剩余污泥超声破解的性能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥厌氧消化过程中,污泥水解是限速步骤。如在厌氧消化前,对污泥进行
    破解预处理,即使细胞壁破裂,细胞内含物溶出,可以加速污泥的水解过程,从
    而达到缩短消化时间,减少消化池容积,提高甲烷产量的目的。本课题采用超声
    波技术,破解人工配水条件下培养的污泥。主要研究内容是:不同声强、声能密
    度、破解时间、污泥浓度对污泥破解效果的影响;通过投加自由基消除剂碳酸氢
    钠的试验,探讨超声波破解污泥的反应机理;研究超声波与碱协同作用对污泥破
    解效果的影响;建立与验证以 SCOD 增加值、SCOD 溶出率为因变量的超声破解
    污泥的动力学模型。
     试验结果表明,采用超声波技术破解污泥,可以破坏污泥絮体及污泥细胞,
    使胞内物质由污泥相进入水相,导致水相中 SCOD 值增加。SCOD 增加值随声强、
    超声作用时间、声能密度及污泥浓度的增加而增加。在一定声强与声能密度下,
    SCOD 增加值随时间延长线性增长。即在一定试验时间范围内,污泥破解反应相
    对于时间符合一级反应动力学规律。但是,在较高声强与较低污泥浓度下,SCOD
    增加值随时间延长不再呈线性增长趋势,而是随超声作用时间的延长,增长速度
    减缓。超声波与碱协同作用可以明显提高超声波的作用效果。
     本研究通过投加羟基消除剂 NaHCO3以消除羟基氧化影响,分析超声破解污
    泥的机理。结果发现,声能密度为 0.096W/ml 时,超声破解污泥过程中,起主要
    作用的是水力剪切力,羟基氧化几乎不起作用;声能密度为 0.384W/ml 时,水力
    剪切力与自由基氧化在超声破解污泥反应中所占比例分别为 80.85%与 19.15%;
    而声能密度为 0.72W/ml 时,水力剪切力与自由基氧化在超声破解污泥反应中所
    占比例分别为 74.14%与 25.86%。羟基氧化的贡献随着声强的增加而增加。
     在试验数据的基础上,利用多元线性回归分析的方法,求得并验证了 SCOD
    溶出率与 SCOD 增加值随声能密度、声强、污泥浓度、破解时间变化的动力学
    关系。
In the case of sewage sludge digestion, the biological hydrolysis has been
    identified as the rate-limiting step. If some methods are applied as pretreatment to
    disintegrate the sludge flocs and disrupt bacterial cells’ wall, the hydrolysis can be
    improved a lot, so that the residence time can be shortened, fermenter volume be
    reduced, methane production be significantly increased .In this paper, the pretreatment
    of waste sludge by ultrasonic disintegration on a laboratory-scale is studied .The
    sludge disintegrated in the research is cultivated using synthetic water. This study
    covers the following: the effect of changing ultrasonic density, intensity, sludge
    concentration and disintegration time on the disintegration result; the mechanism of
    ultrasonic disintegration by adding NaHCO3 to eliminate the contribution of hydroxyl;
    the improvement of disintegration by combining ultrasonic and alkaline; the
    establishment and validation of the dynamics model based on the gained data.
     It has been found that applying ultrasonic as pretreatment to disintegrate sludge
    is an effective method which can break up sludge flocs and disrupt bacterial cells’
    wall and lead to the release of intracellular material into the sludge supernatant. After
    being disintegrated, the SCOD in the sludge supernatant is increased greatly. The
    increment of SCOD is enhanced with the augment of ultrasonic density, intensity,
    sludge concentration and disintegration time. Under a certain ultrasonic density and
    intensity, the increment of SCOD is enhanced lineally with the extending of time.
    That is to say, during the disintegration in this experiment, the reaction of ultrasonic
    sludge disintegration is a one-order reaction. However, under low sludge
    concentration and high ultrasonic density, the increment of SCOD would not
    enhanced lineally with the extending of time but turn slow as time extending.
