非线性热传导方程适定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究针对热传导过程建立的几类非线性偏微分方程的适定性问题,应用固体力学理论研究了薄板在热流冲击作用下的非Fourier效应。这些问题的研究对于揭示热传导过程的物理本质,推动对热传导问题基础理论、数值方法和模拟仿真技术的研究是有益的。
     本文首先研究了一类反映热传导的半线性抛物方程的柯西问题,通过引进位势井族,得到了位势井族的相关性质和解的不变集合。结合Galerkin近似解方法及能量估计法,得到了相应问题整体弱解的存在性结论,同时证明了这个整体解随着时间趋于无穷而衰减到零。利用位势井方法及凸性方法,证明了初值在不稳定集合时相应问题解的有限时间爆破。同时,针对所研究问题的临界现象,利用位势井族方法,结合能量估计法及凸性方法,得到了整体弱解存在及有限时间爆破的结论。
     本文继而讨论了一类反映热波传播的半线性波动方程的柯西问题,在研究具有单一源项的波动方程的初边值问题的基础上,进一步研究了多个源项的波动方程的初边值问题整体弱解的存在性。本文针对此问题重新定义了位势井和位势井族,通过初等的方法找到了位势井深度函数的计算方法,讨论了位势井族的相关性质和解的不变集合。特别是,针对新的位势井方法给出了计算机描述位势井内部结构的可行性,并将此手段程式化,以期解决更复杂的同类问题。本文结合Galerkin近似解方法及能量估计法,得到了相应问题整体弱解的存在性结论,在适当的条件下,利用位势井方法及凸性方法,讨论了相应问题解的有限时间爆破。同时,针对所研究问题的临界现象,利用位势井族的方法,结合能量估计法及凸性方法,得到了整体弱解存在及有限时间爆破等一系列结论。
     本文对带有幂次组合型非线性项的非线性波动方程初边值问题进行了探讨。首先针对此类问题定义了新的位势井结构,而后利用第3章给出的分析技术对复杂的非线性项对位势井结构的影响进行分析,进而得出复杂的非线性项影响下的问题解的性质,证明了低能状态和临界状态下解的整体存在性和有限时间爆破。
     针对有限厚度板的传热问题,在考虑了非傅立叶效应的基础上,建立并研究了在突加常热流边界条件(第二类传热边界条件)下的双曲传热模型。应用积分变换的方法,得到了瞬态温度场问题的解析解。利用数值分析的手段,讨论了非傅立叶导热效应在有限厚度板内的具体行为,通过与基于傅立叶经典导热理论所得数值结果进行了比对,阐明了它们之间的异同以及两类不同模型的适用范围。同时,考察了热冲击作用下的简支矩形板,对其挠度的变化规律进行了详细的讨论,给出了薄板内应力场的分布。该方法简洁有效,可以推广应用到热冲击作用下的结构强度分析领域中。
This work studies the well-posedness several classes of nonlinear partial differentialequations arising in the heat conduction process and applies the solid mechanics theory tostudy the non-Fourier effect of a sheet under heat shock. These studies are meaningful forrevealing the physical nature of the heat conduction process and promoting the basic theoryof heat conduction problems, numerical methods and the simulation techniques.
     This work first studies the Cauchy problem for a class of semi-linear parabolic equationsreflecting the heat conduction. By introducing the family of potential wells we get thecorresponding properties of the potential wells and the invariant sets. Combining with theGalerkin approximate method and the energy estimate we get the existence results of globalweak solutions of the corresponding problem. And we also prove that the global solution astime tends to infinity, decays to zero. Using potential well method and convexity method weprove that the initial value in an unstable manifold may lead that the corresponding solutionsblow up in finite time. For critical case of the initial energy, by the potential wells methodcombined with the energy estimation method and convexity method, we prove the existenceof the global weak solutions and the finite time blow up of the solutions.
     Then we discuss the Cauchy problem for a class of the semi-linear wave equationsreflecting the heat wave propagation. First we try the initial boundary value problem ofweave equations with a single source term,which is based to study further the initialboundary value problem of weave equations with several source terms. For this problem were-define the potential wells and the family of potential wells. By the primary method we findthe way of calculating the potential well depth function and discuss the properties of thefamily of potential wells and the invariant sets. In particular, for the newly defined potentialwell we give computer description of the internal structure of the potential well and make thisprocess programmable in order to solve the similar problems with more complex terms. Inthis work, we apply the Galerkin approximate method and the energy estimation, we provethe existence results of global weak solutions for the corresponding problem. Underappropriate conditions, by the potential well method and the convexity method, we obtainthe finite time blow up for the corresponding solutions. For the critical case of the problems,by the family of potential wells combined with the energy estimation method and theconvexity method,we prove the existence of the global weak solutions and the finite timeblow of solutions.
