屋盖开孔的近地空间建筑的风效应及等效静力风荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于使用功能和风致破坏的原因,近地空间建筑在屋盖的中心和角部会出现不同程度的开孔,如体育场馆的开合屋盖、民居和工业厂房屋盖角部的风致破坏,等等。近地空间建筑的屋盖开孔后,结构的风荷载特性将明显不同于完全封闭建筑,已有的关于结构开孔引起的风荷载效应的研究,主要针对立墙开孔建筑。本文采用风洞试验和理论分析相结合的方法,对屋盖开孔的近地空间建筑的风荷载、风致内压、极值风荷载特性、风致响应及等效静力风荷载等进行了系统的研究。主要研究内容和成果如下:
     1、在满足内压的动力特性相似的基础上,以TTU建筑为原型,制作了缩尺比为1:50的刚性模型,考虑了屋盖中心和角部两种开孔形式,以及不同的开孔率,进行了多工况的测压风洞试验。首先,以无开孔工况的试验结果与现场实测结果及UWO风洞试验结果进行比较,验证了HD-2号风洞及风压测试系统的可靠性;其次,在3种屋盖中心开孔率和3种屋盖角部开孔率的试验结果的基础上,研究了屋盖开孔时风压系数、屋盖中线纵向和横向体型系数、立墙体型系数的分布规律,研究了屋盖局部体型系数的量值范围,并与规范值进行了比较。研究结果表明:现有的规范值高估了屋盖开孔近地空间建筑的风吸力,低估了风压力。
     2、系统地研究了屋盖开孔近地空间建筑的风致内压。首先,研究了屋盖开孔近地空间建筑内部风压系数的相干特性,确定了建筑内部风压采用统一时程描述的方法;研究了内部风压系数分布规律,结果表明:屋盖中心开孔工况的内部负风压系数在立墙开孔试验结果和规范值范围内,屋盖角部开孔时的内部负风压则超出已有的立墙开孔结果。在此基础上,对屋盖开孔近地空间建筑的风致内压系数取值提出了建议。其次,研究了屋盖开孔的近地空间建筑的风致内压影响因素和脉动机理,基于单开孔的内压传递方程对屋盖中心开孔建筑的内压时程进行仿真,对风致内压的平均值和脉动值进行了理论估计,基于风洞试验结果和数值仿真结果,给出了风致脉动内压与脉动外压之比、极值内压与极值外压之比的关于无量纲开孔参数的拟合表达式。
     3、系统地研究了屋盖开孔近地空间建筑的极值风压特性。首先,研究了屋盖上、下表面风压和净风压的高阶统计量分布规律和概率密度函数特征,结果表明:屋盖风压明显偏离高斯分布,确定拟合屋盖表面风压的最佳概率密度函数为改进Hermite级数分布。然后,基于最佳的Hermite级数分布,结合转换过程法提出了改进Hermite峰值因子法,考虑随机信号的带宽大小,使得单次采样的极值方法适应于任意带宽的结构表面风压。最后,针对多次独立采样的经典极值方法需耗费大量人力物力的缺点,提出了一种基于单次采样结合多变量相关非高斯随机过程仿真的峰值因子估计方法。对多种峰值因子估计方法对比研究表明,Davenport峰值因子法和Sadek-Simiu峰值因子法在一定程度上低估了开孔屋盖的峰值因子,改进Hermite峰值因子法可以最安全的估计开孔屋盖的峰值因子,非高斯仿真峰值因子法可以最为准确的估计开孔屋盖的峰值因子。
     4、研究了屋盖开孔近地空间建筑的风致响应及其等效静力风荷载。考虑背景和共振分量之间的相关性,结合随机动力学的双输入单输出系统原理推导了考虑背景和共振分量耦合的完全三分量方法计算风致响应及单目标等效静力风荷载。将总脉动响应及脉动等效静力风荷载划分为三个分量:背景、共振以及背景共振耦合分量。在此基础上,开发了相应的结构风致响应及等效静力风荷载计算程序WindResponse,利用WindResponse计算程序的完全三分量法对中心开孔屋盖的风致响应及等效静力风荷载进行研究,研究结果表明:完全三分量法为与CQC法具有一致的理论意义的精确计算方法,而传统的三分量叠加法在垂直风向会低估脉动风致响应及等效静力风荷载,在斜风向时会高估脉动风致响应及等效静力风荷载。最后,针对开孔屋盖多目标等效的需要,提出了以完全三分量单目标等效静力风荷载为基本向量,结合约束加权最小二乘法的多目标等效静力风荷载方法,研究结果表明:该方法可以较好限制多目标等效静力风荷载在局部过大的缺点,除了能满足权值最重要的目标点精确等效外,在其它等效节点它比单目标等效静力风荷载方法更加接近于实际位移。
Closing-ground buildings usually present some openings on the center or cornerof roof because of the need of function and wind-induced damage, such as theretractable roof of stadium, skylights of houses or industrial buildings, and damage onthe roof of buildings. If a closing-ground building has a dominant opening on the roof,the wind loads would be significantly different with that of closed building. Theprevious studies about wind loads of dominant opening building mainly focused onwall-opening buildings, such as windward or leeward opening buildings. This thesismainly focuses on envelope wind loads, internal pressures, extreme wind loads,wind-induced responses, and equivalent static wind loads on the roof-openingclosing-ground buildings by means of wind tunnel tests and theoretical analysis. Themajor contents and results are listed as follows:
     1.7TTU rigid models are manufactured with a scale of1:50, which are3centerroof-opening models,3corner roof-opening models as well as one no roof-openingmodel. Wind pressures of these models are tested in HD-2wind tunnel. First, thereliabilities of HD-2wind tunnel and pressure testing system are confirmed bycomparing the results of no-opening cases among the HD-2wind tunnel tests, fullscale tests, and UWO wind tunnel tests. Second, on the basis of three kinds of centerroof-opening cases and three kinds of corner roof-openings cases, the characteristicsof wind pressure coefficients on roof-opening envelopes are studied in detail. The testresults are compared with several provisions, it seems that the suction forces on theroof obtained from provisions are overestimated and the press forces areunderestimated.
