基于集料功能设计的水泥石界面性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是一种多相多层次结构复合材料,混凝土各相间性能的匹配性和相间弱界面过渡区的存在是影响结构与性能的最主要问题。相与相之间的界面,尤其是水泥石-集料之间的界面结合情况,对混凝土力学性能和耐久性有着十分重要的影响。以往对改善界面过渡区的研究大多数集中在对水化产物性能提高、外加辅料增强作用以及集料的简单处理等方面,尚不能形成从材料组成与结构整体优化的层面实现突破。本文针对该问题,提出了通过采用功能集料的技术方法,改善与优化水泥石与集料的界面过渡区,从本质上解决影响混凝土结构与性能的关键问题,大幅度提高混凝土的性能特别是耐久性。丰富和完善混凝土设计理论,为高技术混凝土的设计、开发和应用提供理论基础。
     论文进行的主要工作和取得的重要成果有:
     在深入分析界面过渡区特性和形成机理的基础上,提出功能集料的设计理念。在混凝土中,功能集料既具有增强与优化ITZ的作用,又具备调整和控制水泥石形成的功能。依据材料设计原理与技术方法,研究提出了功能集料的理想结构模型。功能集料的理想结构由多孔的高强基体和具有表面水化活性反应层两部分组成。在这种混凝土中,功能集料的表面通过良好的水化反应,增强与水泥石的粘接;功能集料内部的多孔结构能提供储水和释水的转换空间,能对水泥石及界面起到内养护的作用,可从根本上增强和改善界面过渡区,提高混凝土的整体性能,为高技术混凝土的研究与开发提供了新的途径。
     根据所研究提出的功能集料的理想结构模型,研究提出了功能集料的设计与制备方法。功能集料由高强的多孔基体和表面水化活性层组成。系统研究了基体的材料组分、矿物组成、以及工艺参数对其微观结构与性能的影响规律,确定原材料的合理组成以及制备的关键技术。研究结果表明具有良好热稳定性作用的堇青石的引入可减少集料在急冷过程中形成微裂缝,从而提高集料的强度,降低吸水率。通过选择不同的表面活性层材料体系,研究了添加剂对表面物质组成的影响,结合基体材料与表面活性层材料比例的合理设计,制备出表面以p-C2S,内部以莫来石和堇青石为主要组成的功能集料,其筒压强度达到13.5MPa,真空饱和吸水率低于8%,具有良好的力学性能和设计功能。
     采用SEM、EDXA、显微硬度等测试方法,研究功能集料的表层活性矿物的水化反应特征。由于β-C2S的早期水化活性低,且高温生成时可能会被一些玻璃相包裹,集料表层在28d以后逐渐表现出水化活性,集料表面的Ca逐渐向水泥石迁移,Ca/Si降低,生成的水化产物可修复早期水化产生的裂缝并填充界面过渡区的孔隙,界面显微硬度得以提高。通过研究水灰比、矿物掺合料与掺量、养护环境对集料界面过渡区性能和结构的影响规律,结合直接观察法和显微硬度方法,系统研究了功能集料对水泥石的内养护效应,探明集料与水泥浆体界面过渡区结构形成规律与性能调控机制。
     系统研究了功能集料制备混凝土的力学性能、体积稳定性以及抗渗性性能,建立了混凝土的内部相对湿度和自收缩的线性规律:AS=κRH+b。随着混凝土内部相对湿度RH的降低,其自收缩值AS增加,可通过预湿功能集料的内养护有效降低混凝土的自收缩。功能集料的界面增强与内养护调控水泥石结构的双重作用使界面过渡区结构和性能得到优化,混凝土结构密实,是功能集料制备混凝土具有优良力学性能和抗渗性的主要原因。
     从材料科学设计原理出发,提出混凝土的精细设计方法与理念,围绕水泥石与集料的强度和弹性模量相匹配的原则,优化胶凝材料体系,再通过精细设计的级配形成集料骨架的最大密实化和最小的集料间隙率,根据混凝土性能要求优化集料表面水泥膜厚度,实现混凝土的整体优化设计。
Concrete is a multi-phase and multi-scale composite material and its structure and performance is predominantly influenced by the compatibility between each phase and the presence of the weak interfacial transition zone (ITZ). The interface between phases, especially between cement paste and aggregate is of paramount importance to the mechanical properties and durability of concrete. Previous research on the improvement of ITZ was focused on the amelioration of hydration products, the enhancing effect of supplementary cementitious materials and some treatment on aggregates, which failed to make a breakthrough in the overall optimization of composition and structure of concrete. In this thesis, the concept of function aggregate is put forward to improve the ITZ between cement paste and aggregate so that the performance, especially the durability, of concrete can be substantially improved and hopefully it will provide a theoretical basis for the design, development and application of high technology concrete.