     We also consider the initial boundary value problem of the nonlinear wave equations with the combined power type nonlinear terms. For such problem we define a new potentialwell and then use the analysis techniques given in the previous chapter to analyze the affectsof the complex nonlinear terms to the potential well structure. And then we come to thenature of the solution under the complex non-linear effect to prove that the solutions in thelow-energy state and the critical state exist globally or blow up in finite time.
     In this work,for the finite thickness plate we take into account the non-Fourier effect ofheat transfer problems and establish hyperbolic non-Fourier heat transfer model with thesecond boundary conditions for the heat transfer boundary conditions (suddenly appliedconstant heat flux). Applying the integral transform method to calculate the transienttemperature field we obtain the analytical soluyhution. By numerical analysis, we analyzethe non-Fourier heat conduction behavior in the finite thickness plate. Then we compare itwith the results by the classical Fourier law of heat conduction in order to clarify thedistinctions between the two models, as well as give the uses of the two models. Inaddition, detailed discussion of the deflection of a simply supported rectangular plate underthermal shock and the distribution of stress field in the metal plate under thermal shockloading are given. The above analysis method is simple and effective, which can be appliedto the calculation of the strength of the structure in the thermal shock effect.
引文
[1]郑连存等.传输过程奇异的非线性边值问题-动量、热量与质量传递方程的相似分析方法[M].北京:科学出版社,2003.
    [2]李大潜,陈韵梅.非线性发展方程[M].北京:科学出版社,1989.
    [3]王洪纲.热弹性力学概论[M].北京:清华大学出版社,1989.
    [4]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M].北京:科学出版社,1997.
    [5] Peshkov V.Second sound in helium II [J]. Journal of Physics, USSR,1944,8-38P
    [6] Guyer R A, Krumhansl J A. Solution of the linearized phonon Boltzmann equation [J].Physical Review,1966,148:766―780P
    [7] Qiu T Q, Tien C L. Femtosecond laser heating of multi-layer metalI-Analysi [J].International Journal Heat and Mass Transfer,1994,37(17):2789―2798P
    [8] Qiu T. Q. Juhasz T. Tien C. L.. Femtosecond laser heating of multi-layer metalsII-Experiments [J]. International Journal Heat and Mass Transfer,1994,37(17):2799―2808P
    [9] Majumdar A. Microscale heat conduction in dielectric thin film [J]. ASME Journal ofHeat Transfer,1993,115:7―16P
    [10] Tzou D. Y. The generalized lagging response in small-scale and high-rate heating [J].International Journal Heat and Mass Transfer,1995,38(17):3231―324P
    [11] Tzou D Y. A unified field approach for heat conduction from macro to micro-scales [J].Transactions of ASME-Journal of Heat Transfer,1995,117:8―16P
    [12]张浙,刘登瀛.傅立叶热传导的研究进展[J].力学进展.2000,30(3):446-456页
    [13] Kronberg A E, Benneker A G, Westerterp K R. Notes on wave theory in heat conduction:a new boundary condition[J]. Int J Heat Mass Tronsfer,1998,41(1):127-137P
    [14] Liang X, Guo Z, Xu Y. Theoretical analysis of transient heat conduction in sand[J].Science China.1996,39(4):855-863P
    [15] Yehuda Taitel. On the parabolic, hyperbolic and discrete formulation of the heatconduction equation[J]. Int J heat Mass Transfer.1972.15:369-371P
    [16] Majumdar A. Microscale heat conduction in dielectric thin films[J]. Transactions ofASME, Journal of Heat Transfer.1993:115-716P
    [17] Sebastian Volz, Jean-Bernard Saulnier, Michel Lallemand. Transient Fourier-lawdeviation by molecular dynamics in solid argon[J]. Physical Review B,1996,54(1):340-347P
    [18] Cattaneoc. On the conduction of caloric[J]. Atti.Sem.Mat. Fis. Univ. Modena.1948,3:83-101P
    [19] Vernotte P. Paradoxes of the continuous theory of the heat equation[J]. C. R. Acad. Sci.,1958,246:3154-3155P