     2. The wind-induced internal pressures in roof-opening closing-ground buildingsare specially studied. First, the coherences of internal pressure coefficients are studied,which ensures the accuracy of describing the internal pressures by using onetime-history. The effects of wind directions, opening ratios, leakage ratios, turbulencetendencies and volumes of structures on internal pressure coefficients are studied indetail, and it is shown that the internal pressure coefficients of roof-opening buildingsare negative, which can not be well evaluated by the provisions, as well as the resultsobtained from wall-opening building tests. So an adaptive internal pressurecoefficient is proposed for the designing of roof opening closing-ground building. Second, the fluctuating mechanisms of internal pressures are specially studied. It isshown that the single dominant opening Helmholtz equation can be used to simulateinternal pressure. Based on the wind tunnel tests and simulating results, the empiricalformulae about the ratio between fluctuating internal pressure and external pressure,the ratio between extreme internal pressure and external pressure are fitted with thenon-dimension opening parameters.
     3. The characteristics of extreme pressure coefficients for cladding componentsare specially studied. First, the distribution of skewnesses and kurtosises as well asthe characteristics of probability density function about upside, downside and netpressure coefficients are studied. It is shown that the probability density function issignificantly different from Gaussian distribution, and the modified Hermitepolynomial model is the best probability density function which is used to fit theprobability density function for roof-opening closing-ground buildings’ wind pressurecoefficients at most cases. Based on the best fitted probability density function, thispaper proposes a modified Hermite peak factor procedure, which can take accountinto the band width effects and non-Gaussian characterstic of wind pressure. Second,this paper proposes a non-Gaussian simulation peak factor procedure for overconingthe exhausting defaults of classic peak factor procedure. By means of comparing theresults obtained from these two new procedure and several traditional peak factormethods, it is shown that the peak factors of the opening roof’s wind pressure areunderestimated by Davenport peak factor method and Sadek-Simiu peak factormethod in some cases, but Modified Hermite peak factor procedure can be used to getthe peak factors safely, and Non-Gaussian simulation peak factor procedure is the bestway to get the peak factors. The results of Non-Gaussian simulation peak factorprocedure are closest to the observed peak factors.
