
    [51]吴文选.内养护棍凝土的微观结构及其性能研究[D].武汉理工大学,2010.
    [52] SHIDELER J J. Lightweight-aggregate concrete for structural use[J]. ACI JournalProceedings,1957,54(4):68-75.
    [53] PHILLEO R. Concrete science and reality. In: J. P. Skalny, S. Mindess(Eds.), MaterialsScience of Concrete[M]. American Ceramic Society,1991:1-8.
    [54] Intemal Curing of Concrete(RILEM TC-ICC2003). RILEM Technical Committee
    [55]李悦,谈慕华,张雄等.混凝土的自收缩及其研究进展[J].建筑材料学报,2000,3(3):252-257.
    [56] LO T Y, H. Z. C. Effect of porous lightweight aggregate on strength of concrete[J]. MaterialsLetters,2004,(58):916-919.
    [57] YANG Q B. Inner relative humidity and degree of saturation in high-performance concretestored in water or salt solution for2years[J]. Cement and Concrete Research,1999.29:45-53.
    [58] POWERS T C. The none vapor able water content of hardened Portland cement paste-itssignificance for concrete research and its method of determination[J]. ASTM Bulletin,1949(158):68-76.
    [59]阎培渝,廉慧珍,覃肖.使用膨胀剂配制补偿收缩混凝土时需要注意的几个问题[J].硅酸盐学报,2000,12(28):42-44.
    [60] Johannes Lura. Autogenous deformation and internal curing of concrete,2003:175-176.
    [61] Bentz D P, Snyder K A. Protected Paste Volume in Concrete. Extension to Internal CuringUsing Saturated Lightweight Fime Aggregate[J]. Cement and Concrete Research,1999,29:1863-1867.
    [62] JENSEN O M, HANSEN P F. Water-entrained cement-based materials-I. Principle andtheoretical background [J]. Cem Concr Res,2001,31:647-654.
    [63]周宇飞.内养护混凝土的微观结构及其性能研究[D].武汉理工大学,2010.
    [64] High Performance Concrete: Low Shrinkage Concrete.
    [65]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [66] K. Kohno, T. Okamoto, Y. Isikawa, et al. Effects of artificial lightweight aggregate onautogenous shrinkage of concrete[J]. Cement and Concrete Research,1999,29(4):611-614.
    [67] K. Kohno, T. Okamoto, Y.Isikawa, et al. Effects of artificial lightweight aggregate onautogenous shrinkage of concrete[J]. Cement and Concrete Research,1999,29(4):611-614.
    [68] CASTROJ, DE LA VARGA I, GOLIAS M, et al. Extending internal curing concepts tomixtures containing high volumes of fly ash[C]. Proceeding of the National Concrete BridgeConference, Phoenix,2010.
    [69] HENKENSIEFKEN R, CASTRO J, et al. Water absorption in internally crured mortar madewith water-filled lightweight
    [70] Geiker M R, Bentz D P, Jensen O M, Mitigating autogenous shrinkage by internal curing[J] J.P. Ries, T. A. Holm, ACI SP-218, High Performance Structural Lightweight concrete,American Concrete Institute, Farmington Hills, MI,2004,143-154.
    [71] KOHNO K, OKAMOTO T. Effects of artificial lihght weight aggregate on autogenousshrinkage of concrete[J]. Cement and Concrete Research,1999,29(4):611-619.
    [72] CUSSON D, HOOGEVEEN T. Internal curing of high-performance concrete withpre-soaked fine lightweight aggergate for prevention of autogenous shrinkage cracking[J].Cement and Concrete Research,2008,38(6):757-765.
    [73] AKCAY B, TASDEMIR M A. Optimisation of using lightweight aggregates in mitigatingautogenous deformation of concrete[J]. Construction and Building Materials,2009,23(1):353-363.
    [74]董淑惠,张宝生,葛勇等.轻集料对混凝土内养护减缩效率的影响[J].硅酸盐学报,2009,37:252-469.
    [75] DURAN-HERRERA A, PETROV N, BONNEAU O, et al. Autogenous control ofautogenous shrinkage, ACI SP-256. Internal Curing of High Performance Concretes:Laboratory and Field Experiences. American Concrete Institute, Farmington Hills, MI,2008:1-10.