     The main results obtained in this study are as follows:
     This study examines the characteristics of ITZ and its the formation mechanism, develops the concept of function aggregate. In concrete, function aggregate can enhance and optimize ITZ, and also has the ability to adjust and control the formation of cement paste. The ideal structure of functional aggregate is envisioned as composed of by a porous matrix of high strength and a reactive layer of hydration activity. In concrete proportioned with functional aggregate, the adhesion between cement paste and aggregate is enhanced by the highly reactive surface of function aggregates and its the porous structure can be a moisture reservoir for internal curing, both of which can essentially improve ITZ and provide a new direction on the research and development of high technology concrete.
     The study proposes the design and processing method of functional aggregate, explores the influence of the material and mineralogical composition of the matrix and processing parameters on the microstructure and properties of concrete. Results indicate that the incorporation of cordierite with excellent thermal stability can reduce the micro-cracks formed during the rapid cooling of aggregates, so as to increase its strength and decrease the water absorption. The effect of additives on the material composition of the aggregate surface is analyzed by using different surface active layer materials. A function aggregate is obtained with an outer layer ofβ-C2S and mullite and cordierite inside; its crushing strength is up to 13.5 MPa and vacuum absorption is less than 8%.
     By employing the test method of SEM, EDXA and microhardness, the hydration characteristics of the outlayer active minerals is studies. Sinceβ-C2S has a lower hydration activity at early age and a glassy phase is likely to be formed on the outerlayer when produced under high temperature, little hydration activity is exhibited until 28d. Ca2+ on the surface of aggregate immigrates gradually to cement paste, leading to a decreased Ca/Si; the hydration products can heal the cracks generated at early age and compact the porous ITZ. By studying the effect of w/c, supplementary cementitious materials and curing conditions on the property and performance of ITZ, the internal curing effect of functional aggregate is researched and the formation law and property adjustment mechanism are elucidated.
     This study examines the mechanical properties, volume stability and impermeability of concrete proportioned with functional aggregates and establish the linear relation between internal relative humidity and autogenous shrinkage: AS=κRH+b. The autogenous shrinkage is increased with a decreased internal relative humidity, which can be improved by the internal effect of pre-wetted functional aggregate. The interfacial enhancement and internal curing of functional aggregates can improve the structure and performance of ITZ, which is the main reason for the better mechanical property and impermeability of concrete.
     Based on the design principle of material science, the fine design method and idea of concrete is proposed. The cementitious system is optimized based on the compatibility of strength and elastic modulus between cement paste and aggregate. By fine-tuning the grading of aggregate, the compactness of aggregate is maximized and the porosity is minimized; the thickness of cement layer on the aggregate surface is optimized based on the specific performance of concrete.
引文
[1]国家统计局.中华人民共和国1991-2009年国民经济和社会发展统计公报.http://www.stats.gov.cn
    [2]王增忠.基于混凝土耐久性的建筑工程项目全寿命经济分析[D].上海:同济大学,2006
    [3]H.索默.高性能混凝土的耐久性[M].北京:科学出版社,1998
    [4]Isecke B. Failure analysis of the collapse of the Berlin Congress hall [J]. Materials Performance,1982,121(12):36-39
    [5]Sally S.C. Motor speedway bridge collapse caused by corrosion [J]. Materials Performance, 2000,(6):18-19
    [6]J.P. Ollivier, J.C. Maso, B. Bourdette. Interfacial Transition Zone in Concrete[J]. Advn Cem Bas Mat,1995,2:30-38
    [7]A. Bentur. Microstructure interfacial effects and micromechanics of cementitious composites[J].Adv. Cementitious Mater., Ceram. Trans.1990,16:523-549.
