p62在大鼠慢性脊髓损伤中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:随着科技进步和人类平均年龄的增加,中老年脊柱退变性疾病发病率越来越高,慢性脊髓损伤尤为常见,严重影响生活质量。脊柱退行性改变导致慢性机械性脊髓损伤,造成运动和感觉功能的隐匿性和持续性进展。慢性脊髓损伤严重影响患者的生活质量,给家庭和社会带来了沉重的负担。慢性脊髓损伤机制尚未阐明,慢性脊髓损伤是由于多种因素所导致的,发病机制不明,虽然有许多针对该领域的研究,但都未获得明确的病因。近年来,凋亡反应在脊髓损伤中的研究越来越多,参与慢性脊髓损伤的凋亡通路很多,包括经典的Fas信号通路途径。近年来,有研究者发现,p62与NFkB介导的凋亡通路密切相关,但未见针对慢性脊髓损伤的相关研究,p62可能在慢性脊髓损伤中发挥重要作用。因此,本研究通过建立慢性脊髓损伤动物模型,初步探索p62在慢性脊髓损伤中的作用。
     研究方法:采用后路慢性压迫装置造成SD大鼠T8的脊髓慢性损伤。将36只SD大鼠分为对照组,1周、4周、8周、12周和16周模型组。首先,通过自制的后路慢性脊髓压迫装置,固定在大鼠的T7至T9水平,通过间断的螺钉拧入,连续6周每周拧入1个螺距0.3mm,造成脊髓慢性压迫,6周后停止拧入,持续观察。对出现术后并发症或神经功能急性损伤大鼠采取废弃处理,及时补充每组的模型动物数量。慢性压迫螺钉每周拧入一个螺距0.3mm,连续拧入6周,后10周采取静态观察,不再拧入。每4周进行X线检测螺钉压迫程度,通过HE染色观察大体形态变化,采用PCR和Western Blot检测p62、NFkB、LC3、caspase3在造模后不同时间点的表达量,通过免疫组化观察上述指标在不同时间点的表达变化情况,通过TUNEL检测术后不同时间点的凋亡进展。活体动物神经功能评分方面,采用BBB评分进行神经功能评价,观察术后不同时间点的大鼠神经功能变化情况。
     结果:造模后复查侧位片提示慢性压迫装置在位,造成椎管内压迫。大鼠的运动和感觉功能障碍出现在造模后1周和8周时,神经功能评分降低(18.33±0.82;14.83±0.75;12.67±0.82),与对照组相比有统计学意义(P=0.000;P=0.000;P=0.000),提示慢性压迫造成了神经功能障碍。至造模后12周及16周神经功能BBB评分略有升高(14.83±0.75;16.0±0.82,P=0.000;P=0.000),但与对照组相比,均有统计学意义(P<0.05)。组织学方面,造模后1周时,HE染色切片观察未见明显神经元变性以及白质的髓鞘改变;4周时出现轻度的神经元变形以及白质的脱髓鞘改变,出现少量空泡样变性;造模后8周时出现神经元固缩变性,白质空泡样改变,脱髓鞘改变。造模后12周时,出现较为明显的神经元变性,空泡样变以及空泡样变;造模后16周时,神经元广泛变性,空泡样变加重,脱髓鞘改变更加明显。TUNEL凋亡检测发现从造模后1周开始出现阳性细胞,持续表达至造模后16周,逐渐出现核固缩碎裂等典型的凋亡特征。PCR结果提示,造模后p62的表达持续增加,造模后至12周时,p62的表达持续增加,至造模后16周时,表达相对值较12周略有下降;LC3、NFkB以及caspase3结果均提示造模后1周至16周,上述基因的表达量均持续增加;WB结果提示,p62的表达量至造模后12周时表达量持续增加,12周至16周时增加不明显,LC3、NFkB以及casepase3的表达量在造模后各时间点均显著增加。
     结论:大鼠的后路慢性压迫装置能够较稳定的模拟慢性脊髓损伤疾病,可重复性好,通过对慢性脊髓损伤大鼠的观察,可见大鼠慢性脊髓损伤后出现慢性脊髓病理改变过程,逐渐出现神经元变性以及脱髓鞘改变。此外,慢性脊髓损伤后在不同时间点, p62在大鼠慢性脊髓损伤后表达持续增加,参与了慢性脊髓损伤后的病理机制过程,提示p62的积聚可能与慢性脊髓损伤的发生发展有关。随着慢性脊髓损伤后p62的表达增加,相应的NFkB、LC3和caspase3的表达也相应增加,且免疫组化结果可见p62与NFkB同时在神经元胞核内表达,进一步提示p62可能参与NFkB介导的脊髓损伤后凋亡反应,在其中发挥一定的作用,但其确切机制仍需要进一步研究。
Object: With the development of technology and the increase of average age of life, theincidence of degenerative spinal disease is becoming higher and higher, especially in chronic spinalcord injury, which effects the life quality in human beings. Chronic mechanical compression of thespinal cord, which is commonly caused by degeneration of the spine, impairs motor and sensoryfunctions insidiously and progressively. Chronic spinal cord injury affects the late life quality andbrings the heavy burdens for families and countries. Yet the exact mechanisms of chronic spinal cordcompression (SCC) remain to be elucidated. Chronci spinal cord injury is caused by multi factors andthe exact mechanism is still unclear. Recently, apoptosis and autophay has been paid more attention to.There are many signaling pathways in the apoptosis process, including the classic Fas mediatedapoptosis. Meanwhile, p62has been demonstrated that it correlates with apoptosis process via NFkBsignaling pathway. To study the role of p62in this condition, we developed a simple animalexperimental model that reproduced the clinical course of mechanical compression of the spinal cord.
     Methods: Posterior spinal cord compression device was used to create the rat model throughthe T8lamine.36SD rats were randomly divided into six groups including control group,1-weekgroup,4-week group,8-week group,12-week group and16-week group. A custom-designedcompression device was implanted on the exposed spinal cord of female SD rats between the T-7andT-9vertebrae. A root canal screw was tightened1complete turn (1pitch=0.3mm) every7days for6weeks. After then, the compression device was stable and rats were evaluated for consecuative tenweeks. The placement of the compression device and the degree of compression were validated everyweek using radiography. HE staining was used to assessed the spinal tissue. PCR and Western Blotwere used to qualitilize the expression of p62, NFkB, LC3and caspase3. Immunohistochemistry wasused to indentifiy the localization and expression of p62, NFkB, LC3and caspase3at different timeinterval. After1,4,8,12and16weeks, the compressed T7-9spinal cords were harvested andexamined via TUNEL. Furthermore, a BBB rating scale was also calculated at different time interval.
