面向边缘网络的流媒体分发技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大规模流媒体应用是Internet中极为重要一类应用,但由于当前的互联网的网络层只提供“尽力转发”的报文服务,而应用层的解决方案又存在与底层网络信息不相匹配的问题,导致大规模流媒体系统设计仍然是一项充满挑战性的研究。与此同时,当前互联网技术的发展呈现出一些新的动向,如数据传输和内容协商相分离、性能日益增强的用户边缘网络、统一网内存储的网络层功能、以内容为中心的网络设计等。这些新动向,为新一代大规模流媒体网络技术研究提供了许多机遇和挑战。
     通过对现有解决方案的分析,以及对互联网现有网络基础设施演变过程的思考,我们认为大规模的流媒体内容分发技术研究,应该从参与内容分发的边缘网络和网络利益群体需求分析着手,重点研究对边缘网络资源的有效合理利用。因此,本文的研究创新和贡献包括以下几个方面:
     (1)充分利用边缘网络用户流媒体需求的聚集效应和边缘网络潜在的存储资源,提出了边缘到边缘的流媒体服务模型(E2EMSM)
     边缘网络用户通常具有相似的网络利益和流媒体服务需求,可形成流媒体分发的聚集点。因此,本文的基本思想是将整个互联网络空间划分为核心传输网络空间和边缘服务网络空间,实现“核心高效传输,边缘多样服务”的设计理念。通过在边缘网络的流媒体分发聚集点部署相应的网络基础设施,如具备内容存储功能的新型网络交换设备(NCR),我们提出了边缘到边缘的流媒体服务模型(E2EMSM)。基于该模型设计的流媒体内容分发方案,可以充分利用边缘网络流媒体分发的聚集效应,优化流媒体分发过程,减少边缘网络流媒体分发的流量需求,提高边缘网络流媒体分发质量。
     (2)构建边缘网络存储资源模型(ESRM),并在此基础上提出边缘网络流媒体内容分发模型(Put/Get模型)和启发式流媒体内容部署算法(HEA算法)
     边缘网络中存在一系列的存储资源,如服务器上的存储资源,用户终端上的存储资源,新型网络交换设备(NCR)上的缓存资源。对这些潜在的可用存储资源进行描述,我们构建了边缘网络存储资源模型(ESRM)。在此基础上,就如何使用NCR上的存储资源,我们提出面向流媒体应用的边缘网络内容分发模型,即Put/Get模型。该模型通过将网络交换设备中的缓存资源作为数据分发的枢纽,能够将数据分发路径与底层网络拓扑结构进行较好地匹配,从而实现网络资源的最大化利用,提高流媒体分发的效率。随后,我们提出了一种面向Put/Get模型的启发式流媒体内容部署算法(HEA)。该算法基于对用户请求概率的假设,实现边缘网络范围内的流媒体内容部署优化,能够有效降低服务器工作负载,减少边缘网络流媒体分发的整体网络代价。
     (3)为了集中高效使用边缘网络用户终端的空闲存储资源,我们提出了一种流媒体分布存储系统框架(BufferBank)
     BufferBank系统主要由三个部分组成,即应用客户端(BBA)、缓存控制管理服务器(BBM)、缓存银行系统储户(BBD)。该系统采取类似于现实生活中的银行系统的激励机制,鼓励BBD将他们的空闲存储资源充分利用起来,存入BufferBank系统之中,由BBM将这些存储资源集中进行管理,并把它们借贷给上传的应用,从而在改善这些应用的客户体验的同时,增加网络运营商的收入。BBD用户能够通过将存储资源存入BufferBank的形式获得相应的奖励。该系统能够有效提高总体缓存服务带宽,降低数据访问延时,提高数据读写效率。
     (4)为了在边缘网络实现以内容为中心的网络设计思想,利用NetMagic硬件平台设计了具有双转发引擎的路由器NCR原型系统
     NCR基本原理是在支持常规的IP路由的基础上,增加内容转发处理,使得边缘网络能够更好地适应以内容的访问和获取为中心的应用模式。在常规NDN设计的基础上,增加NCR上的用户共享内容索引,即通过构造末端域索引表EDIT来减轻路由器上的内容存储和检索压力,从而提高NCR的报文处理速度。基于NetMagic网络实验平台详细的讨论了NCR转发引擎的设计与实现。
Large-scale streaming media distribution has gradually become the most importantand potential Internet application. Since the “best-effort”packet forwarding feature ofcurrent Internet’s network layer and mismatching between application layer solutionsand underlying network information, the design of large-scale streaming videoapplication over Internet is still a challenging study. Meanwhile, the evolution ofInternet shows some arresting trends that bring new opportunities. For example, theseparation between data transmission and content negotiation, the increasing user edgenetwork, uniform In-Network Storage capability and content-centric network design.