     4. The wind-induced responses and equivalent static wind loads (ESWL) arespecially studied. For taking account into the relevance of background ESWL andresonant ESWL, this paper proposes a full three-component procedure to getwind-induced responses and equivalent static wind loads by stochastic dynamicmechanism. The overall fluctaing wind-induced responses and equivalent static windloads are divided into three parts which are background component and resonantcomponent as well as background-resonant coupling component by the new procedure.By testing examples of opening roofs, it is shown that the full three-componentprocedure is an accurate method same as CQC method in theory. In normal wind anglecases the wind-induced responses and equivalent static wind loads are underestimated by the traditional three-component procedure which neglect the background-resonantcoupling component, and in oblique wind angle the results are overestimated. Lastly,for considering the equivalent of multi-object, this paper proposes a multi-objectequivalent static wind loads procedure which makes the full three-component singleESWL procedure as the basic vector and use constrained least square method to getthe results. It is shown that the new multi-object ESWL procedure can overcome thefault which is usually presenting exceptional large local ESWL by the traditionalmulti-object ESWL method, and the results of the most important object can beaccurately equivalent.
引文
[1]国家减灾中心国际合作部.2009国际十大自然灾害.中国减灾,2010(1):11-12
    [2]张相庭.结构风工程.北京:中国建筑工业出版社,2006,291-296
    [3] Holmes J D. Wind Loading of Structures.2ed.New York:Taylor,2007:195-198
    [4] Kernot W C.Wind pressures.Australasian Building and Contractors News,1893,13:194
    [5] Irminger I.Experiments on wind pressure.In:Proceedings of the Institute of CivilEngineers.London,1894,118:468-472
    [6] Holmes J D.Mean and fluctuating internal pressures induced by wind.Dept.ofCivil and Systems Engineering,James Cook University of North Queensland,1978:435-450
    [7] Liu H,Saathoff P J.Building internal pressure:sudden change.Journal of theEngineering Mechanics Division,1981,107(2):309-321
    [8] Liu H, Saathoff P J.Internal pressure and building safety.Journal of the StructuralDivision,1982,108(10):2223-2234
    [9] Saathoff P J.Internal pressure of multi-room buildings.Journal of EngineeringMechanics,1983,109:908-919
    [10] Vickery B J.Gust factors for internal pressures in low rise buildings.Journal ofWind Engineering and Industrial Aerodynamics,1986,23:259-271
    [11] Liu H,Rhee K H.Helmholtz oscillation in building models.Journal of WindEngineering and Industrial Aerodynamics,1986,24(2):95-115
    [12] Luchian H D.Transient Wind-induced internal pressures.Journal of EngineeringMechanics,1989,115:1501-1514
    [13] Harris R I.The propagation of internal pressures in buildings.Journal of WindEngineering and Industrial Aerodynamics,1990,34(2):169-184
    [14] Vickery B J,Georgiou P N.A simplified approach to the determination of theinfluence of internal pressures on the dynamics of large span roofs.Journal ofWind Engineering and Industrial Aerodynamics,1991,38(2-3):357-369
    [15] Vickery B J,Bloxham C.Internal pressure dynamics with a dominant opening.Journal of Wind Engineering and Industrial Aerodynamics,1992,41(1-3):193-204