    [8]P. Kumar Mehta. Concrete Structure, Properties and Materials [M]. NJ:Prentice-Hall, Englewood Cliffs,1986
    [9]F.M. Lea. The Chemistry of Cement and Concrete [M]. New York:Chemical Publishing, 1971
    [10]Dannys B., Gerard B, Jacques G. Contribution to the Formation Mecharnism of the Transition Zone between Rock-cement[J]. Cement and Concrete Research, 1993(23):335-346
    [11]Matthew J. Aquino, Zongjin Li, Surendra P. Shah. Mechanical Properties of the Aggregate and Cement Interface [J]. ADVANCED CEMENT BASED MATERIALS,1995(2): 211-223
    [12]A. Delagrave, J.P. Bigas, J.P. Ollivier, et al. Influence of the interfacial transition zone on the chloride diffusivity of mortars [J]. Adv. Cem. Based Mater.,1997,5:86-89
    [13]A. Bourdette, E. Ringot, J.P. Ollivier. Modelling of the transition zone porosity[J]. Cem. Concr. Res.,1995,25 (4):741-751
    [14]Andrzej Cwirzen, Vesa Penttala. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes [J]. Cement and Concrete Research,2005 (35):71-679
    [15]郑克仁,孙伟,林玮.界面过渡区微力学性质对高周疲劳性能的影响[J].三峡大学学报,2006,28(4):305-308
    [16]陈惠苏,孙伟,Stroeven Piet水泥基复合材料界面对材料宏观性能的影响[J].建筑材料学报,2005,8(1):51-62
    [17]喻乐华.混凝土集料界面与强度关系的界面理论分析[J].华东交通大学学报,1999,16(4):14-19
    [18]E.J. Garboczi, D.P. Bentz. Modelling of the microstructure and transport properties of concrete[J].. Constr. Build. Mater.,1996,10 (5):293-300
    [19]K.M. Lee, J.H. Park.. A numerical model for elastic modulus of concrete considering interfacial transition zone [J]. Cement and Concrete Research,2008 (38):396-402
    [20]Mindess S. Tests to determined the mechanical properties of interfacial zone [A]. In MASO J C ed. Interfacial Transition Zone Concrete [C]. RILEM Report 11. London: E&FN SPON,1996:47-63
    [21]Mindess S. Bonding in cementitious composites:How important is it?[A].Bonding in Cementitious Composites [C].Pittsburgh:Materials Research Society,1988(114):3-10
    [22]J. Lybimove, E R Pinns. Crystallization Structure in Concrete Contact Zone between aggregate and cement in concrete [J]. Colloid T.,1962(24):491-498
    [23]Berger R L, Cahn D S, McGregor J D. Calcium hydroxide as a binder in portland cement paste [J].J Am Ceram Soc,1970,53 (1):57-58
    [24]Zheng J. Mesostructure of concrete:stereological analysis and mechanical implications[D].Delft:Delft University Press,2000:154
    [25]Cumberland D J, Crawford R J. The packing of particles[M].Amsterdam:Elsevier Science Publication Inc,1987:85-119
    [26]Metha P K. Hardened cement paste-microstructure and its relationship to properties [A]. Proceedings of 8th ICCC [C]. Rio de Janeiro:Finep,1986:113-121
    [27]Scrivener K L, Pratt P L. A preliminary study of the microstructure of cement/sand bond in mortar[A].In:Proceedings of 8th International Congress on the Chemistry of Cement[C]. Rio de Janemo:Finep,1986:466-471
    [28]Bentz D P, Jensen O M. Mitigation strategies for autogenous shrinkage cracking [J].Cem Concr Compos,2004,26(6):677-685
    [29]Bisschop J, Pel L, van MIER J G M. Mechanisms of drying shrinkage microcracking in concrete [A].In:Ulm F J, Bazant Z P, Wittmann F H, eds. Creep, Shrinkage and
    [30]Dela B F, Stang H. Two-dimensional analysis of crack formation around aggregates in high-shrinkage cement paste [J].Eng Fract Mech,2000,65(2-3):149-164