     After deep analysis of current mainstream solutions and the evolution of networkinfrastructure, this dissertation points out that in order to seek a sound solution of thelarge-scale streaming media distribution problem, researchers shoud study requirementsof different network stakeholders involved in the content distribution process firstly, andthen put their focus on effective utilization of all possible network resources, especiallythe networkwide storage resources. Therefore, contributions of this dissertation can beconcluded as follows:
     (1) Given the aggregation effect of edge network users’ media streamingrequirements and the potential storage resources within edge network, we propose anEdge to Edge Media streaming Service Model, named E2EMSM. Generally, it is tosome extent similar that network interest and streaming media service requirements ofusers from the same edge network. Considering this fact, we can achieve the designapproach,“high-efficiency transmission in the core, and diversified services in theedge”, by dividing the whole network space of Internet into two parts, the coretransmission network space and the edge service network space. To deploy somerelative network infrastructure, such as the new content storage enabled networkswitching equipment which is named NCR, at the aggregate point of edge network, wepropose the Edge-to-Edge Media streaming Service Model, named E2EMSM. Thesolution which is based on this model, can take full advantage of the aggregation effectto optimize distribution process, reduce flow requirements, and improve service quality.
     (2) An edge network storage resource model, named ERSM, is constructed. On thisbasis, a novel streaming media content distribution model, named Put/Get, is presented.And then, a heuristic streaming media content deployment algorithm, named HEA, ispresented. There are kinds of storage resources within edge network area, such as theserver’s storage resources, storage resources on the user terminal, and the cacheresources on the new network switching equipment (NCR). To describe these potentialstorage resources, we construct the edge network storage resource model, named ERSM.On the basis of cache resource on NCRs, we propose a new edge network streaming media distribution model, the Put/Get model, which uses the cache resource on NCRs asthe aggregation point of data forwarding. Under this way, the reality data distributionpath can match well with the underlying network topology, to achieve the maximumutilization of network resources, and improve the efficiency of streaming mediadistribution. And then, we propose a heuristic streaming media content deploymentalgorithm, named HEA, which is based on the assumption that the probability of userrequest. It can reduce server workloads and the overall network cost of streaming mediadistribution within edge network.
     (3) An edge network streaming media distributed storage system, namedBufferBank, is presented, which is to concentrate the use of free storage resources onusers’treminal. It is mainly composed of three parts, the application client (BBA),management server (BBM), and the depositor (BBD). It takes incentive similar to reallife banking system, where BBDs are encouraged to deposite their free storageresources into BufferBank and these resources are concentrated to manage and belended to upper applications by BBM.
     (4) Based on the NetMagic hardware platform, a streaming media router with dualforwarding engine, named NCR, is presented. The basic idea of NCR is to increase thecontent-centric routing mechanism on conventional IP router, which will make edgenetwork service fit the dominant network usage. By manage a user shared content indexon NCR, we can mitigate the stress of read/write operation on content storeimplemented on NDN Router, and then improve the forwarding speed. The forwardingengine of NCR prototype implemented on NetMagic hardware platform has beendiscussed.
引文
[1]中国互联网络信息中心.第29次中国互联网络发展状况统计报告[EB/OL]. http://www.cnnic.net.cn,2012.
    [2] Cisco Visual Networking Index: Forecast and Methodology,2010-2015[EB/OL].http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html,2011.
    [3] Cachelogic[Z], http://www.cachelogic.com.
    [4] Akamai Technologies, Akamai CDN[Z]. www.akamai.com
    [5] Vakali A, and Pallis, G. Content Delivery Networks: status and trends [J].IEEE Internet Computing,2003,7(6):68-74.
    [6] Peng G. CDN: Content Distribution Network [R]. NewYork: ExperimentalComputer Systems Lab, Department of Computer Science,2003.
    [7] Pathan M, Buyya R, and Vakali A. Content Delivery Networks: State of theArt, Insights, and Imperatives [C]//Buyya R, Pathan M, Vakali A(Eds.). ContendDistribution Networks. Berlin: Springer-Verlag,2008:3-32.
    [8] YDB056-2010,基于P2P Cache的流量优化技术框架[S].
    [9] Hunter T, Nosratinia A. Outage analysis of coded cooperation [J]. IEEETransaction Information Theory,2006,52(2):375-391.
    [10] Aggarwal V, Feldmann A, and Scheidler C. Can ISPs and P2P systemscooperate for improved performance?[J]. ACM Computer Communication Review,2007,37(3):31-40.
    [11] Dick M E, Pacitti E, and Kemm B E. Flower-CDN: a hybrid P2P overlay forefficient query processing in CDN [C]//Kersten M, Novikov B, Teubner J, Polutin V,Manegold S(eds.).The12th International Conference on Extending DatabaseTechnology: Advances in Database Technology (EDBT’09). New York: ACM,2009:427-438.