    [16] Vickery B J.Internal pressures and interactions with the building envelope.Journal of wind engineering and industrial aerodynamics,1994,53(1-2):125-144
    [17] Robertson A P.The wind-induced response of a full-scale portal framed building.Journal of Wind Engineering and Industrial Aerodynamics,1992,43(1-3):1677-1688
    [18] Woods A R,Blackmore P A.The effect of dominant openings and porosity oninternal pressures. Journal of wind engineering and industrial aerodynamics,1995,57(2-3):167-177
    [19] Beste F,Cermak J E.Correlation of internal and area-averaged external windpressures on low-rise buildings.Journal of wind engineering and industrialaerodynamics,1997,69:557-566
    [20] Sharma R N,Richards P J.Computational modelling in the prediction of buildinginternal pressure gain functions.Journal of wind engineering and industrialaerodynamics,1997,67:815-825
    [21] Sharma R N,Richards P J.Computational modelling of the transient response ofbuilding internal pressure to a sudden opening.Journal of wind engineering andindustrial aerodynamics,1997,72:149-161
    [22] Ginger J D,Mehta K C,Yeatts B B.Internal pressures in a low-rise full-scalebuilding.Journal of wind engineering and industrial aerodynamics,1997,72:163-174
    [23] Sharma R N,Richards P J.The effect of roof flexibility on internal pressurefluctuations.Journal of wind engineering and industrial aerodynamics,1997,72:175-186
    [24] Ginger J D,Letchford C W.Net pressures on a low-rise full-scale building. Journalof Wind Engineering and Industrial Aerodynamics,1999,83(1):239-250
    [25] Ginger J D.Internal pressures and cladding net wind loads on full-scale low-risebuilding.Journal of Structural Engineering,2000,126:538-543
    [26] Pearce W,Sykes D M.Wind tunnel measurements of cavity pressure dynamics in alow-rise flexible roofed building.Journal of Wind Engineering and IndustrialAerodynamics,1999,82(1):27-48
    [27] Sharma R N,Richards P J.The influence of Helmholtz resonance on internalpressures in a low-rise building.Journal of Wind Engineering and IndustrialAerodynamics,2003,91(6):807-828
    [28] Sharma R N,Richards P J.Net pressures on the roof of a low-rise building withwall openings.Journal of wind engineering and industrial aerodynamics,2005,93(4):267-291
    [29]楼文娟,卢旦,孙炳楠.风致内压及其对屋盖结构的作用研究现状评述.建筑科学与工程学报,2005,22(1):76-82
    [30]余世策,楼文娟,孙炳楠,等.开孔结构内部风效应的风洞试验研究.建筑结构学报,2007,28(4):76-82
    [31] Oh J H,Kopp G A,Inculet D R.The UWO contribution to the NIST aerodynamicdatabase for wind loads on low buildings: Part3. Internal pressures.Journal ofwind engineering and industrial aerodynamics,2007,95(8):755-779
    [32] Sharma R N.Internal and net envelope pressures in a building having quasi-staticflexibility and a dominant opening.Journal of Wind Engineering and IndustrialAerodynamics,2008,96(6-7):1074-1083
    [33] Ginger J D,Holmes J D,Kopp G A.Effect of building volume and opening size onfluctuating internal pressure.Wind&Structures,2008,11:361-376
    [34] Kopp G A,Oh J H,Inculet D R.Wind-induced internal pressures in houses. Journalof Structural Engineering.2008,134:1129-1138
    [35] Holmes J D,Ginger J D.Codification of internal pressures for builfing design.Wind Engineering.In:Proc of the Seventh Asia-Pacific Conference on WindEngineering,Taipei,2009,8-12
    [36] Ginger J D,Holmes J D,Kim P Y.Variation of internal pressure with varying sizesof dominant openings and volumes.Journal of Structural Engineering,2010,136:1319-1326