    Combining ultrasonic and alkaline can improve the effect of disintegration a lot.
     By adding NaHCO3 to eliminate the hydroxy contribution to the ultrasonic sludge
    disintegration, the mechanism of disintegration is investigated. It has been inferred
    that the contribution of hydroxyl becomes less and less as the increment of ultrasonic
    intensity. When the applied ultrasonic intensity is 0.096W/ml, the main contribution
    to the disintegration is hydraulic shear force and the hydroxy oxidation is almost of no
    effect on the disintegration; when the sludge is disintegrated under 0.0384W/ml, the
     - ii -
    
    
    contribution of hydraulic shear force and the hydroxy oxidation is 80.85%and 19.15
    %, respectively.; when the ultrasonic intensity is 0.72W/ml ,the contribution of the
    two factors is 74.14%and 25.86%, respectively.
     Based on the test data, the dynamics model for ultrasonic sludge disintegration
    has been established. The multi-variables linear regression method is used to
    establishment and validation of relation equations, which express the change of
    increment of SCOD and release percent of SCOD with the variation of ultrasonic
    intensity,ultrasonic density,sludge concentration and disintegration time .
引文
参考文献
    [1] 赵庆祥著,污泥资源化技术,化学工业出版社,北京(2002)
    [2] Low E W ,Chase H A. Reducing production of excess biomass during wastewater
    treatment [J].Water Research,1999,33(5):1119-1132
    [3] 李季 吴为中,国内外污水处理厂污泥产生、处理及处置分析 污泥处理处置
    技术与装备国际研讨会 深圳
    [4]何晶晶. 城市污水厂污泥低温热化学转化过程中工艺特性与转化机理研究.
    同济大学博士学位论文.1998
    [5]Eastman J.A. and Ferguson J.F. Solubilization of particulate organic carbon during
    the acid phase of anaerobic digestion ,JWPCF 1981,53(3),352-366
    [6]Shimizu T.Kudo K. Nasu Y. Anaerobic waste activated sludge digestion –a
    bioconversion and kinetic model Biotechnol. Bioengng. 1993 41,1082-1091。
    [7] H.B.Chio,K.Y.Hwang and E.B.Shin Effect on anaerobic digestion of sewage
    sludge pretreatment[J] Wat.Sci.Tech.,1997,35(10),207—211
    [8] J.Muller Disintegration as a key-step in sewage sludge treatment[J]
    Wat.Sci.Tech.,2000,41(8),123—130
    [9] Tiehm,A,Nickel,K.and Neis,U.The use of ultrasound to accelerate the anaerobic
    digestion of sewage sludge[J].Wat.Sci.Tech.,1997,36(11),121—128
    [10]曹秀芹,陈珺等,剩余污泥的超声处理试验研究,中国给水排水,2003(19),
    58-60
    [11] C.P.Chu, D.J.Lee, C.S.You, J.H.Tay . “weak” ultrasonic pre-treatment on
    anaerobic digestion of flocculated activated biosolids[J] Water
    Research,2002,36:2681—2688
    [12] Harrison and Pandit A.,The disruption of cells by hydrodynamic
    cavitation ,Proc .Rhodes University International Symposium Biotechnology,1994
    [13]Dithtl ,N.Muller ,Disintegration von Klarschlammein aktueller
    uberblick .Korrespondez Abwasser ,1997,44,139-169
    [14] P.Camacho,S.Deleris ,V.Geaugey, P.Ginestet and E.Paul . A comparative study
    between mechanical ,thermal and oxidative disintegration techniques of waste
    activated sludge[J] . Wat.Sci.Tech.,2002,46(10),79-87
     - 79 -
    
    
    参考文献
    [15] Sakai,Y.,Fukase,T.,Yasui,H.,Shibata,M.,An activated sludge process without
    excess sludge production [J]. Wat.Sci.Tech.,1997. 36(11),163-170
    [16] Deleris S., J.M.Rouston Effect of ozonation on activated sludge solubilization
    and mineralization[J], Ozone Sci.Eng.2000(22) ,473—486
    [17] Saby,S.,Djafer,M.,Chen,G.H.,Feasibility of using a chlorination step to reduce
    excess sludge in activated sludge process[J] .Water Res. 2002,36,656-666
    [18] T.Lendormi ,C.Prevot,F.Doppenberg ,M.Serandio and H.Debellefontaine . Wet
    oxidation of domestic sludge and process integration : the mineralis process[J]
    Wat.Sci.Tech.,2001,44(10),163—169
    [19] 林志高 张守中 废弃活性污泥加碱预处理后厌氧消化的试验研究[J] 给水
    排水 1997 23(1) 10—15
    [20] S.Tanaka and K.Kamiyama.,Thermochemical pretreatment in the anaerobic
    digestion of waste activated sludge [J]. Wat.Sci.Tech.,2002. 46(10),173—179
    [21] Chiu,Y.C.Chang ,C.N.,Lin,J.G.and Huang,S.J.,Alkaline and ultrasonic
    pre-treatment of sludge before anaerobic digestion [J]. Wat.Sci.Tech.,1997.