    [31]Lilliu G, van Mier J G M. Simulation of 3D crack propagation with the lattice model[A].In: Materials Week 2000.Frankfurt:Werkstoff-In formation sgesellschaft m6H,2000
    [32]Netami K M, Monteiro P J M. A new method to observe three-dimensional fractures in concrete using liquid metal porosimetry technique [J].Cem Concr Res,1997,27 (9):1333-1341
    [33]Agioutantis Z, Chatzopoulou E, Stavroulaki M. A numerical investigation of the effect of the interfacial zone in concrete mixtures under uniaxial compression:the case of the dilute limit [J].Cem Concr Res,2000,30 (5):715-723
    [34]Francois R, Arliguie G. Microcracking at the ITZ[A].In:Alexander M G, Arliguie G, Ballivy G, et al, eds. Engineering and Transport Properties of the Interfacial Transition Zone in Cementitious Composites[C].RILEM Report 20, Cachan:RILEM Publication S A R L,1999:241-258
    [35]余红发.抗盐卤腐蚀的水泥混凝土的研究现状与发展方向[J].硅酸盐学报,1999,27(2):237-245
    [36]Lindmark S. Mechanisms of salt frost scaling of Portland cement-bound materials:studies and hypothesis[D].Lund:Lund University, Swede,1999:266
    [37]廉慧珍,董良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996
    [38]D.W. Hadley. The nature of the paste-aggregate interface [C]. West Lafayette:Purdue University,1972
    [39]刘峥,凌志达,唐明述.水泥石-白云石集料界面的显微结构[J].硅酸盐学报,1986,14(4):400-405
    [40]Bentur A, Gray R J, Mindess S. Cracking and pull-out process in fiber reinforced cementitious materials[A].In:Swamy R N, ed. Developments in Fiber Reinforced Cement and Concrete [C]. Paris:RILEM,1986
    [41]凌志达,吕忆农.大坝混凝土的水泥石-石英集料界面结构研究[J].硅酸盐学报,1990,18(2):97-103
    [42]李绍政,苏慕珍,王燕谋.快硬硫铝酸盐水泥浆体-石灰石集料界面的微结构[J].硅酸盐学报,1992,20(1):88-94
    [43]李绍政,苏慕珍,王燕谋.快硬硫铝酸盐水泥浆体-矾土集料界面的微结构[J].硅酸盐学报,1992,20(2):130-137
    [44]Zampini D, Shah S P. Early age microstructure of the paste-aggregate interface and its evolution[J].J Mater Res,1998,13(7):1888-1898
    [45]de Rooij M R. Syneresis in cement paste systems[D]. Delft:Delft University Press, 2000:83
    [46]Stroeven P, Stroeven M. Reconstructions by SPACE of the interfacial transition zone[J]. Cem Concr Comps,2001,23(2-3):189-200
    [47]Bentz D P,Garboczi E J, Haecker C J, et al. Effects of cement particle size distribution on performance properties of Portland cement-based materials [J].Cem Concr Res,1999, 29(10):1663-1671
    [48]Nilson U, Sandberg P, Folliard K. Influence of Mineral Admixtures on the Transition Zone in Concrete[A].In:MASO J C ed. Interfacial Transition Zone in Composites [C].RILEM Proceedings 18, London:E&FN SPON,1992:65-70
    [49]夏佩芬,王培铭,李平江等.混合材料与水泥浆体间界面的形貌特征[J]硅酸盐学报,1997,25(36):738-742.
    [50]Alexander M G. Two experimental techniques for studying the effects of the interfacial zone between cement paste and rock[J].Cem Concr Res,1993,23 (3):567-575.
    [51]Alexander M G. Aggregate and the deformation properties of concrete[J] ACI Mater J, 1996,93 (6):569-577
    [52]Alexander M G, Scruveber K. The influence of time-dependent changes in ITZ on stiffness of concretes made with two aggregate types[A].In:Katz A, Bentur A, Alexander M, et al, eds. The Interfacial Transition Zone in Cementitious Composites [C].RILEM Proceedings 35, London:E&FN SPON,1998:292-300