     Results:Lateral projection of the thoracic spine showed a progressively increasing rate of meanspinal cord narrowing in the compression group. No obvious moter and sensory deficit was obvervedin control group and1-week group. BBB scores were observed from week1to week8(18.33±0.82;14.83±0.75;12.67±0.82, P=0.000; p=0.000; p=0.000). Obvious pathological changes wereobserved starting at Week12and16(14.83±0.75;16.0±0.82, p=0.000; p=0.000). Histologically, noobvious changes in both gray and white matters could be seen in control and1-week compressiongroups. At4weeks, the number of neurons in the gray matter of rats with chronic compression of thespinal cord decreased. Demyelination and vacuolus changes were seen in the white matter. At8weeks, in gray matter, the number of neurons in the gray matter progressively decreased. In the white matter,myelin destruction and loss of axons and glia were noted. The pathological examination showedneuronatrophy, increased gap around the neurons, mild demyelinated and vacuolar degeneration inexperimental group at12weeks after surgery, while more remarkably at16weeks after surgery. Thenumber of terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-endlabeling (TUNEL)–positive neurons increased from week1to week16. The PCR analysis showedthat the expression of p62continuously increased from week1to week12, while relatively lower inweek16. In addition, the expression of LC3, NFkB and caspase3increased all the time after surgery.In werstern blot, the expression of p62increased from week1to week12, while a littlbe bit lower inweek16. In addition, the expression of LC3, NFkB and caspase3increased all the time after surgery.
     Conclusions: This practical model accurately reproduces characteristic features of clinicalchronic SCC, including progressive motor and sensory disturbances after a latency and insidiousneuronal loss. In addition, we found that the expression of p62increased in the chronic compressionprocess and may play an important role in the chronic spinal cord injury. It indicated that theaccumulation of p62may contribute to the development of chronic spinal cord injury. Finally, withthe increased expression of p62, the expression of NFkB, LC3and caspase3increased. In addition,Immunohistochemistry analysis showed that the expression of p62and NFkB could be seen both inthe nucleus. It indicated that p62may take part in the NFkB signaling pathway and play an importantrole. However, futher study should be carried out to clarify the exact mechanism of the chronic spinalcord injury.
引文
1. Kato Y, Kanchiku T, Imajo Y, et al. Biomechanical study of the effect of degree of static compression of thespinal cord in ossification of the posterior longitudinal ligament [J]. J Neurosurg Spine,2010,3:301-305.
    2. Setzer M, Hermann E, Seifert V, et al. Apolipoprotein E gene polymorphism and the risk of cervicalmyelopathy in patients with chronic spinal cord compression [J]. Spine,2008,33:497-502.
    3. Epstein JA, Carras R, Hyman RA, et al. Cervical myelopathy caused by developmental stenosis of the spinalcanal [J]. Neurosurg,1979,51:362-7.
    4. Sudo H, Taneichi H, Kaneda K. Secondary medulla oblongata involvement following middle cervical spinalcord injury associated with latent traumatic instability in a patient with ossification of the posterior longitudinalligament [J]. Spinal Cord,2006,44:126-9.
    5. Wimberley DW, Vaccaro AR, Goyal N, et al. Acute quadriplegia following closed traction reduction of acervical facet dislocation in the setting of ossification of the posterior longitudinal ligament: case report [J]. Spine,2005,30: E433-8.
    6. Klironomos G, Karadimas S, Mavrakis A, et al. New experimental rabbit animal model for cervicalspondylotic myelopathy [J]. Spinal Cord,2011,[Epub ahead of print]
    7. Hattori S, Kawai K, Mabuchi Y, et al. The relationship between magnetic resonance imaging and quantitativeelectromyography findings in patients with compressive cervical myelopathy [J]. Spine,2010,35: E290-4.
    8. Song KJ, Choi BW, Kim SJ, et al. The relationship between spinal stenosis and neurological outcome intraumatic cervical spine injury: an analysis using Pavlov's ratio, spinal cord area, and spinal canal area [J]. ClinOrthop Surg,2009,1:11-8.
    9. Duhamel G, Callot V, Cozzone PJ, et al. Spinal cord blood flow measurement by arterial spin labeling [J].Magn Reson Med,2008,59:846-54.
    10. Kanchiku T, Taguchi T, Kaneko K, et al. A new rabbit model for the study on cervical compressivemyelopathy [J]. J Orthop Res,2001,19:605-13.
    11. Breig A. Adverse Mechanical Tension in the Central Nervous System. New York, J. Wiley,1978.
    12. Henderson FC, Geddes JF, Vaccaro AR, et al. Stretch-associated injury in cervical spondylotic myelopathy:new concept and review [J]. Neurosurgery,2005,56:1101-13.
    13. Maxwell WL, Domleo A, McColl G, et al. Post-acute alterations in the axonal cytoskeleton after traumaticaxonal injury [J]. J Neurotrauma,2003,20:151-68.
    14. Ichihara K, Taguchi T, Shimada Y, et al. Gray matter of the bovine cervical spinal cord is mechanically morerigid and fragile than the white matter [J]. J Neurotrauma,2001,18:361-7.
    15. Kato Y, Kanchiku T, Imajo Y, et al. Flexion model simulating spinal cord injury without radiographicabnormality in patients with ossification of the longitudinal ligament: the influence of flexion speed on thecervical spine [J]. J Spinal Cord Med,2009,32:555-9.
    16. Kim P, Haisa T, Kawamoto T, et al. Delayed myelopathy induced by chronic compression in the ratspinal cord [J]. Ann Neurol,2004,55:503-11.
    17. Manabe S, Tanaka H, Higo Y, Park P, Ohno T, Tateishi A: Experimental analysis of spinal cordcompressed by spinal metastasis. Spine.1989,14:1308–1315.
    18. Ushio Y, Posner R, Kim JH, Shapiro WR, Posner JB: Experimental spinal cord compression byepidural neoplasms. Neurology.1977,27:422–429.
    19. Ikeda H, Ushio Y, Hayakawa T, Mogami H: Edema and circulatory disturbance in the spinal cordcompressed by epidural neoplasms in rabbits. J Neurosurg,1980,52:203–209.
    20. Kasahara K, Nakagawa T, Kubota T: Neuronal loss and expression of neurotrophic factors in amodel of rat chronic compressive spinal. Spine.,2006,31:2059–2066.
    21. Shinomiya K, Mutoh N, Furuya K: Study of experimental cervical spondylotic myelopathy. Spine.1992,17(10Suppl):S383–S387.
    22. Tanaka H:[Experimental study of cervical spondylotic myelopathy cervical canal stenosis.] NipponSeikeigeka Gakkai Zasshi.1980(Jpn),54:161–176.
    23. al-Mefty O, Harkey HL, Marawi I, Haines DE, Peeler DF, Wilner HI, et al: Experimental chroniccompressive myelopathy. J Neurosurg.1993,79:550–561.