    [37] Sharma R N,Mason S,Driver P.Scaling methods for wind tunnel modelling ofbuilding internal pressures induced through openings. Wind&Structures,2010,13(4):363-374
    [38]樊友川,顾明,全涌.低矮开洞建筑风致内压试验研究.灾害学.2010,25(B10):362
    [39]樊友川,顾明,全涌.常开洞工业厂房风致内压试验研究.空气动力学学报,2011,29(5):585-592
    [40] Guha T K,Sharma R N,Richards P J.Internal pressure dynamics of a leakybuilding with a dominant opening.Journal of Wind Engineering and IndustrialAerodynamics,2011,99(11):1151-1161
    [41] Holmes J D,Ginger J D.Internal pressures–The dominant windward openingcase–A review.Journal of Wind Engineering and Industrial Aerodynamics,2012,100(1):70-76
    [42]黄鹏,顾明.一大跨度悬挑雨篷的风荷载及开洞比较.结构工程师,2004,20(4):51-55
    [43]黄江,关富玲,吴开成.杭州黄龙体育中心网球馆可开启屋盖的风洞试验.江南大学学报(自然科学版),2007,6(1):81-85
    [44]张建国,雷鹰.大跨度可开合屋盖的风荷载特性.见:第十四届全国结构风工程学术会议论文集,北京:风工程学会,2009:490-495
    [45] Blocken B,Persoon J.Pedestrian wind comfort around a large football stadium inan urban environment: CFD simulation, validation and application of the newDutch wind nuisance standard Journal of Wind Engineering and IndustrialAerodynamics,2009,97:255-270
    [46] Blaise N,Grillaud G,V. De Ville de Goyet,etal. Application of deterministic andstochastic analysis to calculate a stadium with pressure measurements in windtunnel.In: Proc of the8th Int Conf on Structural Dynamics EURODYN2011.Leuven,2011,100-118
    [47] Stathopoulos T.PDF of wind pressures on low-rise buildings. Journal of theStructural Division,1980,106(5):973-990
    [48] Meroney R N,Melbourne W H.Operating ranges of meteorological wind tunnelsfor the simulation of convective boundary layer (CBL) phenomena.Boundary-Layer Meteorology,1992,61(1):145-174
    [49] Kumar K S,Stathopoulos T.Wind loads on low building roofs: a stochasticperspective.Journal of structural engineering,2000,126(8):944-956
    [50]孙瑛.大跨屋盖结构风荷载特性研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2006:81-98,30-46
    [51]栾桂汉,黄鹏,顾明.高层建筑围护结构的风压与阵风系数研究:[同济大学硕士学位论文].上海:同济大学,2005:50-101
    [52]黄翔,顾明.悬臂弧形挑篷脉动风压的概率特征.同济大学学报(自然科学版),2007,35(9):1153-1157
    [53] Sadek F E S.Peak Non-Gaussian Wind Effects for Database-Assisted Low-RiseBuilding Design.Journal of Engineering Mechanics-Asce,2002,5(128):530-539
    [54] Sadek F,Diniz S,Kasperski M,etal.Sampling errors in the estimation of Peakwind-induced internal forces in low-rise structures. Journal of engineeringmechanics,2004,130:235-239
    [55] Winterstein S R.Non-Normal Responses and Fatigue Damage.Journal ofEngineering Mechanics,1985,111:1291
    [56] Winterstein S R.Nonlinear vibration models for extremes and fatigue.Journal ofEngineering Mechanics,1988,114(10):1769-1787
    [57] Winterstein S R,Marthinsen T.TLP springing response: reliability againstextremes and fatigue.Marine Struc. Prog.,Stanford University,1992:53-67
    [58] Winterstein S R,Ude T C,Kleiven G. Springing and slow-drift responses: predictedextremes and fatigue vs. simulation. In: Proc., BOSS-94.1994,3:1-15
    [59] Winterstein S R, Kashef T. Moment-based load and response models with windengineering applications. Journal of solar energy engineering.2000,122:122-130
    [60] Kareem A,Zhao J,Tognarelli M A.Surge response statistics of tension legplatforms under wind and wave loads: a statistical quadratization approach.Probabilistic engineering mechanics,1995,10(4):225-240
    [61] Kwon D K,Kareem A.Peak Factors for Non-Gaussian Load Effects Revisited.Journal of Structural Engineering,2011,1:308-314