    [12] Xie H Y, Yang Y, Krishnamurthy A, Liu Y, and Silerschatz A. P4P:provider portal for applications [J]. ACM SIGCOMM Computer CommunicationReview,2008,38(4):pp.351-362.
    [13] Hefeeda M, Habib A, Xu D Y, et al. CollectCast: A Peer-to-Peer Service forMedia Streaming [J]. Multimedia Systems,2005,11(1):68-81.
    [14] Kang S, Yin H. A hybrid CDN-P2P system for Video-on-Demand[C]//Second International Conference on Future Networks (ICFN).Los Alamitos:IEEE Computer Society,2010:309-313.
    [15]蒋海,李军,李忠诚.混合内容分发网络及其分析模型[J].计算机学报,2009,32(3):473-482.
    [16] Jacobson V, Smetters D, Thornton J, Plass M, Briggs N, and Braynard R.Networking Named Content[C]//Co-NEXT’09. New York:ACM,2009:.1-12.
    [17] Manal E D, Esther P, Bettina K. A Highly Robust P2P-CDN under LargeScale and Dynamic Participation [C]//Liotta A, Antonopoulous N, Exarchakos G,Hara T(eds).The First International Conference on Advances in P2P Systems (AP2P).Washington DC: IEEE Computer Society,2009:180-185.
    [18] Jiang H, Wang Z, Wong A K, Li J, and Li Z C. A Replica PlacementAlgorithm for Hybrid CDN-P2P Architecture [C]//15th International Conference onParallel and Distributed Systems(ICPADS). Washington DC: IEEE Computer Society,2009:758-763.
    [19] Wang Z, Jiang H, Sun Y, Li J, Liu J, Dutkiewicz E. A k-coordinateddecentralized replica placement algorithm for the ring-based CDN-P2P architecture
    [C]//IEEE Symposium on Computers and Communications (ISCC’10).WashingtonDC: IEEE Computer Society,2010:811-816.
    [20] Huang C, Wang A, Li J, et al. Understanding Hybrid CDN-P2P: WhyLimelight Needs its Own Red Swoosh [C]//18th International Workshop on Networkand Operating Systems Support for Digital Audio and Video (NOSSDAV'08). NewYork: ACM,2008:75-80.
    [21] Skevik K, Goebel V, Plagemann T. Analysis of BitTorrent and its use forthe Design of a P2P based Streaming Protocol for a Hybird CDN [R]. Delft:DelftUniversity of Technology,2004.
    [22] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman and B. Weihl.Globally Distributed Content Delivery[J]. IEEE Internet Computing,2002,6(5):50-58.
    [23] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble and H. Levy. An analysis ofInternet content delivery system[J]. ACM SIGOPS Operating Systems Review,2002(36):315-328.
    [24] K. Aberer and M. Hauswirth. An overview of peer-to-peer informationsystems [C]//Litwin W, Levy G(eds.).workshop on Distributed Data and Structures(WDAS2002). Paris: Carleton Scientific,2002:171-188.
    [25] J. Lee. An End-User Perspective on File-Sharing Systems [J].Communications of the ACM,2003,46(2):49-53,.
    [26] Park K and Willinger W.The Internet as a Large-Scale Complex System[J].Journal of the Royal Statistical Society: Series A (Statistics in Society),2007(170):260-260.
    [27] S. Sivasubramania, M. Szymaniak, G. Pierra and M. Van Steen. Replicationof Web hosting systems [J]. ACM Computing Surveys,2004,36(3):
    [28] D. Choffnes and F. Bustamante. Taming the Torrent: a practical approach toreducing cross-isp traffic in peer-to-peer systems [C]//SIGCOMM2008. New York:ACM,2008:363-374
    [29] A.J. Su, D. Choffnes, A. Kuzmanovic, and F. Bustamante. Drafting BehindAkamai (travelocity-Based Detouring)[C]//SIGCOMM2006. New York: ACM,2008:435-446
    [30] Su A J, and A. Kuzmanovic. Thinning Akamai[C]//IMC’08. New York:ACM,2008:29-42
    [31]尹浩,林闯,文浩,陈治佳,吴大鹏.大规模流媒体应用中的关键技术的研究[J].计算机学报,2008(5):755-774
    [32] Y. Chu, S. Rao and H. Zhang. A Case for End System Multicast[C]//ACMSigmetrics’00. New York: ACM,2000:1-12
    [33] B. Zhang, S. Jamin, and L. Zhang. Host Multicast: A framework fordelivering multicast to end users [C]//INFOCOM2002. New York: ACM,2002:1366-1375
    [34] S. Banerjee, B. Bhatacharjee, C. Kommareddy. Scalable Application LayerMulticast[C]//SIGCOMM2002. New York: ACM,2002:43-51
    [35] M. Piatek, H. Madhyastha, J. John, A. Krishnamurthy, and T. Anderson.Pitfalls for ISP-friendly P2P design[C]//HotNets2009. New York: ACM,2009
    [36] Y. Lei, L. Yang, Y. Gong, and W. Wang. ShareStorm: a High-Performanceand ISP-Friendly P2P Content Distribution Protocol[C]//International Conference onParallel Processing(ICPP’11) Washington: IEEE Computer Society,2011:773-782.