    24. Bohlman H, Emery S: The pathophysiology of cervical spondylosis and myelopathy. Spine.198813:843–846.
    25. Kameyama T, Hashizume Y, Ando T, Takahashi A, Yanagi T,Mizuno J: Spinal cord morphology andpathology in ossification of the posterior longitudinal ligament. Brain.1995,118:263–278.
    26. Ono K, Ota H, Tada K, Yamamoto T: Cervical myelopathy secondary to multiple spondyloticprotrusions. A clinicopathologic study. Spine.1977,2:109–125.
    27. Wilkinson M: The morbid anatomy of cervical spondylosis and myelopathy. Brain.1960,83:589–616.
    28. Mair WG, Druckman R: The pathology of spinal cord lesions and their relation to the clinicalfeatures in protrusion of cervical intervertebral discs; a report of four cases. Brain.1953,76:70–91.
    29. Sharrard WJ: The distribution of the permanent paralysis in the lower limb in poliomyelitis. Aclinical and pathological study. J Bone Joint Surg Br.1955,37-B:540–558.
    30. Fehlings MG, Yu WR, Shannon P, Sekhon LHS: Role of apoptosis in neuronal and axonaldegeneration in cervical spondylotic myelopathy: an immunohistochemical study of human autopsy cases. Can JNeurol Sci.200027(2Suppl):S66.
    1. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrientdependent mtorc1associationwith the ulk1-atg13-fip200complex required for autophagy. Mol Biol Cell2009;20:1981–91.
    2. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. Ulk-atg13-fip200complexes mediate mtor signalingto the autophagy machinery. Mol Biol Cell2009;20:1992–2003.
    3. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulatorrag complex targets mtorc1tothe lysosomal surface and is necessary for its activation by amino acids. Cell2010;141:290–303.
    4. Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, et al. P62is a key regulator of nutrientsensing in the mtorc1pathway. Mol Cell2011;44:134–46.
    5. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, et al. A protein conjugation system essentialfor autophagy. Nature1998;395:395–8.
    6. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediatesprotein lipidation. Nature2000;408:488–92.
    7. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, et al. Mouse apg16l, a novelwd-repeat protein, targets to the autophagic isolation membrane with the apg12-apg5conjugate. J Cell Sci2003;116:1679–88.
    8. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The atg16l complex specifies the site of lc3lipidation for membrane biogenesis in autophagy. Mol Biol Cell2008;19:2092–100.
    9. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosomeformation using apg5-deficient mouse embryonic stem cells. J Cell Biol2001;152:657–68.
    10. Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, et al. The atg8conjugation system is indispensablefor proper development of autophagic isolation membranes in mice. Mol Biol Cell2008;19:4762–75.
    11. Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, et al. An atg4b mutant hampersthe lipidation of lc3paralogues and causes defects in autophagosome closure. Mol Biol Cell2008;19:4651–9.
    12. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. a mammalian homologue of yeastapg8p, is localized in autophagosome membranes after processing. EMBO J2000;19:5720–8.
    13. Itakura E, Mizushima N. P62targeting to the autophagosome formation site requires self-oligomerization butnot lc3binding. J Cell Biol2011;192:17–27.
    14. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. P62/sqstm1binds directly to atg8/lc3tofacilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem2007;282:24131–45.
    15. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, et al. Structural basis for sortingmechanism of p62in selective autophagy. J Biol Chem2008;283:22847–57.
    16. Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy2011;7:279–96.
    17. Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes.Annu Rev Biochem2011;80:125–56.
    18. Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy. Mol Cell2009;34:259–69.
    19. Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, et al. A role for nbr1in autophagosomaldegradation of ubiquitinated substrates. Mol Cell2009;33:505–16.
    20. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The tbk1adaptor and autophagy receptorndp52restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol2009;10:1215–21.
    21. Moscat J, Diaz-Meco MT. The atypical protein kinase cs, Functional specificity mediated by specific proteinadapters. EMBO Rep2000;1:399–403.
    22. Rodriguez A, Duran A, Selloum M, Champy MF, Diez-Guerra FJ, Flores JM, et al. Mature-onset obesity andinsulin resistance in mice deficient in the signaling adapter p62. Cell Metab2006;3:211–22.
    23. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, et al. Autophagy regulates adipose mass anddifferentiation in mice. J Clin Invest2009;119:3329–39.
    24. Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose-specific deletion of autophagy-relatedgene7(atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A2009;106:19860–5.
    25. Baerga R, Zhang Y, Chen PH, Goldman S, Jin S. Targeted deletion of autophagyrelated5(atg5) impairsadipogenesis in a cellular model and in mice. Autophagy2009;5:1118–30.
    26. Moscat J, Diaz-Meco MT, Wooten MW. Signal integration and diversification through the p62scaffold protein.Trends Biochem Sci2007;32:95–100.
    27. Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, et al. Cullin3-based polyubiquitination and p62-dependentaggregation of caspase-8mediate extrinsic apoptosis signaling. Cell2009;137:721–35.
    28. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, et al. The selective autophagysubstrate p62activates the stress responsive transcription factor nrf2through inactivation of keap1. Nat Cell Biol2010;12:213–23.
    29. Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, et al. A noncanonical mechanism of nrf2activation byautophagy deficiency: Direct interaction betweenkeap1and p62. Mol Cell Biol2010;30:3275–85.
    30. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, et al. P62/sqstm1is a target gene fortranscription factor nrf2and creates a positive feedback loop by inducing antioxidant response element-drivengene transcription. JBiol Chem2010;285:22576–91.
    31. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygousdisruption of the beclin1autophagy gene. J Clin Invest2003;112:1809–20.
    32. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin1, an autophagy gene essential for early embryonicdevelopment, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A2003;100:15077–82.
    33. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, et al. Autophagy-deficient mice developmultiple liver tumors. Genes Dev2011;25:795–800.
    34. Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT, et al. The signaling adaptor p62is an important nf-kappab mediator in tumorigenesis.Cancer Cell2008;13:343–54.
    35. Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z, et al. Krasg12d-induced ikk2/beta/nf-kappab activation byil-1alpha and p62feedforward loops is required for development of pancreatic ductal adenocarcinoma. CancerCell2012;21:105–20.
    36. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesisthrough elimination of p62. Cell2009;137:1062–75.
    37. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the keap1-nrf2pathway in stress responseand cancer evolution. Genes Cells2011;16:123–40.
    38. Hayes JD, McMahon M. Nrf2and keap1mutations: Permanent activation of an adaptive response in cancer.Trends Biochem Sci2009;34:176–88.
    39. Adam J, Hatipoglu E, O’Flaherty L, Ternette N, Sahgal N, Lockstone H, et al. Renal cyst formation infh1-deficient mice is independent of the hif/phd pathway: roles for fumarate in keap1succination and nrf2signaling. Cancer Cell2011;20:524–37.