    [76] HENKENSIEFKEN R, CASTRO J, et al. Water absorption in internally crured mortar madewith water-filled lightweight aggregate[J]. Cenent and Conerete Research,2009,39(10):883-892.
    [77] EL-DIEB A S. Self-curing concrete: water retention, hydration and moisture rtansport[J].Construction and Materials,2007,21.
    [78] BENTUR A, IGARA, IGARASHI S, KOVLER K. Prevention of autogenous shrinkage inhigh-strength concrete by internal curing using wet lightweight aggregates[J]. Cenent andConcrete Research,2001(31):1587-1592.
    [79] SmePlass. S, Drying of LWAC, In: Steiner Helland, Ivar HOland, Sverre smeplass.Proeeedings international symposium on struetural lightweight aggregate concrete[J].Kristiansand, Norway,2000,833-842.
    [80] TERMKHAJORNKIT P, NAWA T. Effect of water curing conditions on the hydration degreeand compressive strengths of fly ash-cement paste[J]. Cement&Concrete Composites,2006,28(9):781-789.
    [81] BENTUR A, IGARASHI S, KOVLER K. Prevention of autogenous shrinkage in highstrength concrete by internal curing using wet lightweight aggregates[J]. Cement andConcrete Research,2001,31:1587-1591.
    [82] ZHUTOVSKY S, KOVLER K, BENTUR A. Influence of cement pastematrix properties ontheautogenous curing of high-performance concrete[J]. Cement&Concrete Composites,2004,26(5):499-507.
    [83] DURN-HERRERA A, A TCIN P C, PETROV N. Effect of saturated lightweight sandsubstitution on shrinkage in0.35w/b concrete[J]. ACI Materials Journal,2007,104(1):48-52.
    [84] BENTZ D P. Internal curing of high-performance blended cement mortars[J]. ACI MaterialsJournal,2007,104(4):408-414.
    [85] LOTY, H. Z. C. Effect of porous lightweight aggregate on strength of concrete[J]. MaterialsLetters,2004(58):916-919.
    [86] P. Boes著,吴兆琦,汪瑞芬等译校.水泥的结构和性能[M].中国建筑工业出版社,1991.208.
    [87] Powers,T. C. Proeeedings of the Fourth International Symposium on the Chemistry ofCement. Washington, DC,1960. National Bureau of Standards.1962,2:577.
    [88] Chatterji, S.7th International Congress on the Chemistry of Cement, Paris, Editions Septima,Paris.1980,3:5-9.
    [89] Idom, G. Proeeedings of the Fifth itemational Symposium on the Chemistry of Cement,Tokyo, The Cement Assoeiation of JaPan.1969,3:411.
    [90] Powers, T. C. Brownyard, T. L. Bulletin22, Portland Cement Assoeiation, Skokie.1948.133
    [91]维诺格拉多夫著,周新益译集料对混凝土性能的影响[M].北京:中国建筑工业出版社,1985.
    [92] Francois de Larrard and Alert. Belloc. The influence of aggregate on the compressivestrength of normal and high-strength concrete[J]. ACI Materials Journal, Vol.94, No5,1997,417-426.
    [93]江见鲸,冯乃谦.混凝土力学[M].中国铁道出版社,1991.
    [94]郭玉顺,丁建彤,木村薰等.高性能轻集料与普通轻集料的性能比较[J].混凝土,2000(6):22-26.
    [95] Chandra S, Berntsson L. Lightweight aggregate concrete-Science, Technology andApplications[M]. Norwich, New York: Noyes Publications/Villiam Andrew Publishing,2002
    [96] Cheeseman CR, Makinde A, Bethanis S. Properties of lightweight aggregate produeed byrapid sintering of incinerator bottom ash[J]. Resources, Conservation and Recycling,2005,43(2):147-162.
    [97]赵顺增,杨亚晋,刘立等.高性能人造轻集料性能的初步研究[J].建筑砌块与砌块建筑,2005, l:36-38.
    [98] G. Giaccio, R. Zerbino. Failure Mechanism of Concrete Combined Effects of Aggregatesand Strenth Level. Advn Cem Bas Mat.
    [99]胡曙光,王发洲.轻集料混凝土[M].北京:化学工业出版社,2006.