    [37] M.H. Lin, C.S. Lui, and D.M. Chiu. An ISP-friendly File DistributionProtocol: Analysis, Design and Implementation[J]. IEEE Transactions on Parallel anddistributed systems,2010,21(9):1317-1329.
    [38] B. Li, S. Xie, G. Keung, J.C. Liu, I. Stoica and H. Zhang. An EmpiricalStudy of the CoolStreaming+System[J]. IEEE Journal on Selected Ares inCommunications, Special Issue on Advances in Peer-to-Peer Steaming System,2007,25(9):1-13
    [39] G. Dan. Cooperative Caching and Relaying Strategies for Peer-to-PeerContent Delivery[C]//USENIX IPTPS’8. Berkeley: USENIX Association,2008:16-16
    [40] Bindal R, et al. Improving Traffic Locality in BitTorrent via BiasedNeighbor Selection[C]//IEEE ICDCS’06. Washington: IEEE Computer Society,2006:66-66
    [41] Liu Y, et al. A Case Study of Traffic Locality in Internet P2P LiveStreaming Systems[C]//IEEE ICDCS’09. Washington: IEEE Computer Society,2009:423-432
    [42] S. Ren et al. TopBT: A Topology-Aware and Infrastructure-IndependentBitTorrent Client[C]//IEEE INFOCOM2010. Washington DC: IEEE ComputerSociety,2010:1-9
    [43] J. Peterson, V. Gurbani, E. Marocco et al., ALTO Working GroupCharter[EB/OL]. http://www.ietf.org/html.charters/alto-charter.html,2009.
    [44] G. Shen et al. HPTP: Relieving the Tension between ISPs and P2P[C]//USENIX IPTPS’07. Washington DC: IEEE Computer Society,2007:283-304
    [45] W.K. Chai et al. Curling: Content-ubiquitous Resolution and DeliveryInfrastructure for Next-generation Services[J]. IEEE Communications Magazine,2011,49(3):112-120.
    [46] W.Y. Ma, B. Shen, and J.T. Brassil. Content services network: architectureand protocols[C]//Web Caching and Content Distribution (WCW’01).Berlin:Springer,2001.
    [47] Zhe Xiang, Qian Zhang, Wenwu Zhu. Peer-to-Peer Based MultimediaDistribution Service[J]. IEEE Transactions on Multimedia,2004,6(2):.343-355
    [48] T. Guang, J. Hai, W. Song. Clustered multimedia servers: architectures andstorage systems[J]. Annual Review of Scalable Computing,2003:.212-223.
    [49] C. Shahabi, R. Zimmermann, K. Fu, et al. Yima: a second-generationcontinuous media server[J]. IEEE Computer,2002,35(6):56-64.
    [50]吴杰. P2P流媒体内容分发与服务关键技术研究[D].上海,复旦大学计算机系,2008年4月。
    [51] Y.F. Chen, Y.N. Huang, R. Jana, H. Jiang, M. Rabinovich, B. Wei, and Z.Xiao. When is P2P Technology Beneficial for IPTV Services?[C]//NOSSDAV’2007.Washington DC: ACM,2007.
    [52] D.Y. Xu, S. Kulkarni, C. Rosenberg, and H. Chai, A CDN-P2P hybridarchitecture for cost-effective streaming media distribution[J]. Computer Networks,2004,44(3):353-382.
    [53] B. Li and H. Yin, The Peer-to-Peer Live Video Streaming in the Internet:Issues, Existing Approaches and Challenges[J]. IEEE Communication Magazine,2007,45(6):94-99.
    [54] M. Pathan, R. Buyya.A Taxonomy of CDNs[C]//Buyya R, Pathan M,Vakali A(Eds.). Contend Distribution Networks. Berlin: Springer-Verlag,2008:33-78.