    40. Kinch L, Grishin NV, Brugarolas J. Succination of keap1and activation of nrf2-dependent antioxidantpathways in fh-deficient papillary renal cell carcinoma type2. Cancer Cell2011;20:418–20.
    1. G. Nabel, D. Baltimore, An inducible transcription factor activates expression of human immunodeficiencyvirus in T cells, Nature326(1987)711–713.
    2. M.L. Schmitz, I. Mattioli, H. Buss, M. Kracht, NF-kappaB: a multifaceted transcription factor regulated atseveral levels, Chem-BioChem5(2004)1348–1358.
    3. G. Bonizzi, M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity,Trends Immunol.25(2004)280–288.
    4. A.J. Bruce, W. Boling, M.S. Kindy, J. Peschon, P.J. Kraemer, M.K. Carpenter, F.W. Holtsberg, M.P. Mattson,Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors,Nat. Med.2(1996)788–794.
    5. M.A. Collart, P. Baeuerle, P. Vassalli, Regulation of tumor necrosis factor alpha transcription in macrophages:involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B,Mol. Cell. Biol.10(1990)1498–1506.
    6. R. Kolesnick, D.W. Golde, The sphingomyelin pathway in tumor necrosis factor and interleukin-1signaling,Cell77(1994)325–328.
    7. F. Henkler, H. Wajant, in: M.L. Schmitz, S. Bacher (Eds.), Mechanisms of Signal Transduction and InducibleGene Expression, Research Signpost, Kerala, India,2004, pp.97–119.
    8. L. Yang, K. Lindholm, Y. Konishi, R. Li, Y. Shen, Target depletion of distinct tumor necrosis factor receptorsubtypes reveals hippocampal neuron death and survival through different signal transduction pathways, J.Neurosci.22(2002)3025–3032.
    9. L. Marchetti, M. Klein, K. Schlett, K. Pfizenmaier, U.L. Eisel, Tumor necrosis factor (TNF)-mediatedneuroprotection against glutamateinduced excitotoxicity is enhanced by N-methyl-d-aspartate receptor activation.Essential role of a TNF receptor2-mediated phosphatidylinositol3-kinase-dependent NF-kappa B pathway, J.Biol. Chem.279(2004)32869–32881.
    10. O. Micheau, J. Tschopp, Induction of TNF receptor I-mediated apoptosis via two sequential signalingcomplexes, Cell114(2003)181–190.
    11. B. Cheng, S. Christakos, M.P. Mattson, Tumor necrosis factors protect neurons against metabolic–excitotoxicinsults and promote maintenance of calcium homeostasis, Neuron12(1994)139–153.
    12. N.G. Carlson, W.A. Wieggel, J. Chen, A. Bacchi, S.W. Rogers, L.C. Gahring, Inflammatory cytokines IL-1alpha, IL-1beta, IL-6, and TNF-alpha impart neuroprotection to an excitotoxin through distinct pathways, J.Immunol.163(1999)3963–3968.
    13. L.A.J. ONeill, C. Kaltschmidt, NF-nB: a crucial transcription factor for glial and neuronal cell function,Trends Neurosci.20(1997)252–258.
    14. J.L. Ducut Sigala, V. Bottero, D.B. Young, A. Shevchenko, F. Mercurio, I.M. Verma, Activation oftranscription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit, Science304(2004)1963–
    1967.
    15. M. Delhase, M. Hayakawa, Y. Chen, M. Karin, Positive and negative regulation of IkappaB kinase activitythrough IKKbeta subunit phosphorylation, Science284(1999)309–313.
    16. J. Yang, Y. Lin, Z. Guo, J. Cheng, J. Huang, L. Deng, W. Liao, Z. Chen, Z. Liu, B. Su, The essential role ofMEKK3in TNF-induced NF-kappaB activation, Nat. Immunol.2(2001)620–624.
    17. S. Tegethoff, J. Behlke, C. Scheidereit, Tetrameric oligomerization of IkappaB kinase gamma (IKKgamma) isobligatory for IKK complex activity and NF-kappaB activation, Mol. Cell. Biol.23(2003)2029–2041.
    18. F. Agou, G. Courtois, J. Chiaravalli, F. Baleux, Y.M. Coic, F. Traincard, A. Israel, M. Veron, Inhibition ofNF-kappa B activation by peptides targeting NF-kappa B essential modulator (nemo)oligomerization, J. Biol. Chem.279(2004)54248–54257.
    19. R. Weil, K. Schwamborn, A. Alcover, C. Bessia, V. Di Bartolo, A. Israel, Induction of the NF-kappaB cascadeby recruitment of the scaffold molecule NEMO to the T cell receptor, Immunity18(2003)13–26.
    20. G. Chen, P. Cao, D.V. Goeddel, TNF-induced recruitment and activation of the IKK complex require Cdc37and Hsp90, Mol. Cell9(2002)401–410.
    21. C. Behl, J.B. Davis, R. Lesley, D. Schubert, Hydrogen peroxide mediates amyloid beta protein toxicity, Cell77(1994)817–827.
    22. C. Bonaiuto, P.P. McDonald, F. Rossi, M.A. Cassatella, Activation of nuclear factor-kappa B by beta-amyloidpeptides and interferongamma in murine microglia, J. Neuroimmunol.77(1997)51–56.
    23. D. Ferrari, S. Wesselborg, M. Bauer, O.K. Schulze, Extracellular ATP activates transcription factor NF-kappaBthrough the P2Z purinoreceptor by selectively targeting NF-kappaB p65, J. Cell Biol.139(1997)1635–1643.
    24. G.R. John, J.E. Simpson, M.N. Woodroofe, S.C. Lee, C.F. Brosnan, Extracellular nucleotides differentiallyregulate interleukin-1beta signaling in primary human astrocytes: implications for inflammatory gene expression,J. Neurosci.21(2001)4134–4142.
    25. R. Basheer, D.G. Rainnie, T. Porkka-Heiskanen, V. Ramesh, R.W. McCarley, Adenosine, prolongedwakefulness, and A1-activated NFkappaB DNA binding in the basal forebrain of the rat, Neuroscience104(2001)731–739.
    26. M.K. Bauer, K. Lieb, K. Schulze-Osthoff, M. Berger, P.J. Gebicke-Haerter, J. Bauer, B.L. Fiebich, Expressionand regulation of cyclooxygenase-2in rat microglia, Eur. J. Biochem.243(1997)726–731.
    27. G. Pistritto, O. Franzese, G. Pozzoli, C. Mancuso, G. Tringali, P. Preziosi, P. Navarra, Bacteriallipopolysaccharide increases prostaglandin production by rat astrocytes via inducible cyclo-oxygenase: evidencefor the involvement of nuclear factor kappaB, Biochem. Biophys. Res. Commun.263(1999)570–574.