    36(11),155—162
    [22]应崇福 主编 ; 超声学 ,科技出版社 ,北京 ,1990
    [23] Suslick K.S.,Sonochemistry Science,1990,24(7),1439-1445
    [24] Mason T.J. ,Sonochemistry :Atechnology for tomorrow ,Chemistry
    &Industry ,1993,18(1),47-50
    [25]Henglein A.,Sonochemistry :historical developments and modern
    aspects,Ultrasonics ,1987,25(1),6-16
    [27]赵逸云等,声化学反应器研究进展,现代化工,1989,13(2),44-48
    [28]赵逸云等,声化工设备研究进展,化学工程,1995,23(4),6-11
    [29]Mason T.J. ,Industrial sonochemistry :potential and
    practicality,Ultrasonics ,1992,30(3),192-196
    [30] Berlan J. and Mason T.J. ,Sonochemistry :from research laboratories to industrial
    plants ,Ultrasonics ,1992,30(4),203-212
    [31]Ultrasonic waste avtivated sludge disintegration for improving anaerobic
    stabilization Wat.Res.,2001. 35(8),2003-2009
    [32] Lorimer J. P. Sonochemistry –the general principles .In sonochemistry :the use of
    ultrasonic in Chemistry . ed. T.Mason . The Royal Society of
    Chemistry .Cambridge ,UK.1990
    [33]S. Okouchi,et al ,Cavitation-induced degradation of phenol by ultrasound ,Wat.
     - 80 -
    
    
    参考文献
    Sci .Tech. 1992,26 ,2053-2056
    [34]C.Petrier ,et al ,Characteristic of Pentachlorophenate degradation in aqueous
    solution by means of ultrasound ,Environ.Sci. Tech. 1992,26(8),1639-1642
    [35]Young Ku ,et al .,Ultrasonic destruction of 2-chlorophenol in aqueous
    solution ,Wat. Res. 1997,31(4),929-935
    [36]J. Berlan ,et al.,Oxidative degradation of phenol in wastewater by
    sonoelectrochemistry ,Chem.Eng. Sci. 1996,51(10),97-102
    [37]C.P.Chu et al. Observations on changes in ultrasonically treated waste-activated
    sludge ,Wat. Res ,2001,35(4),1038-1046
    [38]H. Michael Cheung and Shreekumar Kurup,Sonochemical destruction of CFC
    11and CFC113 in dilute aqueous solution ,Environ.Sci.Tech.1994,28,1619-1622
    [39]I.Z.Shirgaonkar and A.B.Pandit ,Degradation of aqueous solution of potassium
    iodide and sodium cyanide in the presence of carbon tetrachloride ,Ultrason.