    [53]Lagerblad B,Kjellsen K O. Effect of mineralogy of filler on cement hydration[A]. In: Jennings H M, Kropp J, Scrivener K, eds. The Modelling of Microstructure and Its Potential for Studying Transport Properties and Durability[C].Dordrecht:Kluwer Academic Publisher,1996:157-165
    [54]Tasong W A, Lynsdale C L, Cripps J C. Aggregate-cement paste interface, part Ⅰ.Influence of aggregate geochemistry[J].Cem Concr Res,1999:1019-1025
    [55]Tasong W A, Cripps J C, Lynsdale C L. Aggregate-cement chemical interactions [J].Cem Concr Res,1998,28(7):1037-1048
    [56]Tasong W A, Lynsdale C L, Cripps J C. Aggregate-cement paste interface. Ⅱ:influence of aggregate physical properties[J].Cem Concr Res,1998,28(10):1453-1465
    [57]Rao G A, Prasad B K R. Influence of the roughness of aggregate surface on the interface bond strength [J].Cem Concr Res,2002,32(2):253-257
    [58]Katz A, Bentur A, Kjellsen K O. Normal and high strength concretes with lightweight aggregates [A].In:Katz A, Bentur A, Alexander M, et al, eds. Engineenng and Transport Properties of the Interfacial Transition Zone in Cementitious Composites [C]. RILEM Report 20, ENS Cachan:RILEM Publication SARL,1999:71-88
    [59]Amir Elsharief, Menashi D. Cohen, Jan Olek. Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone [J]. Cement and Concrete Research,2003 (33):1837-1849
    [60]孙伟,严云.钢纤维高强水泥基复合材料的界面效应及其疲劳特性的研究[J].硅酸盐学报,1994,22(2):107-116
    [61]马一平.提高水泥石-集料界面粘结强度的研究[J].建筑材料学报,1999,2(1):29-32
    [62]. Kim J H, Robertson R E. Effect of polyvinyl alcohol on aggregate-paste bond strength and the interfacial transition zone [J]. Adv Cem Based Mater,1998,8(2):66-76
    [63]Tragardh J. Microstructural features and related properties of self-compacting concrete[A].In:Skarendahl A, Petersson O, eds. Self-Compacting Concrete [C].RILEM Proceedings 7, Cachan:RILEM Publications SARL,1999:175-186
    [64]Shen Y, Xu Z, Xie P, et al. A new method of enhancing cement-aggregate interfaces: ideal aggregate and its effects on interfacial microstructures [J].Cem Concr Res,1992,22 (4):612-618
    [65]Harun Tanyildizi. Fuzzy logic model for the prediction of bond strength of high-strength lightweight concrete [J]. Advances In Engineering Software,2007(5):1-9
    [66]Maco J C.The bond between aggregates and hydrated cement pastes [A].In:Proceedings of 7th International Congress on the Chemistry of Cement [C]. Paris:Septima, 1980:Ⅶ-Ⅰ/3-Ⅶ-1/15
    [67]Zimbelmann R. Contribution of cement-aggregate bond [J].Cem Concr Res,1985, 15(5):801-808
    [68]Scrivener K L. Characterisation of the ITZ and its quantifiration by test methods [A]. In: ALEXANDER M G, ARL-IGUIE G, BALLIVY G, et al, eds. Engineering and Transport Properties of the Interfacial Transition Zone in Cementitious Composites [C].RILEM Report 20, Cachao:RILEM Publication SARL,1999:3-15
    [69]陈惠苏.水泥基复合材料集料-浆体界面过渡区微观结构的计算机模拟及相关问题研究[D].南京:东南大学,2003
    [70]Larbi J A. The cement paste-aggregate interfacial zone in concrete[D].Delft:Delft University Press,1991
    [71]Zhang M H, Malotra V M. Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete [J].Cement and Concrete Research,1995,25 (8):1713-1725
    [72]Zhang M H, Malhotra V M. High-performance concrete incorporating rice husk ash as a supplementary cementing material, ACI Materials Journal 1996 (93):629-636
    [73]He Changling, Bajarne Osback, Email Makovicky. Pozzolanic reaction of six principal clay minerals:activation reactivity assessments and technological effects[J]. Cement and Concrete Research,1995,25 (8):1691-1702