    28. M. Digicaylioglu, S.A. Lipton, Erythropoietin-mediated neuroprotection involves cross-talk between Jak2andNF-kappaB signaling cascades, Nature412(2001)641–647.
    29. M. Schwaninger, S. Sallmann, N. Petersen, A. Schneider, S. Prinz, T.A. Libermann, M. Spranger, Bradykinininduces interleukin-6expression in astrocytes through activation of nuclear factor-kappaB, J. Neurochem.73(1999)1461–1466.
    30. Y. Han, T. He, D.R. Huang, C.A. Pardo, R.M. Ransohoff, TNF-alpha mediates SDF-1alpha-induced NF-kappaB activation and cytotoxic effects in primary astrocytes, J. Clin. Invest.108(2001)425–435.
    31. M.A. Burke, M. Bothwell, p75neurotrophin receptor mediates neurotrophin activation of NF-kappa B andinduction of iNOS expression in P19neurons, J. Neurobiol.55(2003)191–203.
    32. J.C. Nickols, W. Valentine, S. Kanwal, B.D. Carter, Activation of the transcription factor NF-kappaB inSchwann cells is required for peripheral myelin formation, Nat. Neurosci.6(2003)161–167.
    33. I. Charalampopoulos, C. Tsatsanis, E. Dermitzaki, V.I. Alexaki, E. Castanas, A.N. Margioris, A. Gravanis,Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis viaantiapoptotic Bcl-2proteins, Proc. Natl. Acad. Sci. U. S. A.101(2004)8209–8214.
    34. J.A. Brandt, L. Churchill, A. Rehman, G. Ellis, S. Memet, A. Israel, J.M. Krueger, Sleep deprivation increasesthe activation of nuclear factor kappa B in lateral hypothalamic cells, Brain Res.1004(2004)91–97.
    35. C. Sole, X. Dolcet, M.F. Segura, H. Gutierrez, M.T. Diaz-Meco, R. Gozzelino, D. Sanchis, J.R. Bayascas, C.Gallego, J. Moscat, A.M. Davies, J.X. Comella, The death receptor antagonist FAIM promotes neurite outgrowthby a mechanism that depends on ERK and NFkappa B signaling, J. Cell Biol.167(2004)479–492.
    36. Y. Zhu, C. Culmsee, S. Klumpp, J. Krieglstein, Neuroprotection by transforming growth factor-beta1involvesactivation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated proteinkinase-extracellular-signal regulated kinase1,2signaling pathways, Neuroscience123(2004)897–906.
    37. M. Arsura, M. Wu, G.E. Sonenshein, TGF beta1inhibits NF-kappa B/Rel activity inducing apoptosis of Bcells: transcriptional activation of I kappa B alpha, Immunity5(1996)31–40.
    38. S. Camandola, G. Poli, M.P. Mattson, The lipid peroxidation product4-hydroxy-2,3-nonenal inhibitsconstitutive and inducible activity of nuclear factor kappa B in neurons, Brain Res. Mol. Brain Res.85(2000)53–60.
    39. F. Pousset, R. Dantzer, K.W. Kelley, P. Parnet, Interleukin-1signaling in mouse astrocytes involves Akt: astudy with interleukin-4and IL-10, Eur. Cytokine Netw.11(2000)427–434.
    40. A. Bachis, A.M. Colangelo, S. Vicini, P.P. Doe, M.A. De Bernardi, G. Brooker, I. Mocchetti, Interleukin-10prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity, J. Neurosci.21(2001)3104–3112.
    41. V. Fridmacher, B. Kaltschmidt, B. Goudeau, D. Ndiaye, F.M. Rossi, J. Pfeiffer, C. Kaltschmidt, A. Israel, S.Memet, Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection, J.Neurosci.23(2003)9403–9408.
    42. A.L. Bhakar, L.L. Tannis, C. Zeindler, M.P. Russo, C. Jobin, D.S. Park, S. MacPherson, P.A. Barker,Constitutive nuclear factor-kappa B activity is required for central neuron survival, J. Neurosci.22(2002)8466–8475.
    43. S.D. Speese, N. Trotta, C.K. Rodesch, B. Aravamudan, K. Broadie, The ubiquitin proteasome system acutelyregulates presynaptic protein turnover and synaptic efficacy, Curr. Biol.13(2003)899–910.
    44. I. Ninan, O. Arancio, Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons,Neuron42(2004)129–141.
    45. Y. Ouyang, D. Kantor, K.M. Harris, E.M. Schuman, M.B. Kennedy, Visualization of the distribution ofautophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1area ofthe hippocampus, J. Neurosci.17(1997)5416–5417.
    46. M.N. Scholzke, I. Potrovita, S. Subramaniam, S. Prinz, M. Schwaninger, Glutamate activates NF-kappaBthrough calpain in neurons, Eur. J. Neurosci.18(2003)3305–3310.
    47. Y. Ben-Neriah, M.L. Schmitz, Of mice and men, EMBO Rep.5(2004)668–673.
    48. M.P. Mattson, Y. Goodman, H. Luo, W. Fu, K. Furukawa, Activation of NF-kappaB protects hippocampalneurons against oxidative stressinduced apoptosis: evidence for induction of manganese superoxide dismutase andsuppression of peroxynitrite production and protein tyrosine nitration, J. Neurosci. Res.49(1997)681–697.
    49. P. Fernyhough, D.R. Smith, J. Schapansky, R. Van Der Ploeg, N.J. Gardiner, C.W. Tweed, A. Kontos, L.Freeman, T.D. Purves-Tyson, G.W. Glazner, Activation of nuclear factor-{kappa}B via endogenous tumornecrosis factor {alpha} regulates survival of axotomized adult sensory neurons, J. Neurosci.25(2005)1682–1690.
    50. C.L. Masters, G. Simms, N.A. Weinman, G. Multhaup, B.L. McDonald, K. Beyreuther, Amyloid plaque coreprotein in Alzheimer disease and Down syndrome, Proc. Natl. Acad. Sci. U. S. A.82(1985)4245–4249.
    [1] Liu X, Min S, Zhang H, et al.Anterior corpectomy versus posterior laminoplasty for multilevel cervicalmyelopathy: a systematic review and meta-analysis [J].Eur Spine J.2013[Epub ahead of print]
    [2] Karadimas SK, Erwin WM, Ely CG,,et al.Pathophysiology and natural history of cervical spondyloticmyelopathy [J].Spine (Phila Pa1976).2013,38:21-36.
    [3] Epstein JA,Carras R,Hyman RA,et al.Cervical myelopathy caused by developmental stenosis ofthe spinalcanal[J].Neurosurg,1979,3:362-367.