    [55] B. Li, S. Xie, Y. Qu, G. Keung, J. Liu, C. Lin and X. Zhang, Inside the NewCoolstreaming: Principles, Measurements and Performance Implications[C]//IEEEINFOCOM’08. Washington DC: IEEE Computer Society,2008:1031-1039
    [56] Y. Bartal. Probabilistic Approximation of Metric Space and its AlgorithmicApplication[C]//37thAnnual IEEE Symposium on Foundations of Computer Science(FOCS’96). Washington DC: IEEE Computer Society,1996:184
    [57] P. Krishnan, D. Raz, and Y. ZShavitt, The Cache Location Problem[J].IEEE/ACM Transaction on Networking,2000,8(5):568-582.
    [58] L. Qiu, V. Padmanabhan, and G. Voelker. On the Placement of Web ServerReplicas[C]//IEEE INFOCOM’01. Washington DC: IEEE Computer Society,2001:1587-1596.
    [59] B. Li, M.J. Golin, G.F. Italiano, D. Xin, and K. Sohraby. On the OptimalPlacement of Web Proxies in the Internet[C]//IEEE INFOCOM’99. Washington DC:IEEE Compuer Society,1999:1282-1290.
    [60] V.N. Padmanabhan, H.J. Wang, P.A. Chou, K. Sripanidkulchai. Distributingstreaming media content using cooperative networking[C]//12th InternationalWorkshop on Network and Operating Systems Support for Digital Audio and Video(NOSSDAV). New York: ACM,2002:177-186
    [61] Castro M, Druschel P, Kermarrec A-M, Nandi A, Rowstron A, Singh A.SplitStream: high-bandwidth multicast in cooperative environments[C]//19th ACMsymposium on Operating Systems Principles(SOSP’03). New York:ACM,2003:298-313
    [62] Jiang X, Dong Y, Xu D, Bhargava B. GnuStream: a P2P media streamingsystem prototype[C]//International Conference on Multimedia and Expo.Baltimore(ICME’03).Washington DC: IEEE Computer Society,2003:325-328
    [63] Kostic D, Rodriguez A, Albrecht J, Vahdat A. Bullet: high bandwidth datadissemination using an overlay mesh[J]. ACM SIGOPS Operating Systems Review,2003,37(5):282-297
    [64] M. Hefeeda, A. Habib, B. Botev, D. Xu, B. Bhargava. PROMISE:peer-to-peer media streaming using CollectCast[C]//ACM Multimedia’03. New York:ACM,2003:45-54
    [65] Magharei N, Rejaie R. PRIME: peer-to-peer receiver-driven mesh-basedstreaming[J]. IEEE/ACM Transactions on Networking,2009,17(4):1052-1065
    [66] X. Zhang, J. Liu, B. Li, and T. Yum. CoolStreaming/DONet: a data-drivenoverlay network for peer-to-peer live media streaming[C]//INFOCOM’05.Washington DC: IEEE Computer Society,2005:2102-2111.
    [67] Zhang C, Jin H, el al. Anysee: Multicast-based Peer-to-Peer MediaStreaming Service System[C]//2005Asia-pacific Conference on Communication.Washington DC: IEEE Computer Society,2005:274-278.
    [68]Yiu W-P K, Xing J, Chan S-H G. VMesh: distributed segment storage forpeer-to-peer interactive video streaming[J]. IEEE Journal on Selected Areas inCommunications,2007,25(9):1717-1731
    [69]Siddhartha A, PSaikat G, PChristos G, Dinan G, Pablo R. Is high-qualityVoD feasible using P2P swarming?[C]//WWW’07. New York: ACM,2007:903-912
    [70]Purandare D, Guha R. An alliance based peering scheme for peer-to-peerlive media streaming[C]//In: Proceedings of Workshop on Peer-to-Peer Streamingand IP-TV. Kyoto,2007:340-345
    [71] Zhou M, Liu J. A hybrid overlay network for video-on-demand[C]//In:Proceedings of the IEEE International Conference on Communications. Seoul,2005:1309-1313
    [72] Wang F, Xiong Y, Liu J. mTreebone: a hybrid tree/mesh overlay forapplication-layer live video multicast[C]//In: Proceedings of the27th InternationalConference on Distributed Computing Systems. Toronto,2007:49-49
    [73] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S.Shenker, and I. Stoica. A Data-Oriented (and Beyond) Network Architecture[C]//In:Proceedings of ACM SIGCOMM,2007.
    [74] N. Tolia, M. Kaminsky, D. Anderson, and S. Patil. An Architecture forInternet Data Transfer[C]//In: Proceedings of3rd Symposium on Networked SystemsDesign&Implementation (NSDI’06),2006.
    [75] T. Hayashi, H. Satou, H. Ohata, et al. Requirements for Multicast AAAcoordinated between Content Provider(s) and Network Service Provider(s)[Z].Draft-ietf-mboned-maccnt-req-06.txt
    [76] D. Wu, Y. Hou, W. Zhu, Y.Q. Zhang, J.M. Peha, Streaming Video over theInternet: Approaches and Directions[J]. IEEE TRANSACTIONS ON CIRCUITSAND SYSTEMS FOR VIDEO TECHNOLOGY,2001,Vol.11, No.3.
