光皮桦分子标记的开发及其在遗传多样性研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用白桦的表达序列标签(Expressed Sequence Tags, ESTs)开发光皮桦(Betula luminifera H.Wink.)特异分子标记,然后利用这些引物评价光皮桦种子园的遗传多样性,并以它们的遗传距离为依据构建了光皮桦核心种质。主要结论如下:
     1.筛选了109对候选的扩增共有序列遗传标记(Amplified Consensus Genetic Markers, ACGM),其中105对在白桦中可以扩增出稳定而清晰的PCR产物;然后利用来自不同种源的光皮桦Lin’an5和Sichuan4筛选这105对引物,结果95对至少在一种光皮桦中有稳定的扩增产物。
     2.筛选出80个基于保守序列的EST-SSR (Simple Sequence Repeat, SSR)候选位点,其中59对在白桦中可以获得稳定而清晰的PCR产物;然后利用Lin’an5和Sichuan4筛选这59对引物,结果28对至少在一种光皮桦中有稳定的扩增产物。
     3.利用本研究开发的光皮桦ACGM分子标记对来自不同种源的62份光皮桦遗传多样性进行评价。结果表明该群体的Nei遗传多样性指数( Nei-H)和多态位点百分数(Nei-P%)分别为0.2138和54.74%。居群中安徽(pop9)居群的观测等位基因数(Na)、有效等位基因数(Ne)、Nei-H和Nei-P%最小,分别为1.1022、1.0723、0.0423和10.22%。临安居群(pop1)的Na、Ne、Nei-H和Nei-P%最大,分别为1.4307、1.3125、0.1741和43.07%。
     4.利用本研究开发的光皮桦ACGM分子标记对光皮桦种子园中62份样品所代表的519份光皮桦资源的遗传多样性进行分析,结果筛选出36份核心种质。t检验结果表明,核心种质的Na、Ne、Nei-H和Nei-P%在概率0.01水平上与初始种质差异不显著,说明核心种质能很好的代替初始种质。
Special molecular markers were developed for Betula luminifera using Birch ESTs (Expression sequence tags) data. We then used these markers to evaluate the genetic diversity of B.luminifera germplasm. Based on their genetic distance, B.luminifera core germplasm was constructed. The main conclusions were as follows:
     1.Based on birch EST data, primers for 109 ACGM candidate loci were developed and tested in birch. Of these, 105 yielded single, stable and clear PCR products. We then tested the utility of those 105 markers in B. luminifera. The results showed 95 yielded stable and clear PCR products for at least one B. luminifera genotype of Lin’an 5 and Sichuan 4.
     2. Based on birch EST data, primers for 80 EST-SSR candidate loci were developed and tested in birch. Of these, 59 yielded single, stable and clear PCR products.We then tested the utility of those 59 markers in B.luminifera. The results showed 28 yielded stable and clear PCR products for at least one B.luminifera genotype of Lin’an 5 and Sichuan 4.
     3. The genetic diversity of 62 samples from B. luminifera germplasm was evaluated using ACGM markers. Nei gene diversity index and percentage of polymorphic loci of the samples were calculated, the values are 0.2138 and 54.74%, respectively. The observed number of alleles, effective number of alleles, Nei gene diversity index and percentage of polymorphic loci in Anhui (pop9) are the lowest, values are 1.1022, 0.0423, 1.0723 and 10.22%, respectively; whereas the highest in Linan (pop1), values are 1.4307, 1.3125, 0.1741 and 43.07%, respectively.
     4. The genetic diversity of 62 B.luminifera germplasm resources, representing 519 samples, was evaluated using ACGM markers. Of these 62 samples, 36 were selected as core collection. Results of t-test showed that the observed number of alleles, effective number of alleles, Nei gene diversity and Shannon information index of core collection had no significant differences with initial germplasm on 0.01 level. These results demonstrated that the core collection can represent initial germplasm resources.
引文
[1]陈宏.基因工程原理与应用[M].北京:中国农业出版社,2004:320-321.
    [2] BOTSTEIN D.et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisrn,Am.J.Hum.Genet,1980,32:314-318.
    [3] JOHN G.K.WILLIAMS et al,1990,DNA polymorphisms amplified by arbitrary primers are useful as genetic markers,Nueleie Aeid Researce,VOI.18,No.22 PP: 6531-6535.