    [4] Tetreault LA, Nouri A, Singh A, et al.Predictors of Outcome in Patients with Cervical SpondyloticMyelopathy undergoing Surgical Treatment: A Survey of Members from AOSpine International [J].WorldNeurosurg.2013[Epub ahead of print].
    [5] Sekhon LH,Fehlings MG.Epidemiology,demographics,and pathophysiology of acute spinal cordinjury[J].Spine,2001,24:2-12.
    [6] Kanchiku T,Taguchi T,Keneko K,et a1.A new rabbit model for the study on cervical compressivemyelopathy[J].Orthop Res,2001,4:605-613.
    [7] Xu P, Gong WM, Li Y, et al. Destructive pathological changes in the rat spinal cord due to chronic mechanicalcompression. Laboratory investigation.J Neurosurg Spine.2008,8:279-85.
    [8]Al-Meffly O,Harkey HL,Marawi IM,et a1.Experimental chronic compression cervicalmyelopathy[J].Neurosurg,1993,4:550-561.
    [9] Karadimas SK, Moon ES, Yu WR, et al. A novel experimental model of cervical spondylotic myelopathy(CSM) to facilitate translational research. Neurobiol Dis.2013,54:43-58.
    [10]蔡钦林,杨文,黄云钟,等.犬慢性压迫性颈脊髓的实验研究[J].中国脊柱脊髓杂志,1996,5:210-212.
    [11]蔡钦林,黄云钟,杨文,等.慢性压迫性颈脊髓病超微病理变化的研究[J].中国脊柱脊髓杂志,1996,6:254-256.
    [12]胡志俊,卞琴,王拥军,等.大鼠脊髓慢性压迫性损伤动物模型的建立[J].脊柱外科杂志,2004,4:216-219.
    [13]Mercer S,Bogduk N.The ligaments and annulus fibrosns of human a.dult cervical intervertebraldiscs[J].Spine,1999,7:619-626.
    [14]Morishita Y,Naito M,Hymanson H,et al.The relationship between the cervical spinal canal diameter andthe pathological changes in the cervical spine[J].Eur Spine J,2009,6:877-883.
    [15]赵定麟,陈德玉,沈强,等.实验性颈椎病模型的设计[J].中华外科杂志,1993,5:453-455.
    [16]戊利民,李佛保.成人退变颈椎间盘骨形态发生蛋白的表达及意义[J].中国脊柱脊髓杂志,2000,6:339-340.
    [17]陈为坚,李贵涛,罗狄鑫,等.骨髓问质干细胞结合骨形态发生蛋白促进兔椎间关节融合的实验研究[J].中国矫形外科杂志,2007,13:1012-1014.
    [18]戎利民,李佛保,蔡道章.脊髓型颈椎病动物模型的初步建立[J].解剖学研究,2001,4:313-315.
    [19] Kikuehi S,Konno S,Kayama S,et a1.Increased resistance to acute compression injury in chronicallycompressed spinal nerve roots:an experimental study[J].Spine,1996,22:2544-2550.
    [20]舒衡生,于建华,孙志明,等.大鼠压迫性脊髓损伤的特征性超微病理表现[J].中国矫形外科杂志,2006,12:921-922.
    [21]何海龙,贾连顺,李家顺,等.颈脊髓慢性压迫症实验模型的初步研究[J].颈腰痛杂志,2002,2:96-99.
    [22]何海龙,叶哓健,李家顺,等.双套管法慢性颈脊髓压迫症模型的实验研究[J].脊柱外科杂志,2006,1:38-41.
    [23] Klironomos G, Karadimas S, Mavrakis A, et al. New experimental rabbit animal model for cervicalspondylotic myelopathy. Spinal Cord J.2011,49:1097-102.
    [24] Karadimas SK, Klironomos G, Papachristou DJ, et al. Immunohistochemical profile of NF-κB/p50,NF-κB/p65, MMP-9, MMP-2, and u-PA in experimental cervical spondylotic myelopathy. Spine (Phila Pa1976).2013,38:4-10.
    [25] Miyamoto S,Yonenobu K,Keiro O.Experimental cervical spondylosis in the mouse spine[J].Spine,1991,10:495-500.
    [26]Osti OL,Vemon RB,Fraser RD.Annulus tears and intervertebral disc degeneration:a experimental studyusing an animal model[J].Spine,1990,8:762-767.
    [27]Capdevila JA, Gavaldà J, Fortea J, et al. Lack of antimicrobial activity of sodium heparin for treatingexperimental catheter-related infection due to Staphylococcus aureus using the antibiotic-lock technique. ClinMicrobiol Infect.2001,7:206-12.
    [28]Whitehill R,Moran DJ,Fechner RE,et a1.Cervical ligamentous instability in a canine in vivomodel[J].Spine,1987,10:959-963.
    [1]Kato Y, Kanchiku T, Imajo Y, et al. Biomechanical study of the effect of degree of static compression of thespinal cord in ossification of the posterior longitudinal ligament [J]. J Neurosurg Spine,2010,3:301-305.
    [2]Setzer M, Hermann E, Seifert V, et al. Apolipoprotein E gene polymorphism and the risk of cervicalmyelopathy in patients with chronic spinal cord compression [J]. Spine,2008,33:497-502.
    [3]Epstein JA, Carras R, Hyman RA, et al. Cervical myelopathy caused by developmental stenosis of the spinalcanal [J]. Neurosurg,1979,51:362-7.
    [4]Sudo H, Taneichi H, Kaneda K. Secondary medulla oblongata involvement following middle cervical spinalcord injury associated with latent traumatic instability in a patient with ossification of the posterior longitudinalligament [J]. Spinal Cord,2006,44:126-9.
    [5]Wimberley DW, Vaccaro AR, Goyal N, et al. Acute quadriplegia following closed traction reduction of acervical facet dislocation in the setting of ossification of the posterior longitudinal ligament: case report [J]. Spine,2005,30: E433-8.
    [6]Klironomos G, Karadimas S, Mavrakis A, et al. New experimental rabbit animal model for cervicalspondylotic myelopathy [J]. Spinal Cord,2011,[Epub ahead of print]
    [7]Hattori S, Kawai K, Mabuchi Y, et al. The relationship between magnetic resonance imaging and quantitativeelectromyography findings in patients with compressive cervical myelopathy [J]. Spine,2010,35: E290-4.
    [8]Song KJ, Choi BW, Kim SJ, et al. The relationship between spinal stenosis and neurological outcome intraumatic cervical spine injury: an analysis using Pavlov's ratio, spinal cord area, and spinal canal area [J]. ClinOrthop Surg,2009,1:11-8.
    [9]Kim P, Haisa T, Kawamoto T, et al. Delayed myelopathy induced by chronic compression in the rat spinal cord[J]. Ann Neurol,2004,55:503-11.