    [77] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should Internet ServiceProviders Fears Peer-Assisted Content Distribution?[C]//In: Proceedings of IMC,2005.
    [78] J. Arkko. Incentives and Deployment Considerations for P2PI Solutions[Z].Draft-arkko-p2pi-incentives-00, Internet-Draft,2008.
    [79] A. Gupta, A. Akella, S. Seshan, S. Shenker, and J. Wang. Understandingand Exploiting Network Traffic Redundancy[R]. Technical Report, University ofWisconsin-Madison,2007.
    [80] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee. Redundancy inNetwork Traffic: Findings and Implications[C]//In: Proceedings of ACMSIGMETRICS/Performance,2009.
    [81] L. Lao, J.–H. Cui, M. Gerla, and D. Maggiorini. A Comparative Study ofMulticast Protocols Top, Bottom, or In the Middle[C]//INFOCOM2005. WashingtonDC: IEEE Computer Society,2005:2809-2814.
    [82] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet Cacheson Routers: The Implications of Universal Redundant Traffic Elimination[C]//ACMSIGCOMM’08. New York: ACM,2008:219-230
    [83] H. Schulze, and K. Mochalski. Internet Study2008/2009[Z].www.ipoque.com
    [84] L. Zhang, D. Esrin, J. Burke, V. Jacobson, et al. Named Data Networking(NDN) Project[Z]. www.named-data.net/ndn-proj.pdf, October31,2010.
    [85] W. Jiang, R. S. Zhang, J. Rexford, and M. Chiang. Cooperative ContentDistribution and Traffic Engineering[C]//ACM NetEcon’08. New York: ACM,2008:239-250
    [86] M.Y. Cha, H. Kwak, P. Rodrigues, Y. Ahn, S. Moon. I Tube, You Tube,Everybody Tubes: Analyzing the World’s Largest User Generated Content VideoSystem[C].//IMC’07. New York: ACM,2007:1-14
    [87] M. Zink, K. Suh, Y. Gu and J. Kurose. Watch Global, Cache Local:YouTube Network Traffic at a Campus Network: Measurements and Implications[R].Computer Science Department Faculty Publication Series, Paper177.http://scholarworks.umass.edu/cs_faculty_pubs/177,2008.
    [88] P. Gill, M. Arlitt, Z. Li, A. Mahanti. YouTube Traffic Characterization: AView from the Edge Prospective[C]//IMC’07. New York: ACM,2007:15-28
    [89] PPStream[Z], www.pps.tv
    [90] D.Clark, et al. Tussle in cyberspace: defining tomorrow's internet [J].IEEE/ACM Transactions on Networking,200513(3): p.462-475.
    [91] J.F. He, et al. E2EDSM: An Edge-to-Edge Data Service Model for MassStreaming Media Transmission[C]//Advanced Parallel Processing Technoogies(APPT’09). Berlin: Springer,2009.
    [92] F. Thouin and M. Coates. Video-on-Demand Networks: Design Approachesand Future Challenges[J]. IEEE Network,2007volume21, Issue2, pp.42-48.
    [93] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, et al. Above theClouds: A Berkeley View of Cloud Computing[R].http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html,2009.
    [94] N. Laoutaris and P. Rodriguez. Good things come to Those Who (Can) waitor how to handle Delay Tolerant traffic and make peace on the Internet[C]//SeventhACM Workshop on Hot Topics in Networks(Hotnets’08), Calgary, Alberta, Canada,October6-7,2008.
    [95] N. Laoutaris, G. Smaragdakis, P. Rodriguez and R. Sundarm. DelayTolerant Bulk Data Transfers on the Internet[C]//ACM SIGMETRIC’09. New York:ACM,2009:229-238.
    [96] Bing Wang, Subhabrata Sen, Micah Adler and Don Towsley. Optimal ProxyCache Allocation for Efficient Streaming Media Distribution[C]//IEEEINFOCOM’02. Washington DC: IEEE Compter Society,2002:1726-1735
    [97] G.K. Zipf. Human Behavior and the Principle of Least-Effort[M].Addison-Wesley,1949
    [98] NetMagic[Z], www.Netmagic.nudt.edu.cn
    [99] L. Chen H. Liu, Z. Huang, X. Chen. Integration Examples of DECADESystem[Z]. Draft-ietf-decade-integration-example-01.
    [100] H. Song et al. DECoupled Application Data Enroute (DECADE) ProblemStatement[Z]. Draft-ietf-decade-problem-statement-03.
    [101] R. Alimi, A. Rahman, Y. Yang. A Survey of In-network StorageSystems[Z]. Draft-ietf-decade-survey-05.