    [20]过增元.热质的运动和传递(1):热质和热子气.见:中国工程热物理学会传热传质学学术会议论文集.2005:57-63页
    [21]张清光,过增元.热质的运动与传递(2)一热子气的状态方程.见:中国工程热物理学会工程热力学与能源利用学术会议论文集(上册).2005:156-160页
    [22]过增元,朱宏晔.热质运动和传递(3)-热子气的守恒方程和傅立叶定律.见:中国工程热物理学会第11届年会论文集(传热传质学).2005:69-75页
    [23]过增元,曹炳阳,朱宏晔等.声子气的状态方程和声子气运动的守恒方程[J].物理学报,2007,56(6)页
    [24]过增元,吴晶,曹炳阳.热质[J].机械工程学报.2009,45(3):10-13页
    [25] Zhang W, Zhang S, Guo X, etal. Multiple spatialand temporal scales method fornumerical simulation of non-classical heat conduction problems: One dimensional case[J].International Journal of Solids and Structures,2005,42(3.4):877-899P
    [26] Xu Y S, Guo Z Y. Heat-wave phenomena in IC chips[J]. International Journal of Heatand Mass Transfer,1995,38(15):2919-2922P
    [27] Maruyama S. A molecular dynamics simulation of heat conduction in finite lengthSWNTs[J]. Physica B-Condensed Matter,2002,323(1):193-195P
    [28] Livir, Lepr S. Heat in one dimension[J]. Nature,421:327-327P
    [29]张士元,郑百林,贺鹏飞.热冲击条件下基于非傅里叶传导的热涂层单边裂纹问题力学分析[J].工程力学.2010,27(10):47-51页
    [30] Kim W S, Hector J R, Ozisik M N. Hyperbolic heat conduction due to axisymmetriccontinuous or pulsed surface sources[J]. Journal of Applied Physics.1990,68:5478-5485P
    [31] Louis G, Hector J R, Kim W S, Ozisik M N. Propagation and reflection of thermalwaves in a finite medium due to axisymmetric surface sources[J]. Int J Heat massTinnsfer.1992,35(4):897-912P
    [32] Frankel J I, Brian Vick, Ozisik M N. General formulation and analysis of hyperbolicheat conduction in composite media[J]. Int J Heat Mass Transfer.1987,30(7):1293-1305P
    [33] Tzou D Y. Shock wave formulation around a moving heat source in a solid with finitespeed of heat propagation[J]. Int J Heat Mass Transfer.1999,32(6):1979-1987P
    [34] Tzou D Y. Thermal shock waves induced by a moving crack[J]. Transactions of ASME,Journal of Heat transfer.1990,112:2127-2130P
    [35] Tzou D Y. Thermal shock waves induced by a moving crack heat flux formulation[J]. IntJ Heat Transfer.1990,33(5):877-885P
    [36] Tzou D Y. Thermal shock formulation in a three-dimensional solid around a rapidlymoving heat source[J]. Transaction of ASME, Journal of Heat Transfer.1991,113:242-247P
    [37] Sadd M H, Didlake J E. Non-Fourier melting of a semi-infinite solid[J]. Transactions ofASME, Journal of Heat Transfer.1977,99:25-28P
    [38] Lebon G, Caws-Vazquez J. On the stability conditions for heat conduction with finitewave speed[J]. Physics Letters.1976,55A(7):393-394P
    [39] Mullis Andrew M. Rapid solidification within the framework of a hyperbolic conductionmodel[J]. Int J Heat Mass Transfer.1997,40(17):4085-4094P
    [40] Barletta A, Zanchini E. Three-dimensional propagation of hyperbolic thermal waves in asolid bar with rectangular cross-section[J]. lnt J Heat Mass transfer.1999,42:219-229P
    [41] Antaki Paul J. Solution for non-Fourier dual phase lag heat conduction in a semi-infiniteslab with surface heat flux[J]. Int J Heat Mass transfer.1998,41(14):2253-2258P
    [42]李志声,姜任秋,李志平.周期振荡温度场的非傅立叶分析[J].哈尔滨工程大学学报.2001,22(4):25-28页
    [43]马晓波,胡超,谈和平.亚表面圆柱体对热波的多重散射问题[J].光学学报.2005.26(12):1707-1711页
    [44]马晓波,谈和平,董士奎。半无限体内双圆柱亚表面热波散射问题的研究.工程热物理学报.2006.27(3):502-504页
    [45]马晓波,谈和平,董士奎.固体中亚表面缺陷的非傅立叶热波散射问题[J].工程热物理学报.2006,27(1):49-52页
    [46] zisik M N, Tzou D Y. On the wave theory in heat conduction[J].Transactions of ASME,Journal of HeatTransfer.1994.116:526-535P
    [47] Li J D, Cu Y Q, Guo Z Y. Analysis of the phenomena of non-Fonrier heat conductioninswitch-Q laser processing for re reducing the coss of grain-oriented silicon steel[J].J.Materials Processing Technology.1998,74:292-297P
    [48] Liu L H, Tan H P, Tong T W. Non-Fourier effects on transient temperature response insemitransparent medium caused by laser pulse[J]. Int J Heat Mass Transfer.2001,44:3335-3344P
    [49]范庆梅,卢文强.温度脉冲进口条件对单相介质一维非傅立叶导热问题的影响[J].中国科学院研究生院学报.2004,21(3):315-321页