    [10]戴力扬.脊髓型颈椎病的病因与病理[J].中国矫形外科杂志,2005,13:1899-1902.
    [11]Al-Mefty O, Harkey HL, Marawi I, et al. Experimental chronic compressive cervical myelopathy [J]. JNeurosurg,1993,79:550-61.
    [12]Kurokawa R, Murata H, Ogino M, et al. Altered blood flow distribution in the rat spinal cord under chroniccompression [J]. Spine,2011,36:1006-9.
    [13]Duhamel G, Callot V, Cozzone PJ, et al. Spinal cord blood flow measurement by arterial spin labeling [J].Magn Reson Med,2008,59:846-54.
    [14]Kanchiku T, Taguchi T, Kaneko K, et al. A new rabbit model for the study on cervical compressivemyelopathy [J]. J Orthop Res,2001,19:605-13.
    [15]Breig A. Adverse Mechanical Tension in the Central Nervous System. New York, J. Wiley,1978.
    [16]Henderson FC, Geddes JF, Vaccaro AR, et al. Stretch-associated injury in cervical spondylotic myelopathy:new concept and review [J]. Neurosurgery,2005,56:1101-13.
    [17]Maxwell WL, Domleo A, McColl G, et al. Post-acute alterations in the axonal cytoskeleton after traumaticaxonal injury [J]. J Neurotrauma,2003,20:151-68.
    [18]Ichihara K, Taguchi T, Shimada Y, et al. Gray matter of the bovine cervical spinal cord is mechanically morerigid and fragile than the white matter [J]. J Neurotrauma,2001,18:361-7.
    [19]Kato Y, Kanchiku T, Imajo Y, et al. Flexion model simulating spinal cord injury without radiographicabnormality in patients with ossification of the longitudinal ligament: the influence of flexion speed on thecervical spine [J]. J Spinal Cord Med,2009,32:555-9.
    [20]Uchida K, Nakajima H, Watanabe S, et al. Apoptosis of neurons and oligodendrocytes in the spinal cord ofspinal hyperostotic mouse (twy/twy): possible pathomechanism of human cervical compressive myelopathy [J].Eur Spine J,2011,[Epub ahead of print]
    [21]Yu WR, Liu T, Kiehl TR, et al. Human neuropathological and animal model evidence supporting a role forFas-mediated apoptosis and inflammation in cervical spondylotic myelopathy [J]. Brain,2011,134:1277-92.
    [22]Inukai T, Uchida K, Nakajima H, et al. Tumor necrosis factor-alpha and its receptors contribute to apoptosisof oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy) sustaining chronic mechanicalcompression [J]. J Neurosci Res,2010,88:1394-405.
    [23]Takenouchi T, Setoguchi T, Yone K, et al. Expression of apoptosis signal-regulating kinase1in mouse spinalcord under chronic mechanical compression: possible involvement of the stress-activated mitogen-activatedprotein kinase pathways in spinal cord cell apoptosis [J]. Spine,2008,33:1943-50.
    [24]Kishima H, Saitoh Y, Oshino S, et al. Modulation of neuronal activity after spinal cord stimulation forneuropathic pain; H(2)15O PET study [J]. Neuroimage,2010,49:2564-9.
    [25]Uchida K, Nakajima H, Yayama T, et al. High-resolution magnetic resonance imaging and18FDG-PETfindings of the cervical spinal cord before and after decompressive surgery in patients with compressivemyelopathy [J]. Spine,15,34:1185-91.
    [26]Holly LT, Freitas B, McArthur DL, et al. Proton magnetic resonance spectroscopy to evaluate spinal cordaxonal injury in cervical spondylotic myelopathy [J]. J Neurosurg Spine,2009,10:194-200.
    [27]Scholtes F, Theunissen E, Phan-Ba R, et al. Post-mortem assessment of rat spinal cord injury and white mattersparing using inversion recovery-supported proton density magnetic resonance imaging [J]. Spinal Cord,2011,49:345-51.
    [28]Murray KC, Stephens MJ, Rank M, et al. Polysynaptic excitatory postsynaptic potentials that trigger spasmsafter spinal cord injury in rats are inhibited by5-HT1B and5-HT1F receptors [J]. J Neurophysiol,2011,106:925-43.
    [29]Liu WM, Wu JY, Li FC, et al. Ion channel blockers and spinal cord injury [J]. J Neurosci Res,2011,89:791-801.
    [30]Rank MM, Murray KC, Stephens MJ, et al. Adrenergic receptors modulate motoneuron excitability, sensorysynaptic transmission and muscle spasms after chronic spinal cord injury [J]. J Neurophysiol,2011,105:410-22.
    [31]Liu NK, Zhang YP, Titsworth WL, et al. A novel role of phospholipase A2in mediating spinal cordsecondary injury [J]. Ann Neurol,2006,59:606-19.
    [1] Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrientdependent mtorc1associationwith the ulk1-atg13-fip200complex required for autophagy. Mol Biol Cell2009;20:1981–91.
    [2] Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. Ulk-atg13-fip200complexes mediate mtorsignaling to the autophagy machinery. Mol Biol Cell2009;20:1992–2003.
    [3] Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulatorrag complex targets mtorc1tothe lysosomal surface and is necessary for its activation by amino acids. Cell2010;141:290–303.
    [4] Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, et al. P62is a key regulator of nutrientsensing in the mtorc1pathway. Mol Cell2011;44:134–46.
    [5] Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, et al. A protein conjugation systemessential for autophagy. Nature1998;395:395–8.
    [6] Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediatesprotein lipidation. Nature2000;408:488–92.
    [7] Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, et al. Mouse apg16l, a novelwd-repeat protein, targets to the autophagic isolation membrane with the apg12-apg5conjugate. J Cell Sci2003;116:1679–88.
    [8] Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The atg16l complex specifies the site of lc3lipidation for membrane biogenesis in autophagy. Mol Biol Cell2008;19:2092–100.
    [9] Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosomeformation using apg5-deficient mouse embryonic stem cells. J Cell Biol2001;152:657–68.
    [10] Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, et al. The atg8conjugation system is indispensablefor proper development of autophagic isolation membranes in mice. Mol Biol Cell2008;19:4762–75.
    [11] Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, et al. An atg4b mutant hampersthe lipidation of lc3paralogues and causes defects in autophagosome closure. Mol Biol Cell2008;19:4651–9.
    [12] Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. a mammalian homologue of yeastapg8p, is localized in autophagosome membranes after processing. EMBO J2000;19:5720–8.
    [13] Itakura E, Mizushima N. P62targeting to the autophagosome formation site requires self-oligomerization butnot lc3binding. J Cell Biol2011;192:17–27.
    [14] Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. P62/sqstm1binds directly to atg8/lc3to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem2007;282:24131–45.