    [4] WELSH J.and MCCLELLAND. Figerprinting genomes using PCR with arbitrary primers Nucleic Acid Research, 1990,18(20):7211-7218.
    [5]王志清,李昌禹,马海琴,等.龙胆种质资源RAPD评价[J].特产研究.2008,3(4):40-43.
    [6]李勇,丁万隆.我国部分金莲花种质资源遗传多样性的RAPD研究[J].植物遗传资源学报.2009,10(4):535-539.
    [7] VOS P,HOGER R,BLEEKER M,REIJANS M,LEE T,HORNES M,FRIJTERS A,POT J,PELEMAN J,KUIPER M,ZABEAU M.AFLP:a new technique for DNA fingerprinting.Nuclear Acids Research,1995,23(21):4407-4414.
    [8]杨衍,刘昭华,詹园凤,等.苦瓜种质资源遗传多样性的AFLP分析[J].热带作物学报.2009,30(3):299-303.
    [9] MICHELMORE RW,PARAN I,KESSELI RV.Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.Proceedings of the National Academy of Sciences of the United States of America.1991,88(21):9828-9832.
    [10]张赤红,张京.大麦品种资源遗传多样性的SSR标记评价[J].麦类作物学报.2008,28(2):214-219.
    [11]ZIETKIEWICZ E,RAFALSKIA, LABUDA D.Genome fingerprinting by smiple sequence repeat(SSR) anchored polymerase chain reaction amplification[J].Genomics,1994,20:176-183
    [12]侯渝嘉,何桥,李品武,等.应用ISSR分子标记研究茶树种质资源遗传多样性[J].西南林业学报.2007,20(3):462-465.
    [13]李可峰,韩太利,董贵俊,等.用形态与分子标记研究石刁柏种质资源遗传多样性[J].植物遗传资源学报.2006,7(1):59-65.
    [14] LANDER ES.The new genomics:global views of biology[J].Science,1996,274:536-539.
    [15]李兆波,吴禹,王岩,等.SNP标记技术及其在农作物育种中的应用[J].辽宁农业技术学院学报.2010,12(3):8-9.
    [16]卢泳全,汪旭升,黄伟素,等.基于水稻内含子长度多态性开发禾本科扩增共有序列遗传标记[J].中国农业科学.2006,39(3):433-439.
    [17]卢泳全,吴为人.ACGM标记在小麦属中的通用性[J].麦类作物学报.2006,26(5):16-19.
    [18]董德臻,吴立成,夏善勇,等.ACGM标记在竹子中的通用性[J].东北林业大学学报.2007,35(1):4-6.
    [19]郭小勤,阮晓赛,娄永峰,等.利用ACGM分子标记研究10个毛竹不同栽培变种的遗传多样性[J].林业科学.2009,45(4):28-32.
    [20]田敏,谭晓风,胡芳名.林木分子遗传图谱的构建[J].生命科学研究.2000,4(1):14-20.
    [21]娄永峰,林新春,何奇江,等.哺鸡竹亲缘关系的AFLP和SRAP分析[R].分子植物育种.2010,8(1):83-88.
    [22]郑万钧.中国树木志(第二卷)[M].北京:中国林业出版社,1985:2124-2131.
    [23]陈存及,陈伙法.阔叶树种栽培[M].北京:中国林业出版社,2000:313-315.
    [24]吴子诚,王乐辉.光皮桦选择群体特征和改良技术[J].四川林业科技.1996,17(4):17-28.
    [25]董建文,陈慈禄,陈东阳,等.光皮桦栽培生物学特性研究[J].江西农业大学学报.2001,23(2):220-223.
    [26]易咏梅,徐伟声,罗世家.光皮桦一年生播种苗茎的解剖构造[J].林业科技.2000,25(1):9-11.
    [27]易咏梅.光皮桦与青冈栎茎的比较解剖[J].南京林业大学学报.2000,24(1):45-50.
    [28]易咏梅,彭诚.光皮桦营养器官的解剖构造研究[J].湖北民族学院学报:自然科学版.1999,17(3):36-39.
    [29]陈存及,刘春霞.光皮桦扦插繁殖试验研究[J].福建林学院学报.2002,22(2):101-104.
    [30]雷林菁,陈伟.光皮桦扦插育苗技术研究[J].林业科技开发.2004,18(6):53-53.