    [62] Gurley K R,Kareem A.Simulation of non-Gaussian processes. Computationalstochastic mechanics,1999:11-20
    [63] Gurley K R,Kareem A.A conditional simulation of non-normal velocity/pressurefields. Journal of Wind Engineering and Industrial Aerodynamics,1998,77:39-51
    [64] Gurley K,Kareem A.Simulation of correlated non-Gaussian pressure fields.Meccanica,1998,33(3):309-317
    [65] Gurley K R.Modelling and simulation of non-Gaussian processes.University ofNotre Dame,Notre Dame.1997:166-203
    [66] Cook N J,Mayne J R.A novel working approach to the assessment of wind loadsfor equivalent static design.Journal of Wind Engineering and IndustrialAerodynamics,1979,4(2):149-164
    [67] Cook N J, Mayne J R. A refined working approach to the assessment of windloads for equivalent static design. Journal of Wind Engineering and IndustrialAerodynamics,1980,6(1):125-137
    [68]全涌,顾明,陈斌.非高斯风压的极值计算方法.力学学报,2010(3):560-566
    [69] Cartwright D E, Longuet-Higgins M S.The statistical distribution of the maximaof a random function.In: Proc of the Royal Society of London. Series A.Mathematical and Physical Sciences,1956,237(1209):212-232
    [70] Davenport A G. Note on the distribution of the largest value ofa random function with application to gust loading.In:Proc.ICE,1964(28):187–195
    [71] Holmes J D.Wind action on glass and Brown's integral. Engineering Structures,1985,7(4):226-230
    [72] Gioffrè M,Gusella V,Grigoriu M.Non-Gaussian wind pressure on prismaticbuildings.I: Stochastic field. Journal of structural engineering,2001,127(9):981-989
    [73] Gioffrè M,Gusella V,Grigoriu M.Non-Gaussian wind pressure on prismaticbuildings.II:Numerical simulation. Journal of Structural Engineering,2001,127(9):990-995
    [74] Gioffre M,Grigoriu M,Kasperski M,et al.Wind-induced peak bending moments inlow-rise building frames.Journal of engineering mechanics,2000,126(8):879-881
    [75] Tieleman H W,Elsayed M, Hajj M R.Prediction of Peak Wind Loads on Low RiseStructures.Solution to Costal Disasters,2005:484-493
    [76] Tieleman H W,Elsayed M,Hajj M R.Peak wind load comparison: Theoreticalestimates and ASCE7. Journal of Structural Engineering,2006,132:1150-1157
    [77] Tieleman H W, Ge Z, Hajj M R. Theoretically estimated peak wind loads. Journalof wind engineering and industrial aerodynamics,2007,95(2):113-132
    [78] Uematsu Y,Yamada M,Inoue A, et al.Wind loads and wind-induced dynamicbehavior of a single-layer latticed dome. Journal of wind engineering andindustrial aerodynamics,1997,66(3):227-248
    [79] Uematsu Y,Yamada M,Karasu A.Design wind loads for structural frames of flatlong-span roofs: Gust loading factor for the beams supporting roofs. Journal ofwind engineering and industrial aerodynamics.1997,66(1):35-50
    [80] Uematsu Y,Yamada M,Karasu A.Design wind loads for structural frames of flatlong-span roofs:Gust loading factor for a structurally integrated type.Journal ofwind engineering and industrial aerodynamics,1997,66(2):155-168
    [81]杨庆山,沈世钊.悬索结构随机风振反应分析.建筑结构学报,1998,19(4):29-39
    [82] Uematsu Y,Watanabe K,Sasaki A, et al.Wind-induced dynamic response andresultant load estimation of a circular flat roof. Journal of Wind Engineering andIndustrial Aerodynamics,1999,83(1):251-261
    [83]潘峰.大跨度屋盖结构随机风致振动响应精细化研究:[浙江大学博士学位论文].杭州:浙江大学,2008:95-120