    [50]范庆梅,卢文强.一类等温进口条件下的非傅立叶导热问题[J].中国科学院研究生院学报.2003,20(4):419-424页
    [51]郭英奎.快速瞬态导热的研究[博士论文].北京,清华大学工程力学系.2000
    [52] Bai C, Lavine A. On Hyperbolic Heat Conduction and theSecond Law ofThermodynamics[J]. Heat Transfer.1995,117(2):256-63P
    [53] I Korner C, Bergmann H. The Physical Defects of the Hy-perbolic Heat ConductionEquation[J]. Applied Physics A.1998,67(4):397-401P
    [54] R.B. Anibal, T. Anas. Nonlinear balance for reaction–diffusion equations undernonlinear boundary conditions: Dissipativity and blow up[J]. J. Differential Equations.169(2001):332–372P
    [55] C. Bandle, H.A. Levine, Q.S. Zhang. Critical exponents of Fujita type forinhomogeneous parabolic equations and system[J]. J. Math.Anal. Appl.251(2)(2000):624–648P
    [56] H. Fujita. On the blowing up of solutions of the Cauchy problem foru u u1t[J],J. Fac. Sci. Univ. Tokyo Sect A Math.13(1)(1996):109–124P
    [57] H. Fujita, On some nonexistence and nonuniqueness theorem for nonlinear parabolicequations[J]. Proc. Sympos. Pure Math.18(1)(1969):105–113P
    [58] Y. Giga, R. Kohn, Asymptotically self-similar blow up of semilinear heat equations[J].Comm. Pure Appl. Math.38(3)(1985):297–319P
    [59] K. Kobayashi, T. Sirao, H.Tanaka. On the growing up problem for semilinear heatequations[J]. J. Math. Soc. Japan.29(3)(1977):407–424P
    [60] H.A. Levine, Some nonexistence and instability theorems for solutions of formallyparabolic equations of the form Pu t Au F (u)[J]. Arch. Ration. Mech. Anal.51(3)(1973):371–383,386P
    [61] H.A. Levine, The role of critical exponents in blowup theorems[J]. SIAM Rev.32(2)(1990):262–288P
    [62] Y.C. Liu, On existence and nonexistence of global solutions for semilinear heatequations[J]. Chinese J. Contemp. Math.,18(1)(1997)21–30P
    [63] F.B. Weissler, Existence and non-existence of global solutions for a semilinear heatequations[J]. Israel J. Math.28(1–2)(1981):29–40P
    [64] F.B. Weissler. Local existence and nonexistence for semilinear parabolic equations in Lp[J]. Indiana Univ. Math. J.29(1)(1980):79–102P
    [65] X.F. Wang. On the Cauchy problem for reaction–diffusion equations[J]. Trans. Amer.Math. Soc.337(2)(1993):549–590P
    [66] Q.S. Zhang, Z. Zhao. Global asymptotic behavior of solutions of a semilinear parabolicequation[J]. Proc.Amer.Math.Soc.126(5)(1998):1491-1500P
    [67] N. Mizoguchi, E. Yanagida. Blowup and life span of solutions for a semilinearparobolic equation[J]. SIAM J. Math. Anal.29(6)(1998):1434–1446P
    [68] N. Mizoguchi, E. Yanagida. Critical exponents for the blow up of solutions with signchanges in a semilinear parabolic equation[J]. Math. Ann.307(4)(1997):663–675P
    [69] N. Mizoguchi, E. Yanagida. Critical exponents for the blow up of solutions with signchanges in a semilinear parabolic equation[J]. J. Differential Equations.145(2)(1998):295–331P
    [70] N. Mizoguchi. Grow up of solution for a semi linear heat equation with super criticalnonlinearity[J]. J. Differential Equations.2006,227:652.669P
    [71]孙萍,赵新俊.一种半线性热传导方程的Cauchy问题[J].新疆大学学报.2008,25(4):449-453页
    [72] M.X. Wang, X.Q. Ding. Global solution asymptotic behavior and blow up for semilinearheat equation[J]. Sci. China Ser. A.35(10)(1992):1026–1034P
    [73] X.Q. Ding, H.J. Zhao. Global solution of a semilinear parabolic equation[J]. Acta Math.Sci.11(3)(1991):254–266P
    [74] Y.C. Liu, H.O. Yang, Existence and nonexistence of global solutions for a class ofsemilinear heat equations[J]. Acta Math. Sin.42(2)(1999):321–326P
    [75] M. Nakao, K. Ono. Existence of global solutions to the Cauchy problem for thesemilinear dissipative wave equations[J]. Math. Z.214(2)(1993)325–342P
    [76] Sattinger D H. On global solution of nonline ar hyperbolic equations[J]. Archivef orRational Mechanics and Analysis.1968,30:148-172P.