    [74]J.M. Gao, C.X. Qian, H.F. Liu, et al. ITZ microstructure of concrete containing GGBS [J]. Cement and Concrete Research,2005,35 (7):1299-1304
    [75]王培铭,陈志源,Scholz H粉煤灰与水泥浆体间界面的形貌特征[J].硅酸盐学报,1997,25(4):475-479
    [76]新野正之,平井敏雄,渡边龙三.倾斜机能材料-宇航机用超耐热材料的研究[J]日本复合材料学会志(Mag Composite Mater in Japan),1978,13(6):257-264
    [77]杨久俊,董延玲,海然等.骨料表面化学预处理对界面区的组分梯度分布和混凝土力学性能的影响Ⅰ:骨料化学预处理对其表面特性与界面过渡区结构的影响[J].混凝土与水泥制品,2003(6):1-5
    [78]王爱勤,张承志..水泥石-集料界面过渡区的形成机理及改善途径[J].混凝土与水泥制品,1994,5:18-20
    [79]Diamond S, Huang J. The interfacial transition zone:reality or myth? [A].In:Katz A, Bentar R A, Alexander M, et al, eds. The Interfacial Transition Zone in Cementitious Composites[C]. RILEM Proceedings 35, London:E&FN SPON,1998:3-39
    [80]孙家瑛,陈志源,吴初航.硅灰裹石掺混合材体系对混凝土抗氯离子渗透能力影响研究[J].混凝土,2000,8:28-30
    [81]胡曙光,王发洲,丁庆军.轻集料与水泥石的界面结构[J].硅酸盐学报,2005,33(6):713-717
    [82]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社.1996
    [83](?).H.维诺格拉多夫著,周新益译.集料对混凝土性能的影响[M].北京:中国建筑工业出版社,1985
    [84]张立新,陈兵,吕伟民.集料对混凝土断裂性能影响的研究[J].四川建筑科学研究,2000,26(3):55-57
    [85]张立新,吕伟民,陈兵等.集料性状对高强混凝土断裂和声发射特性的影响[J].同济大学学报.2001,29(5):546-550
    [86]吴历斌,颜志勇,江莞.高强高性能混凝土中的集料研究[J].四川建筑科学研究.2002,28(3):55-58
    [87]周建华.粗集料与硬化水泥浆体界面结合对混凝土力学行为的影响及计算机分析[D].上海:同济大学,1988
    [88]郭玉顺,丁建彤,木村薰等.高性能轻骨料与普通轻骨料的性能比较[J].混凝土,2000(6):22-26
    [89]Chandra S, Berntsson L. Lightweight aggregate concrete-Science, Technology, and Applications [M]. Norwich, New York:Noyes Publications/William Andrew Publishing, 2002
    [90]Cheeseman CR, Makinde A, Bethanis S. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash [J]. Resources, Conservation and Recycling 2005;43(2):147-162
    [91]赵顺增,杨亚晋,刘立等.高性能人造轻集料性能的初步研究[J].建筑砌块与砌块建筑,2005,1:36-38
    [92]Shen Yang, Xu Zhongzi, Xie Ping, et al. A new method of enhancing cement-aggregate of enhancing cement-aggregate interfaces, I. ideal aggregate and its effects on interfacial microstructures [J]. Cement and concrete research,1992,22(4):612-620
    [93]Shen Yang, Xu Zhongzi, Xie Ping, et al. A new method of enhancing cement-aggregate interfaces Ⅱ. Mechanical properties and sulphate attack resistances of mortars [J]. Cement and concrete research,1992,22(5):769-773
    [94]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社.1999
    [95]徐定华,徐敏.混凝土材料学概论[M].北京:中国标准出版社,2002
    [96]Vincent C.Janoo. Quantification of Shape, Angularity, and Surface Texture of Base Course Materials Special Report 98-1 [R]. US Army Corps of Engineers, Cold Regions Research &Engineering Laboratory January,1998
    [97]Riley C. M. Relation of chemical process the bloating clay[J]. Journal of American Ceramic Scission.1951,34(4):121-128
    [98]Wiebusch B.,Ozaki M.,Watanabe K.,et al. Assessment of leaching tests on construction material made of incineration ash (sewage sludge):Investigations in Japan and Germany[J]. Water Science and Technology,1998,38(7):195-205
    [99]Bernd W., Carl F.S. Utilization of Sewage Sludge Ash in the Brick and Tile Industry[J]. Water Science and Technology,1997,11(36):251-258
    [100]余岳峰.下水污泥焚化灰渣烧成轻质骨材特性之研究[D].台湾:国立中央大学,2000
    [101]R. L. Coble. Sintering crystalline solids Ⅰ. Intermediate and final stage diffusion models. J Appl Phys,1961,32(5):787-792.