    [102] N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit. Are file swappingnetworks cacheable? Characterizing P2P traffic[C]//7th International Workshop onWeb Content Caching and Distribution (WCW’02), Boulder, CO, USA, Aug.2002.
    [103] Y. Liu, S. Yu. Streaming Media Delivery with Proxy Cache forHeterogeneous Clients[C]//7th IEEE Workshop on Multimedia Signal Processing.Shanghai, China,2005.
    [104] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak.CacheReplacement Policies Revisited: The Case of P2P Traffic[C]//IEEEInternational Symposium on Cluster Computing and the Grid (CCGrid2004), pp.182-189, Apr.2004.
    [105] O. Saleh and M. Hefeeda. Modeling and Caching of Peer-to-PeerTraffic[C]//IEEE International Conference on Network Protocols (ICNP’06), pp.249-258, Nov.2006.
    [106] M. Hefeeda, C.H. Hsu, and K. Mokhtarian. Design and Evaluation of aProxy Cache for Peer-to-Peer Traffic[J]. IEEE Transacations on Computers,2011Vol.60(7):964-977.
    [107] K.Xu, M. Zhang, J.C. Liu, Z.J. Qin, M.J. Ye. Proxy caching forpeer-to-peer live streaming[J]. Computer Networks,2010,54(7):1229-1241.
    [108] Chang Shin-hung, Chang Ray-I. A Priority Selected Cache Algorithm forVideo Relay in Streaming Applications[J]. IEEE Transactions on Broadcasting,2007,53(1):79-91.
    [109] Chen Songqing, Shen Bo, Susie W, et al. Adaptive and Lazy SegmentationBased Proxy Caching for Streaming Media Delivery[C]//NOSSDAV’03. New York:ACM,2003:22-31
    [110] Y. Cui, B. Li, and K. Nahrstedt. oStream: Asynchronous StreamingMulticast in Application Layer Overlay Networks[J]. IEEE Journal on Selected Areasin Communications,2004,22(1):91-106.
    [111] C. Huang, J. Li, and K. Ross. Peer-Assisted VoD: Making Internet VideoDistribution Cheap[C]//IPTPS’07. Washington DC: IEEE Computer Society,2007
    [112] Y. Huang, T. Fu, D.M. Chiu, J.C. Liu and C. Huang. Challenges, Designand Analysis of a Large-sclae P2P-VoD System[C]//SiGCOMM’08. New York:ACM,2008:375-388.
    [113]王道谊,周文安,刘元安.内容分发网络中内容流行度集中性的研究[J].计算机工程与应用,2011(6):102-104。
    [114] J. Kelly, W. Araujo, and K. Banerjee. Repaid Service Creation using theJUNOS SDK[J]. ACM SIGCOMM Computer Communication Review,2010,40(1):56-60
    [115] B. Davie and J. Medeved. A programmable Overlay Router for ServiceProvider Innovation[C]//2ndACM SIGCOM workshop on Programmable routers forextensible services of tomorrow (PRESTO’09).New York: ACM,2009:1-6.
    [116] J. Wang. A survey of web caching schemes for the Internet[J]. In: ACMSIGCOMM Computer Communication Review,1999,29(5):36-46.
    [117] S Scellato, C Mascolo, M Musolesi, and J Crowcroft. Track Globally,Deliver Locally: Improving content Delivery Networks by Tracking GeographicSocial Cascades[C]//20thinternational conference on World Wide Web(WWW’11).New York: ACM,2011:457-466
    [118] C. Griwodz,M. Bar,and L. Wolf. Long-term Movie Popularity Models inVideo-on-Demand Systems: or The Lift of an on-Demand Movie[C]//fifth ACMinternational conference on Multimedia(Multimedia’97). New York: ACM,1997:349-357.
    [119] D.N.Serpanos, L.Georgiadis, and T.Bouloutas. MMPacking: A1oad andstorage balancing algorithm for distributed multimedia servers[J]. IEEE Transactionson Circuits and Systems for Video Technology,1998,8(1):13-17.
    [120] Q. Zhao. Dynamic Load Balancing and Content Update for Media StorageServers[C]//Conference on Visual Information Processing XI. Washington DC: IEEEComputer Society,2002:201-212.
    [121] P. Jokela, A. Zahemszky, C. Rothenberg, S. Arianfar, and P. Nikander.LIPSIN: Line Speed Publish/Subscribe Inter-Networking[C]//ACM SIGCOMM’09.New York: ACM,2009:195-206.
    [122] G. Appenzeller, I. Keslassy, and N. Mckeown. Sizing router buffers[J].SIGCOMM Comput. Commun. Rev.34,4(2004), pp.281-292.