    [100]钱觉时,罗晖,陈伟.等.污水污泥页岩陶粒的烧成工艺与性能[J].材料科学与工艺,2010,18(6):852-856.
    [101]天津大学物理化学教研室编.物理化学.第一版.北京.人民教育出版社,1981. P5.
    [102] T. Z. Harmathy. Moisture Sorption of Building Materials. Ottawa March,1967.
    [103]吴科如.混凝土的内部结构[J].混凝土及建筑构件,1981.
    [104] M..西蒙诺夫著.任志英,程凤阁译.多孔集料混凝土和钢筋混凝土[M].北京:中国建筑工业出版社,1965.2.
    [105] T. Y. Lo, H. Z. Cui and Z. G. Li. Influence of aggregate pre-wetting and fly ash onmechanical properties of lightweight concrete Waste Management. Volume24, Issue4,2004:333-338.
    [106]陈伟,钱觉时,范英儒.破碎陶粒表面处理与其对混凝土性能的影响[J].混凝土与水泥制品,2009,2:17-20.
    [107]付达新.预湿处理页岩陶粒对高强轻集料混凝土性能的影响[J].四川建材,2011,1(37):15-17.
    [108]郑秀华,张宝生.页岩陶粒预湿处理对轻集料混凝土的强度和抗冻性的影响[J].硅酸盐学报,2005,33(6):758-762
    [109]高小建,巴恒静,祁景玉.混凝圝水灰质量殔与其早期收缩关系的研稶[J].同济大学学报,2004,32(1):67-71.
    [110] Daniel Cusson(Ted Hoogeveen. Internal curing of hig(-performan#e "oncrete withpre-soaked fine,)Ghtweight afgregate for preventio. of autogenous shrinkage cracking[J].Cem Concr Res,200838:757-765.
    [111] Arnon Bentupa, Shi.-ichi Igarashib, Kon3tANtin Kov,Era. Prevention of auto'enousshrinkage in high-strength concrete by internal curing using wet lichtweighT agGregates
    [B]. Cem Concr Res,200131:1587-1591.
    [112] Arnon Benter, etal. Prevention of autogenous shrinkage in high-strength concrete byinternal curing using wet lightweight aggregates[J]. Cement and Concrete Research,2001,31:1587-1591,
    [113]董淑慧,张宝生,葛勇,等.轻集料对混凝土自养护减缩效率的影响[J].硅酸盐学报,2009,37(3):465-469.
    [114]阎培渝,廉慧珍,覃肖.使用膨胀剂配制补偿收缩混凝土时需要注意的几个问题[J].硅酸盐学报,2000,28:42-45.
    [115]陈志城,阎培渝.补偿收缩混凝土的自收缩特性[J].硅酸盐学报,2010,38(4):568-573.
    [116] Kohno K, Okamoto T, Isikawa Y, et al. Effects of artificial lightweight aggregate onautogenous shrinkage of concrete[J]. Cementand Concrete Research,1999,29(4):611-614.
    [117]党玉栋,钱觉时,乔墩,等.减缩剂预饱和轻骨料对水泥砂浆收缩的影响[J].硅酸盐学报,2011,39(1):47-53.
    [118]王发洲,丁庆军,陈友治,等.影响高强轻集料混凝土收缩的若干因素[J].建筑材料学报,2003,6(4):431-434.
    [119]刘加平,田倩,唐明述,等.膨胀剂和减缩剂对于高性能混凝土收缩开裂的影响[J].东南大学学报(自然科学版),2006,36:195-199.
    [120]彭江,徐志全,阎培渝,等.大体积补偿收缩混凝土中膨胀剂的使用效能[J].建筑材料学报,2003,6(2):147-15.
    [121]周俊龙,杨长辉,潘昕.温湿度对混凝土膨胀剂膨胀作用的影响[J].混凝土,2007,11:73-76.
    [122]姚燕,王玲,田培.高性能混凝土[M].北京:化学工业出版社,2006:147-148.
    [123]郑俊,高小建,曾京生,等.高性能混凝土干燥收缩与相对湿度间关系研究[J].低温建筑金属,2009,10:13-15
    [124]高小建,阚雪峰,杨英姿.单面干燥条件下混凝土的收缩变形分布特征[J].2009,37(1):87-91.