    [102]R. L. Coble. Sintering crystalline solids. Ⅱ. Experimental test of diffusion models in powder compacts. J Appl Phys,1961,32(5):793-799
    [103]闫振甲,何艳君.陶粒生产实用技术[M].北京:化学工业出版社,2006
    [104]唐小真,杨宏秀,丁马太.材料化学导论[M].北京:高等教育出版社,1997
    [105]沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991
    [106]国家建筑材料工业局.GB/T 17431.1-1998轻集料及其试验方法第1部分:轻集料[S].北京:中国标准出版社,1999
    [107]ASTM International. ASTM C127-04 Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate,2004
    [108]Neville AM. Properties of concrete [M]. New York:John Wiley & Sons Inc.; 1973
    [109]Zhang MH, Gj(?)rv OE. Pozzolanic reactivity of lightweight Aggregates[J]. Cement and Concrete Research,1990,20(6):884-890
    [110]Budnikov PP. Influence of Mineralizers on Mechanical, Thermal, and Dielectric Properties of Porcelain (in German) [J]. Silikat Tech.,1956,7(4):147-148
    [111]Tenorio Cavalcante PM, Dondi M, Ercolani G, et al. The influence of microstructure on the performance of white porcelain stoneware[J]. Ceramics International,2004,30(6):953-963
    [112]黄劲.利用东湖污泥生产轻集料的关键技术[D].武汉:武汉理工大学,2006
    [113]刘维良.先进陶瓷工艺学[M].武汉:武汉理工大学出版社,2004
    [114]Zdaniewski W. Crystallization and structure of a MgO-Al2O3-SiO2-TiO2 glass-ceramic. Journal of Materials Science,1973,8(2):192-202
    [115]Yang CF. The mechanical properties of MgO-CaO-Al2O3-SiO2 composite glass. Materials Science and Engineering:C,1997,4(4):315-319
    [116]Camerucci MA, Urretavizcaya G, Cavalieri AL. Mechnical behavior of cordierite and cordierite-mullite materials evaluated by indentation techniques. Journal of the European Ceramic Society 2001,21 (9),1195-1204
    [117]Hu Shuguang, Yang Tingting, Wang Fazhou.Influence of mineralogical composition on the properties of lightweight aggregate. Cement & Concrete Composites,2010,32(1):15-18
    [118]S.O. Oyefesobi, D.M. Roy Hydrothermal studies of special types of cement mixed with quartz [J]. Cement and Concrete Research,1977,7(1):95-102
    [119]B. S. Rangnekar, V.R.G. Srinivasan, V. N.Pai. Sixth Intl. Congress Cement Chem. Moscow,1976,1:197
    [120]R. Struillou, M. Arnould. Proc.7th Intl. Congr. Chem. Cem. Paris,1980,5:Ⅴ-75
    [121]S.N.Ghosh, A.K.Paul, A.K.Thakur. Thermal decomposition of CaCO3 and formation of β-Ca2SiO4 [J]. Journal of Materials Science,1978,13:1602-1606
    [122]A.S.Boldyrev.7th Intl. Congr. Chem. Cem. Paris,1980,1:Ⅴ-3/1
    [123]杨南如,钟白茜.活性p-C2S的研究[J].硅酸盐学报,1982,10(2):161-166
    [124]Uchigawa H.Effect of blending components on hydration and structure formation[C].Proc. of the 8th International Cement Chemistry Conference. Rio de Janeiro,Ⅰ,1986:249-280
    [125]祁景玉,肖淑敏,高燕萍等.混合型粗集料轻混凝土的微观结构(Ⅰ)[J].同济大学学报,2001,29(8):946-950
    [126]祁景玉,肖淑敏,高燕萍等.混合型粗集料轻混凝土的微观结构(Ⅱ)[J].同济大学学 报,2001,29(10):1185-1190
    [127]王发洲,周斌,彭艳洲等.轻集料与水泥石界面区元素分布特征研究[J].武汉理工大学学报,2005,27(3):713-717
    [128]胡曙光,王发洲.轻集料混凝土[M].北京:化学工业出版社,2006
    [129]Shondeep L. Sarkar, Chandra Satish, Berntsson Leif. Interdependence of microstructure and strength of structural lightweight aggregate concrete [J]. Cement and Concrete Composites,1992,14(4):239-248
    [130]A.M. Paillere, M. Buil, J.J. Serrano. Effect of fiber addition on the autogenous shrinkage of silica fume concrete [J]. ACI Mater. J.,1989,86 (2):139-144
    [131]Powers T.C., Brownyard T.L. Studies of the Physical Properties of Hardened Portland Cement Paste [M]. Research Laboratories of the Portland Cement Association, PCA Bulletin,1948,22:473-488
    [132]RILEM Technical Committee. Internal Curing of Concrete [R]. Bagneux:RILEM Publications S.A.R.L.,2007
    [133]R. Philleo. Concrete science and reality. In:J.P. Skalny and S. Mindess Editors, Materials Science of Concrete//American Ceramic Society, Westerville, OH,1991:1-8
    [134]A. M. Vaysburd. Durability of Lightweight Concrete Bridges in Severe Environments [J]. Concrete International,1996,18(7):33-38