    [123] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and S. Nath. Cheapand large cams for high performance data-intensive networked systems[C]//NSDI’10.Berkeley:USENIX Association,2010:.29-39.
    [124] A. Anand, V. Sekar, and A. Akella. SmartRE: An architecture forcoordinated network-wide redundancy elimination[C]//SIGCOMM’09. New York:ACM,2009:87-98
    [125] D.TROSSEN. Architecture Definition, Component Descriptions, andRequirements[Z]. Deliverable D2.3, PSIRP Project,2009.
    [126] V. Jacobson, D.K. Smetters, N.H. Briggs, M.F. Plass, et al. VoCCN:Voice-over Content-Centric Networks [C]//ReArch’09. New York: ACM,2009:1-6
    [127] Fackbook[Z], www.fackbook.com
    [128]优酷视频[Z],www.youku.com
    [129]人人网[Z], www.renren.com
    [130] YouTube[Z], www.youtube.com
    [131] G. Carofiglio, M. Gallo, L. Muscariello. Bandwidth and Storage SharingPerformance in Inromation Centric Networking[C]//ICN’11.New York:ACM,2011:26-31
    [132] A. Carzaniga, M. Papalini, A.L. Wolf. Content-Based Publish/SubscribeNetworking and Information-Centric Networking[C]//ICN’11. New York:ACM,2011:56-61.
    [133] F. Bjurefors, P. Gunningberg, C. Rohner, S. Tavakoli. CongestionAvoidance in a Data-Centric Opportunistic Network[C]//ICN’11. New York:ACM,2011:32-37.
    [134] S. DiBenedetto, C. Papadopoulos, D. Massey. Routing Polices in NamedData Networking[C]//ICN’11. New York:ACM,2011:38-43.
    [135] Y.P. Zhou, T. Fu and D.M. Chiu. Statistical Modeling and Analysis of P2PReplication to Support VoD Service[C]//IEEE INFOCOM’11. Washington DC:IEEE Computer Society,2011:945-953.
    [136] D. Wu, Y. Liu, K. Ross. Queuing Network Models for Multi-Channel P2PLive Streaming Systems[C]//IEEE INFOCOM’09. Washington DC: IEEE ComputerSociety,2009:73-81.
    [137] B. Ford, J. Iyengar. Breaking Up the Transport Logjam[C]//ACMHotNets’08. NewYork: ACM,2008.
    [138] S. Weber, G. Veciana. Network Design for Rate Adaptive MediaStreams[C]//INFOCOM’03. Washington DC: IEEE Computer Society,2003(3):2122-2132.
    [139] Y.P. Zhao, D. Eager, M. Vernon. Network Bandwidth Requirements forScalable On-Demand Streaming[C]//INFOCOM2002Washington DC: IEEEComputer Society,2002(2):1119-1128.
    [140] A. Ghodsi, T. Koponen B. Raghavan, S. Shenker, A. Singla, J. Wilcox.Information-Centric Networking: Seeing the Forest for the Trees[C]//Hotnet’11.NewYork: ACM,2011:1.
    [141] M. Ambrosio, C. Dannewitz, H. Karl, V. Vercellone. MDHT: AHierarchical Name Resolution Service for Infromation-centric Networks[C]//ICN’11.New York:ACM,2011:7-12.
    [142] S. Shanbhag, N. Schwan, I. Rimac, M. Varvello. SoCCeR: Services overContent-Centric Routing[C]//ICN’11. New York:ACM,2011:62-67.
    [143] A. Detti, N. Blefari-Melazzi, S. Salsano, M. Pomposini. CONET: AContent Centric Inter-Networking Architecture[C]//ICN’11.NewYork:ACM,2011:50-55
    [144] C. Tsilopoulos and G. Xylomenos. Supporting Diverse Traffic Types inInformation Centric Networks[C]//ICN’11.NewYork:ACM,2011:13-18
    [145] M. Meisel, V. Pappas, L.X. Zhang. Ad Hoc Networking via NamedData[C]//MobiArch’10. New York: ACM,2010:3-8
    [146] D. Perino, M. Varvello. A Reality Check for Content CentricNetworking[C]//ICN’11.NewYork:ACM,2011:44-49
    [147] A. Anand, F. Dogar, D. Han, et al. XIA: An Architecture for an Evolvableand Trustworthy Internet[C]//Hotnet’11. NewYork: ACM,2011:2.
    [148] A. Badam, K. Park, V. S. Pai and L.L. Peterson. HashCache: CacheStorage for the Next Billion[C]//6thUSENIX symposium on Networked systemsdesign and implemetnation (NSDI’09).Berkeley:USENIX Association,2009:123-136.
    [149]刘威,程文青.流媒体代理缓存系统的设计与仿真[J].系统仿真学报,2007(8):1872-1875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700