    [84]韩志惠,周晅毅,顾明,等.世博轴阳光谷结构风致响应分析及频域时域方法计算结果比较.振动与冲击,2011,30(5):230-235
    [85]王国砚,黄本才,林颖儒,等.基于CQC方法的大跨屋盖结构随机风振响应计算.空间结构,2003,9(4):22-26
    [86]黄本才,齐辉,陈勇.悬挑屋盖多模态和交叉项对风激动力响应影响.同济大学学报:自然科学版,2004,32(6):722-726
    [87]梁枢果,夏法宝,邹良浩,等.矩形高层建筑横风向风振响应简化计算.建筑结构学报,2004,25(5):48-54
    [88]周晅毅.大跨度屋盖结构风荷载及风致响应研究:[同济大学博士学位论文].上海:同济大学,2004:118-141
    [89]陈波.大跨屋盖结构等效静风荷载精细化理论研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2005:100-130
    [90]楼文娟.刚性模型风洞试验确定大跨屋盖结构风振系数的多阶模态力法.空气动力学学报,2005,23(2):183-187
    [91]沈国辉,孙炳楠,楼文娟.求解建筑结构风致抖振问题的方法分析.浙江大学学报(工学版),2007,41(1):34-39
    [92] Huang G,Chen X.Wind load effects and equivalent static wind loads of tallbuildings based on synchronous pressure measurements.Engineering Structures,2007,29(10):2641-2653
    [93] Huang M F,Chan C M, Kwok K, et al. Cross correlations of modal responses oftall buildings in wind-induced lateral-torsional motion. Journal of engineeringmechanics,2009,135:802-807
    [94]王天元,植松康.準静的成分と共振成分の連成を考慮した高層建築物の風応答評価法.见:日本風工学会論文集,东京,2010,35(4):117-126
    [95] Davenport A G.Gust loading factors.Journal of the Structural Division,1967,93(3):11-34
    [96] Simiu E.Revised procedure for estimating along-wind response.Journal of theStructural Division,1980,106(1):1-10
    [97] Piccardo G, Solari G. A refined model for calculating3-D equivalent static windforces on structures. Journal of wind engineering and industrial aerodynamics,1996,65(1-3):21-30
    [98] Piccardo G,Solari G.3D wind-excited response of slender structures: Closed-formsolution.Journal of Structural Engineering,2000,126(8):936-943
    [99] Zhou Y,Kareem A.Gust loading factor:New model.Journal of StructuralEngineering,2001,127(2):168-175
    [100] Chen X,Kareem A.Equivalent static wind loads for buffeting response of bridges.Journal of Structural Engineering,2001,127(12):1467-1475
    [101]谢壮宁,方小丹,倪振华.超高层建筑的等效静风荷载-扩展荷载响应相关方法.振动工程学报,2008,21(4):398-403
    [102]陈波,武岳,沈世钊.大跨度屋盖结构等效静力风荷载中共振分量的确定方法研究.工程力学,2007,24(1):51-55
    [103] Kasperski M.Extreme wind load distributions for linear and nonlinear design.Engineering Structures,1992,14(1):27-34
    [104] Chen X, Kareem A.Equivalent static wind loads on buildings: New model. Journalof Structural Engineering,2004,130:1425
    [105] Holmes J D.Effective static load distributions in wind engineering. Journal ofWind Engineering and Industrial Aerodynamics,2002,90(2):91-109
    [106]陈波,武岳,沈世钊.大跨度屋盖结构等效静力风荷载背景分量的确定方法探讨.工程力学,2006,23(11):21-27
    [107] Huang G,Chen X.Wind load effects and equivalent static wind loads of tallbuildings based on synchronous pressure measurements.Engineering Structures.2007,29(10):2641-2653
    [108]陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究及应用:[浙江大学博士学位论文].杭州:浙江大学,2005:100-106
    [109] Hu X.Wind loading effects and equivalent static wind loading on low-risebuildings. Lubbock: Texas Tech University,2006:120-131
    [110] Katsumura A,Tamura Y,Nakamura O.Universal wind load distributionsimultaneously reproducing largest load effects in all subject members onlarge-span cantilevered roof.Journal of wind engineering and industrialaerodynamics,2007,95(9-11):1145-1165
    [111]梁枢果,吴海洋,郭必武,等.大跨度屋盖结构等效静力风荷载数值计算方法.华中科技大学学报(自然科学版).2008,36(4):25-30
    [112] Yang Q,Chen B.Universal equivalent static wind loads of one single-layerreticular dome.Editorial de la Universitat Politécnica de Valencia.2009:12-17
    [113]周晅毅.加权约束最小二乘法计算等效静力风荷载.同济大学学报,2010,38(10):1403-1406.