    [135]S.Weber, H.W.Reinhardt. A new generation of high performance concrete:concrete with autogenous curing [J]. Adv Cem Based Mater.1997,6(2):59-68
    [136]陈德鹏,钱春香,赵洪凯等.内养护措施改善混凝土收缩开裂性能[J].特种结构,2007,24(1):57-60
    [137]Jensen, P.F.Hansen. Water-entrained cement-based materials. Ⅰ. Principles and theoretical background [J]. Cement and Concrete Research.2001,31(5):647-654
    [138]Pietro Lura. Autogenous deformation and internal curing of concrete [D]. Delft:Delft University of Technology,2003
    [139]D. P. Bentz, K. K. Hansen. Preliminary observations of water movement in cement pastes during curing using X-ray absorption [J]. Cem Concr Res,2000,30(7):1157-1168
    [140]Karen Friedemanna, Frank Stallmach, Jorg Kargera. NMR diffusion and relaxation studies during cement hydration—Anon-destructive approach for clarification of the mechanism of internal post curing of cementitious materials [J]. Cement and Concrete Research, 2006,36(5):817-826
    [141]Pietro Lura, Dale P. Bentz, David A. Lange, et al. Measurement of water transport from saturated pumice aggregates to hardening cement paste [J]. Materials and Structures,2006, 39(9):861-868
    [142]D.P. Bentz, K.A. Snyder. Protected paste volume in concrete:extension to internal curing using saturated lightweight fine aggregate [J]. Cem Concr Res,1999,29(11):1863-1867
    [143]Ole Mejlhede Jensen, Per Freiesleben Hansen.Water-entrained cement-based materials I. Principles and theoretical background [J]. Cement and Concrete Research 2001,31 (4): 647-654
    [144]B.L. Lu, S. Torquato. Nearest-surface distribution-functions for polydispersed particle-systems [J]. Physical Review A,1992,45(8):5530-5544
    [145]K. A. Snyder, D. P. Bentz.Suspended hydration and loss of freezable water in cement pastes exposed to 90% relative humidity [J]. Cement and Concrete Research,2004,34(11): 2045-2056
    [146]E.J. Garboczi & D.P. Bentz.Analytical formulas for interfacial transition zone properties [J]. Adv Cem Based Mater,1997,6(3-4):99-108
    [147]S. Zhutovsky, K. Kovler, A. Bentur. Assessment of distance of water migration in internal curing of high-strength concrete. In:Jensen OM, Bentz DP, Lura P (eds) ACI SP-220 'Autogenous deformation of concrete'. Michigan:Farmington Hills,2004:181-197
    [148]周宇飞.高强混凝土内养护机制与控制技术研究[D].武汉:武汉理工大学,2008
    [149]杨丽,郭志恭.高层钢筋混凝土结构设计中如何考虑徐变、收缩的作用.工业建筑,1995,4:40-46
    [150]王家全.多层框架温度与收缩应力,建筑结构,1993(4):41-45
    [151]邹小江,寿楠椿,韩大建.高层建筑考虑施工过程的徐变收缩分析.建筑结构,2002,(3):3-6
    [152]邓志恒,秦荣.考虑施工过程收缩徐变对高层建筑结构影响理论分析.哈尔滨建筑大学学报,2002,(10):28-31
    [153]吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999
    [154]Ei-chi Tazawa,Shingo Miyazawa. Experimental study on mechanism of autogenous shrinkage of concrete. Cement and Concrete Research,1995,25(8):1635-1638
    [155]Terence C. Holland, Anton Krysa, Mark D. Luther, et al. Use of silica-Fume concrete to repair abrasion-erosion damage in the Kinzua Dam Stilling Basin [C].2th CANMET/ACI International Conference on Fly ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Madrid 1986:841-864
    [156]K.Kohno,T.Okamoto, Y.Isikawa, et al. Effects of artificial lightweight aggregate on autogenous shrinkage of concrete. Cement and Concrete Research,1999,29(4):611-614
    [157]Jensen O M. Thermodynamic Limitation of Self-Desiccation [J]. Cement and Concrete Research,1995,25(1):157-164
    [158]重庆建筑工程学院,南京工学院编著.混凝土学[M].北京:中国建筑工业出版社,1981
    [159]周著如,杜永峰.从细观力学分析制作高性能混凝土的途径[J].兰州理工大学学报.1998,4:5-6
    [160]H.J.Chen, T.Yen, T.P.Lia, et al. Determination of the dividing strength and its relation to the concrete strength in lightweight aggregate concrete [J]. Cement and Concrete Composites,1999,21(1):29-37
    [161]刘粪伯.轻集料强度和强度标号[J].房材与应用,1999,1:6-10
    [162]王发洲.高性能轻集料混凝土研究及其应用[D].武汉:武汉理工大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700