    [31]谌红辉,曾杰,贾宏炎,等.光皮桦叶芽离体培养再生植株技术[J].广西林业科学.2006,35(3):123-124.
    [32]李志真,谢一青,黄儒珠,等.不同保存方法对光皮桦总DNA提取效果的影响[J].分子植物育种.2006,4(1):131-134.
    [33]谢一青,李志真,黄儒珠,等.光皮桦基因组DNA提取方法比较[J].浙江林学院学报.2006,23(6):664-668.
    [34]尤卫艳,黄华宏,童再康,等.光皮桦AFLP分子标记体系的建立[J].生物技术.2008,18(6):42-45.
    [35]谢一青,黄儒珠,李志真,等.光皮桦RAPD分析体系优化设计方案比较[J].福建林学院学报.2006,26(1):73-77.
    [36]郑仁华,邹绍荣,杨宗武,等.光皮桦优树子代性状遗传变异及选择[J].植物资源与环境学报.2004,13(2):44-48.
    [37]江瑞荣.光皮桦优树子代家系苗期变异及选择[J].林业科技开发.2006,20(4):31-33.
    [38]邹绍荣.光皮桦优树选择和嫁接种子园营建技术[J].林业科技开发.2005,19(5):61-63.
    [39]栾非时,崔成焕,王金陵.菜豆种质资源形态标记的研究[J].东北林业大学学报.2001,32(2):105-110.
    [40] RIEGER R, MICHAELIS A, GEEN M M. Glossary of geneties. 5th ed. Berlin: Springer-Verlag. 1991.209.
    [41] NEI M.Analysis of gene diversity in subdivided populations. Proc Natl Aead Sei USA.1973,70(12):3321-3323.
    [42] WRIGHT S.The genetical strueture of populations. Ann Eugethes. 1951,15:323-354.
    [43] NEI M. F-statisties and analysis of gene diversity in subdivided populations.Ann Hum Gent Lond. 1977,41:225-233.
    [44] NEI M and LI W H.Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc.Natl.Acad.Sci.USA,1979,76:5269-5273.
    [45] CHALMERS KJ,WAUG H R,SPRENT J I,et al.Detection of genetic variation between and within populations of Gliri2cidia sepium and G.maculata using RAPD markers. Heredity, 1992,69:465-472.
    [46] LIU K-J,MUSE S V.PowerMarker:Integrated analysis environment for genetic marker data.Bioinformatics,2005,21(9):2121-2129.
    [47] ROHLF F J .NTSYS2pcv:Numerical Taxonomy and Multivariate Analysis System Version 2.1,User Guide[M].New York:Exeter Sof tware, 2000.
    [48] EXCOFFIER,LAVAL L G,and SCHNEIDER S.Arlequin ver3.0:An integrated software package for population genetics data analysis.Evolutionary Bioinformatics Online 2005,1:47-50.
    [49] FRANCIS C Y,YANG R C,BOYLE T.POPGENE version 1.32 Microsoft Window2based freeware for Population Genetic Analysis,1999.
    [50] SCHNEIDER S,ROESSLI D,EXCOFFIER L.Arlequin ver.2.0:A software for population genetics data analysis.Switzerland:Genetics and Biometry Laboratory,University of Geneva,2000.
    [51]刘士平,李信,汪朝阳,等.利用分子标记辅助选择改良珍汕97的稻瘟病抗性[J].植物学报.2003b,(11):1346-1350.
    [52]曹立勇,何立斌,占小登,等.优质高产抗病杂交水稻新组合国稻3号[J].杂交水稻.2006,21(3):83-84.
    [53]薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系[J].浙江农业大学学报.1998,24(6):581-582.
    [54] HUANG N, ANGLELES E R, DOMINGO J, et al. Pyramiding of bacterial blight resistance genes in rice marker-assisted selection using RFLP and PCR. Theor Appl Genet. 1997,95: 313-320.
    [55]张绮纹,苏晓华,李金花,等.美洲黑杨基因资源收存及其遗传评价的研究[J].林业科学.1999,35(2):31-37.
    [56] FRANKEL O H. Genetic Manipulation Impact on Man And Society[M]. Cambridge University Press,1984.161-170.
    [57] BROWN A H D. The use of plant genetic resources [A].The case for core collections[C].England:Cambridge Univ.Press,1989.136-156.