    [114] Zhou X,Gu M,Li G.Grouping response method for equivalent static wind loadsbased on a modified LRC method. Earthquake Engineering and EngineeringVibration,2012,11(1):107-119
    [115] Levitan M L,Mehta K C.Texas tech field experiments for wind loads part1:building and pressure measuring system.Journal of Wind Engineering andIndustrial Aerodynamics,1992,43(1):1565-1576
    [116] Levitan M L,Mehta K C.Texas Tech field experiments for wind loads part II:meteorological instrumentation and terrain parameters.Journal of WindEngineering and Industrial Aerodynamics,1992,43(1):1577-1588
    [117] Tieleman H W,Surry D, Mehta K C.Full/model-scale comparison of surfacepressures on the Texas Tech experimental building. Journal of wind engineeringand industrial aerodynamics,1996,61(1):1-23
    [118]中华人民共和国建设部.建筑结构荷载规范5009-2001.北京:建筑结构出版社,2001:36-50
    [119]中华人民共和国建设部.建筑结构荷载规范5009-2012.北京:建筑结构出版社,2012:38-60
    [120] Cochran L S,Cermak J E.Full-and model-scale cladding pressures on the TexasTech University experimental building.Journal of Wind Engineering andIndustrial Aerodynamics,1992,43(1):1589-1600
    [121] Okada H,Ha Y C.Comparison of wind tunnel and full-scale pressure measurementtests on the Texas Texh Building.Journal of Wind Engineering and IndustrialAerodynamics,1992,43(1):1601-1612
    [122] Endo M, Bienkiewicz B, Ham H J. Wind-tunnel investigation of point pressure onTTU test building. Journal of wind engineering and industrial aerodynamics,2006,94(7):553-578
    [123]余世策.开孔结构风致内压及其与柔性屋盖的耦合作用:[浙江大学博士学位论文].杭州:浙江大学,2006:100-121
    [124]卢旦.风致内压特性及其对建筑物作用的研究:[浙江大学博士学位论文].杭州:浙江大学,2006:68-90
    [125]樊友川.典型工业厂房风荷载及其风振研究:[同济大学博士学位论文].上海:同济大学,2011:152-160
    [126] Canada.The National building code of Canada.2005:231-250
    [127]日本建筑学会,AIJ Recommendation for loads on buildings.2004:101-120
    [128] Structural engineering institute.Minimum design loads for buildings and otherstructures2010(ASCE7-2010).2010:154-180
    [129] Irwin P A,Dunn G. Review of Internal Pressures on Low-Rise Buildings. RWDIReport93-270.In:Report to Canadian Sheet Steel Institute, Rowan, Williams,Davies and Irwin Inc., Guelph,Ontario,1993:451-480
    [130] Ditlevsen O,Mohr G,Hoffmeyer P.Integration of non-Gaussian fields. ProbabilisticEngineering Mechanics,1996,11(1):15-23
    [131] Choi M,Sweetman B.The Hermite Moment Model for Highly Skewed ResponseWith Application to Tension Leg Platforms. Journal of Offshore Mechanics andArctic Engineering,2010,132:21602
    [132] Yang L,Gurley K R,Prevatt D O.Probabilistic modeling of wind pressure onlow-rise building.In:Proc of ICWE13.Amsterdam,2011,1053-1062
    [133] Rice S O.Mathematical analysis of random noise-conclusion. Bell SystemsTech.,1945,24:46-156
    [134] Vogel R M.The probability plot correlation coefficient test for the normal,lognormal,and Gumbel distributional hypotheses.Water ResourcesResearch,1986,22(4):587-590
    [135] Pillai S N.Generalized peak factor and its application to stationary randomprocesses in wind engineering applications.In:Proc of ICWE13.Amsterdam,2011,1321-1330
    [136] Davenport A G.The generalization and simplification of wind loads andimplications for computational methods.Journal of Wind Engineering andIndustrial Aerodynamics,1993,46:409-417
    [137] Davenport A G. How can we simplify and generalize wind loads?. Journal of WindEngineering and Industrial Aerodynamics,1995,54:657-669
    [138]柯世堂,葛耀君.基于一致耦合法某大型博物馆结构风致响应精细化研究.建筑结构学报,2012,33(3):111-117
    [139] Newland D E.An introduction to random vibrations,spectral&wavelet analysis.Dover Publications,2005:201-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700