    [15] Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, et al. Structural basis for sortingmechanism of p62in selective autophagy. J Biol Chem2008;283:22847–57.
    [16] Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy2011;7:279–96.
    [17] Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes.Annu Rev Biochem2011;80:125–56.
    [18] Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy. Mol Cell2009;34:259–69.
    [19] Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, et al. A role for nbr1in autophagosomaldegradation of ubiquitinated substrates. Mol Cell2009;33:505–16.
    [20] Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The tbk1adaptor and autophagy receptorndp52restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol2009;10:1215–21.
    [21] Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, et al. Phosphorylation of the autophagyreceptor optineurin restricts salmonella growth. Science2011;333:228–33.
    [22] Matsumoto G, Wada K, Okuno M, Kurosawa M. Nukina N. Serine403phosphorylation of p62/sqstm1regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell2011;44:279–89.
    [23] Riley BE, Kaiser SE, Shaler TA, Ng AC, Hara T, Hipp MS, et al. Ubiquitin accumulation inautophagy-deficient mice is dependent on the nrf2-mediated stress response pathway: a potential role for proteinaggregation in autophagic substrate selection. J Cell Biol2010;191:537–52.
    [24] Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62controlcytoplasmic inclusion body formation in autophagy-deficient mice. Cell2007;131:1149–63.
    [25] Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, et al. Ref(2)p, the drosophilamelanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. JCell Biol2008;180:1065–71.
    [26] Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, et al. P62is a commoncomponent of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol2002;160:255–63.
    [27] Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, et al. Persistent activation of nrf2through p62in hepatocellular carcinoma cells. J Cell Biol2011;193:275–84.
    [28] Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, et al. P62/sqstm1cooperates with parkinfor perinuclear clustering of depolarized mitochondria. Genes Cells2010;15:887–900.
    [29] Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ. P62/sqstm1is required for parkin-inducedmitochondrial clustering but not mitophagy; vdac1is dispensable for both. Autophagy2010;6:1090–106.
    [30] Park I, Chung J, Walsh CT, Yun Y, Strominger JL, Shin J. Phosphotyrosineindependent binding of a62-kdaprotein to the src homology2(sh2) domain of p56lck and its regulation by phosphorylation of ser-59in the lckunique n-terminal region. Proc Natl Acad Sci U S A1995;92:12338–42.
    [31] Moscat J, Diaz-Meco MT. The atypical protein kinase cs, Functional specificity mediated by specific proteinadapters. EMBO Rep2000;1:399–403.
    [32] Rodriguez A, Duran A, Selloum M, Champy MF, Diez-Guerra FJ, Flores JM, et al. Mature-onset obesity andinsulin resistance in mice deficient in the signaling adapter p62. Cell Metab2006;3:211–22.
    [33] Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, et al. Autophagy regulates adipose mass anddifferentiation in mice. J Clin Invest2009;119:3329–39.
    [34] Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose-specific deletion of autophagy-relatedgene7(atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A2009;106:19860–5.
    [35] Baerga R, Zhang Y, Chen PH, Goldman S, Jin S. Targeted deletion of autophagyrelated5(atg5) impairsadipogenesis in a cellular model and in mice. Autophagy2009;5:1118–30.
    [36] Moscat J, Diaz-Meco MT, Wooten MW. Signal integration and diversification through the p62scaffoldprotein. Trends Biochem Sci2007;32:95–100.
    [37] Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, et al. Cullin3-based polyubiquitination andp62-dependent aggregation of caspase-8mediate extrinsic apoptosis signaling. Cell2009;137:721–35.
    [38] Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, et al. The selective autophagysubstrate p62activates the stress responsive transcription factor nrf2through inactivation of keap1. Nat Cell Biol2010;12:213–23.
    [39] Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, et al. A noncanonical mechanism of nrf2activationby autophagy deficiency: Direct interaction betweenkeap1and p62. Mol Cell Biol2010;30:3275–85.
    [40] Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, et al. P62/sqstm1is a target gene fortranscription factor nrf2and creates a positive feedback loop by inducing antioxidant response element-drivengene transcription. JBiol Chem2010;285:22576–91.
    [41] Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygousdisruption of the beclin1autophagy gene. J Clin Invest2003;112:1809–20.
    [42] Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin1, an autophagy gene essential for early embryonicdevelopment, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A2003;100:15077–82.
    [43] Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, et al. Autophagy-deficient mice developmultiple liver tumors. Genes Dev2011;25:795–800.
    [44] Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT, et al. The signaling adaptor p62is an important nf-kappab mediator in tumorigenesis.Cancer Cell2008;13:343–54.
    [45] Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z, et al. Krasg12d-induced ikk2/beta/nf-kappab activation byil-1alpha and p62feedforward loops is required for development of pancreatic ductal adenocarcinoma. CancerCell2012;21:105–20.
    [46] Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesisthrough elimination of p62. Cell2009;137:1062–75.
    [47] Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the keap1-nrf2pathway in stress responseand cancer evolution. Genes Cells2011;16:123–40.
    [48] Hayes JD, McMahon M. Nrf2and keap1mutations: Permanent activation of an adaptive response in cancer.Trends Biochem Sci2009;34:176–88.
    [49] Adam J, Hatipoglu E, O’Flaherty L, Ternette N, Sahgal N, Lockstone H, et al. Renal cyst formation infh1-deficient mice is independent of the hif/phd pathway: roles for fumarate in keap1succination and nrf2signaling. Cancer Cell2011;20:524–37.
    [50] Kinch L, Grishin NV, Brugarolas J. Succination of keap1and activation of nrf2-dependent antioxidantpathways in fh-deficient papillary renal cell carcinoma type2. Cancer Cell2011;20:418–20.
    [51] DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced nrf2transcription promotes ros detoxification and tumorigenesis. Nature2011;475:106–9.
    [52] Goode A, Layfield R. Recent advances in understanding the molecular basis of Paget disease of bone. J ClinPathol2010;63:199–203.
    [53] Kurihara N, Hiruma Y, Zhou H, Subler MA, Dempster DW, Singer FR, et al. Mutation of the sequestosome1(p62) gene increases osteoclastogenesis but does not induce paget disease. J Clin Invest2007;117:133–42.
    [54] Kurihara N, Hiruma Y, Yamana K, Michou L, Rousseau C, Morissette J, et al. Contributions of the measlesvirus nucleocapsid gene and the sqstm1/p62(p392l) mutation to paget’s disease. Cell Metab2011;13:23–34.
    [55] Orvedahl A, MacPherson S, Sumpter Jr R, Talloczy Z, Zou Z, Levine B. Autophagy protects against sindbisvirus infection of the central nervous system. Cell Host Microbe2010;7:115–27.
    [56] Mizushima N, Komatsu M. Autophagy: Renovation of cells and tissues. Cell2011;147:728–41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700