    [125] KIM Jin-keun, LEE Chil-sung. Moisture Diffusion of Concrete ConsideringSelf-Desiccation at Early Ages[J]. Cement and Concrete Research,1999,29(12):1921-1927.
    [126]杨再富,钱觉时,唐祖全,等.集料-基体协调性对混凝土强度影响的试验研究[J].材料科学与工艺,2007,15(1):72-78.
    [127]杨再富,钱觉时,唐祖全,等.粗集料强度对混凝土抗压强度影响的试验研究[J].混凝土,2004,12:23-25.
    [128]丁庆军,王涛,张锋,等.混掺纤维增强轻集料混凝土研究[J].武汉理工大学学报,2004,26(1):42-45.
    [129]丁庆军,张勇.泵送高强轻集料混凝土的研究[J].武汉理工大学学报,2001(7):12-15.
    [130]刘娟红,宋少民,钟建锋,等.聚丙烯纤维对桥面铺装轻集料混凝土性能影响[J].北京工业大学学报,2011,37(5):734-738.
    [131]毛世辉,杨正宏,等.大流动性陶粒混凝土抗离析性能改善的研究[J].新型建筑材料,2008,12:10-12.
    [132]丁庆军,张勇,王发洲,等.高强轻集料混凝土分层离析控制技术的研究[J].武汉大学学报(工学版),2002,35(3):59-62.
    [133]丁庆军,邹定华,王发洲,等.次轻混凝土匀质性影响因素研究[J].混凝土,2005,8:57-61.
    [134]陈晓芳,田晓霞,等.陶粒性能对LC40轻集料混凝土工作性和均质性的影响[J].公路交通科技,2010,5:195-198.
    [135]魏连雨,李海峰,李海军,等.高强轻集料混凝土特性及在桥面铺装中的应用[J].2009,11:109-110.
    [136]谭克锋.轻集料及高性能轻集料混凝土的性能研究[J].同济大学学报(自然科学版),2006,34(4):472-475.
    [137]王树和,甄飞,熊小群,等.高强轻集料混凝土力学性能影响因素研究[J].武汉理工大学学报,2007,29(9):104-107.
    [138]方永浩,王锐,庞二波,等.水泥–粉煤灰泡沫混凝土抗压强度与气孔隙结构的关系[J].硅酸盐学报,2010,38(4):621-626.
    [139]乔欢欢,卢忠远,严云.用普通水泥制备泡沫混凝土基体材料的研究[J].武汉理工大学学报,2008,30(5):35-37.
    [140]杨洁,孙振平,黄晖皓,等.若干主要因素对蒸压加气混凝土性能的影响[J].新型建筑材料,2012,4:70-73.
    [141]马保国,钟开红,许婵娟,等.轻质加气混凝土干燥收缩的研究[J].墙材革新与建筑节能,2002,(12):20-23.
    [142]马一平,李国友,杨利香.表观密度和聚丙烯纤维对泡沫混凝土收缩开裂的影响[J].材料导报,2012,26(3):121-125.
    [143]孙文博,李家和,张志春.陶粒泡沫混凝土强度及其影响因素研究[J].哈尔滨建筑大学学报,2002,35,3:79-83.
    [144]肖力光,王雪,吴光瑞,等.有机材料对EPS超轻混凝土性能的影响[J].建筑节能,2007,11:28-31.
    [145]杨奉源,卢忠远,何顺爱,等.超轻EPS复合泡沫混凝土性能研究[J].混凝土与水泥制品,2012,5:9-12.
    [146]任伟,丁锐. EPS与玻化微珠超轻混凝土性能研究[J].吉林建筑工程学院学报,2011,28(2):65-68.
    [147]管学茂,罗树琼,杨雷.纤维素醚对加气混凝土用抹灰砂浆性能的影响研究[J].混凝土,2006,10:35-37.
    [148]吴季怀,林建明,魏月琳,等.高吸水保水材料[M].北京:化学工业出版社,2004,20-21
    [149] R. Wasserman, A. Bentur. Interfacial interactions in lightweight aggregate concretes andtheir influence on the concrete strength[J]. Cement and Concrete Composites,1996,18:67-76.
    [150]杨修明,赵辉,谢自强.重庆市居住建筑楼地面保温材料的应用[J].建筑节能及应用,2010,8(9):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700