    Sonochem.,1997,4,245-253
    [40]Ashish Bhatnagar and H. Michael Chueng ,Sonochemical destruction of
    chlorinated C1 and C 2 volatile organic compounds in dilute aqueous solution ,
    Environ.Sci. Tech.,1994,28,1481-1486
    [41]Jiann M. Wu et al. Ultrasonic destruction of chlorinated hydrocarbons in aqueous
    solution ,Environmental Progress ,1992,11(3),195-201
    [42]A.Kotronarou , et al. ,Oxidative of hydrogen sulfide in aqueous solution by
    ultrasonic irradiation ,Environ.Sci.Tech. ,1992,26(12),2420-2428
     [43]沈壮志 尚志远,双低频超声辐射对碘化钾溶液碘释放量影响的研究,陕西
    师范大学学报(自然科学版),1999,27(1),51-53
    [44] 沈壮志 尚志远,超声换能器位置对碘化钾溶液碘释放影响的研究,声学技
    术,1999,18(1),35-38
    [45]冯若,朱昌平等,双频正交辐照的声化学效应研究,科学通报,1997,42(9),
    925-929
    [46] 朱昌平 冉勇等,非同频水平正交超声束的声化学效应,声学技术,2000,
    19(2),86-89 [45]尚志远,复频超声的声化学作用,陕西师范大学学报(自然
    科学版),2000,28(2),31-33
    [47] 沈壮志 尚志远,四棱台容器对声化学产率的影响 ,陕西师范大学学报(自
    然科学版),1999,27(4),41-43
    [48]I.Z. Shirgaonkar and A.B.Pandit,Degradation of aqueous solution of potassium
    iodide and sodium cyanide in the presence of carbon
     - 81 -
    
    
    参考文献
    tetrachloride,Ultrason.Sonochem.,1997,4,245-253
    [49]John Barlindhaug and Hallvard ,Thermal hydrolysate as a carbon source for
    denitrification, Wat. Sci. Tech,1996,33(12),99-108
    [50]H.C.Flemming and J. Wingender,Relevance of microbial extracellular polymeric
    substances (EPSs),Wat. Sci. Tech,2001,43(6),1-8
    [51] 周秀贞 何立望等,生物化学,1993 年 4 月第 1 版 SS 号:10034644
    [52]C.P. Lesslie Grady ,JR ,Biological Wastewater Treatment (second edition) ,
    Marcel Dekker ,Inc. ,Newyork ,1999
    [53]周群英,高廷耀著,环境工程微生物学(第二版),高等教育出版社,北京,
    2000
    [54]严希康著,生化分离工程,化学工业出版社,北京,2001
    [55] 刘永,超声波应用于有机合成的最新进展,广东化工,2002,29(2),20-22
    [56] 廖翠玲,碱前处理对废弃活性污泥中含氮物质影响之研究,硕士论文,台
    湾交通大学,新竹(1993)
    [57]周群英 高廷耀 ,环境工程微生物学(第二版),高等教育出版社,135—136
    [58]季民,王芬等,剩余污泥细胞破壁技术初探,污泥处理处置技术与装备国际
    研讨会,73-77
    [59]Hart E. J. et.al. ,Isotopic exchange in the sonolysis of aqueous solutions
    containing 14,14N2 and15,15N2,J. Phys. Chem.,1986,90,5989-5991
    [60] Hart E.J. and Henglein A. ,Sonolytic decomposition of nitrous oxide in aqueous
    solutions , J. Phys. Chem.,1986,90,5992
    [61]周复恭 . 应用线性回归分析. 北京:中国人民大学出版社.1989。
    [62]王占锷等.城市用水管理. 济南:济南出版社. 1992 。
    [63]陆璇,应用统计,中国人民大学出版社,1989
    [64]肖衍繁,李文斌编,物理化学,天津大学出版社,天津,1997
    [65]盛骤,谢式千等著,概率论与数理统计,高等教育出版社,374-375
    [66]陈银广,改善活性污泥机械脱水性能及活性污泥法生物除铬的初步研究,博
    士后研究工作报告,同济大学

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700