    [58] CORLEY HOLBROOK C, WILLIAM F ANDERSON. Evaluation of a core collection to identify resistance to late leafspot in peanut[J]. Core Science, 1995,35:1700-1702.
    [59]沈金雄,郭庆元,张秀荣,等.中国芝麻种质资源的聚类分析[J].华中农业大学学报.1995,14(6):532-536.
    [60]魏志刚,高玉池,刘桂丰,等.白桦核心种质的初步构建[J].林业科学.2009,45(10):74-78.
    [61]赵冰.腊梅种质资源遗传多样性与核心种质构建的研究[D].北京:北京林业大学园林植物与观赏园艺专业.2008.
    [62]董玉慧.枣树农艺性状遗传多样性评价与核心种质构建[D].石家庄:河北农业大学果树学专业.2008.
    [63]孙传清,李自超.普通野生稻和亚洲栽培稻核心种质遗传多样性的检测研究[J].作物学报.2001,27(3):313-318.
    [64]申时全,李自超.分子标记及其在云南稻种核心种质中的应用[J].种子.2001,119(6):8-11.
    [65]刘勇,孙中海,刘德春,等.利用分子标记选择柚类核心种质资源[J].果树学报.2006, 23(3):339-345.
    [66] DIWAN N.A core collection for the United States annual Medicago germplasm collction[J].Crop Sci,1994,34:279-285.
    [67]赵应忠.芝麻核心种质与非核心种质的同工酶研究[J].中国油料作物学报.1998,20(4):29-34.
    [68] WANG XC. Establishmentof core collection in tea germplasm[J].Subtropical Plant Sci,2004,33(4):52-56.
    [69] KOBILISKB.Genetic diversity of the Novisad wheat core collection revealed by microsatellites[J].CellMol Biol Lette,2002,7(2B):685-694.
    [70]崔艳华.利用SSR分子标记检测黄淮大豆(GlycineMAX)初选核心样本的代表性[J].植物遗传资源学报.2003,4(1):9-15.
    [71] SHASHIDHARAG.Assessment of genetic diversity and identification of core collection in sandalwood germplas musing RAPDs[J]. JHorti Sci&Biotech,2003,78(4):528-536.
    [72] SCHULER GD (1997) Sequence mapping by electronic PCR. Genome Res 7: 541–550.
    [73]张博,张露,诸葛强,等.一种高效的树木总DNA的提取方法[J].南京林业大学学报(自然科学版).2004,28(1):13-15.
    [74] DON R H, COX P T, WAINWRIGHT B J, BAKER K, MATTICK JS (1991)‘Touchdown’PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19: 4008-4008.
    [75] GALE M D, DEVOS K M (1998) Comparative genetics in the grass. Proc Natl Acad Sci USA 95: 1971-1974.
    [76] RONG J, BOWERS J E, SCHULZE S R, WAGHMARE V N, Rogers C J, Pierce G J, Zhang H, Estill J C, and Paterson A H (2005). Comparative genomics of Gossypium and Arabidopsis: uraveling the consequences of both ancient an recen polypolidy. Genome research 15:1198-1210.
    [77] CH, ELLIS JR, MCCAULEY DE and BURKE JM (2006) EST Database as a source for molecular markers: lessons from Helianthus. Journal of heredity 97:381-388.
    [78] BASSAM B.J., CAETANO-ANOLLES G., Greshoff P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels[J ]. Anal Biochem. 1991,196:80-83.
    [79] SOKAL R.R., and MICHENER C.D., A statistical method for evaluating systematic relationships,Univ.Kansas Sci.Bull., 1958,38:1409-1438.
    [80]李自超,张洪亮,曹永生,等.中国地方稻种资源初级核心种质取样策略研究[J].作物学报.2003,29(1):20-24.
    [81]刘三才,郑殿升,曹永生,等.普通小麦核心种质抽样方法的比较[J].麦类作物学报.2001,21(2):42-45.
    [82]徐海明,胡晋,朱军.构建作物种质资源核心库的一种有效抽样方法[J].作物学报.2000,26(2):157-162.
    [83]魏兴华,颜启传,应存山,等.建立浙江地方籼稻种资源的核心样品研究[J].中国水稻学.1999,13(2):81-85.
    [84] HU J, ZHU J, XU H M. Methods of constructing core coolletions by stepwise clustering with three sampling strategies based on the genotypic values of crops[J]. Theor Appl Genet, 2000, 101:264-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700