    [77] Payne L E, Sattinger D H. Sadle points and instability of nonlinear hyperbolicequations[J]. Israel Journal of Mathematics.1975,22:273-303P
    [78] Webb.G.F.. Existence and asymptotic behavior for a strongly damped nonlinear waveequation[J]. Canad. J. Math.1980(32):631-643P
    [79] Liu Yacheng.On potential wells and vacuum isolating of solutions for semilinear waveequations[J]. Journal of Differential Equations.2003,192(1):155-169P
    [80] Liu Yacheng, Zhao Junsheng. Multidimensional viscoelasticity equations with nonlineardampingand source terms[J]. Nonlinear Analysis.2004,56(6):851-865P
    [81] Liu Yacheng, Zhao Junsheng. Nonlinear parabolic equations with critical initialconditions J (u0) dor I (u0)0[J]. Nonlinear Analysis.2004,58(7/8):873-883P
    [82] Ikehata R. Some remarks on the wave equations with nonlinear damping and sourceterms[J]. Nonlinear Analysis.1996,27(10):1165-1175P
    [83] Marcelo M, Cavalcanti, Val eria N. DomingosCavalcanti.Existence and asymptoticstability for evolution problems on manifolds with damping and source terms[J]. Journalof Mathematical Analysisand Applications.2004,291(1):109-127P
    [84] Zhang J. On the standing wave in coupled nonlinear Klein-Gordon equations [J].Mathematical Methods in the Applied Sciences.2003,26(1):11-25P
    [85] Vitillaro E. A potential well theory for the wave equation with nonlinear source andboundary damping terms[J]. Glasgow Mathematical Journal.2002,44(3):375-395P
    [86] Ya cheng Liu, Runzhang Xu. Potential well method for Cauchy problem of generalizeddouble dispersion equations[J]. Journal of Mathematical Analysis and Applications.338(2008):1169-1187P
    [87] Yacheng Liu, Runzhang Xu, Tao Yu. Global existence nonexistence and asymptoticbehavior of solutions for the Cauchy problem of semilinear heat equations[J]. NonlinearAnalysis:Theory Methods&Applications.68(2008):3332-3348P
    [88] Necat Polat, Abdulkadir Erta. Existence and Blow up of solution of Cauchy problem forthe generalized dampe dmultidimensional Boussinesq equation[J]. Journal ofMathematical Analysisand Applications.349(2009):10-20P
    [89] Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J].Math Japan.1972,17:173—193P
    [90] Xu Runzhang, Xu Chuang, Liu Yang and Yu Tao. Well-posedness of nonlinear waveequation with combined power type nonlinearities[J]. Math. Meth. Appl. Sci..2011,34:869–895P
    [91] Yacheng L, Runzhang X. Wave equations and reaction diffusion equations withseveral nonlinear source terms of different sign[J]. Discrete and Continuous DynamicalSystem-Series B2007;1:171-189P
    [92] Shubin W, Hongxia X. Global solution for a generalized Boussinesq equation[J].Applied Mathematics and Computation.2008;,204:130—136P
    [93]尚亚东,郭柏灵.一类非线性卷积拟抛物型积分微分方程整体解的存在性问题[J].应用数学学报.2003,26(3):511-524页
    [94] X.Q. Fang and C. Hu. Thermal waves scattering by a subsurface sphere in a semi-infiniteexponentially graded material using nonFourier's model[J]. Thermochimica Acta,2007,453(2):128-135P
    [95] David T.W. Lin and Ching-yu Yang. The estimation of the strength of the heat source inthe heat conduction problems[J]. Applied Mathematical Modelling.2007,31(12):2696-2710P
    [96] Cheng-Hung Huang and Hsin-Hsien Wu. An iterative regularization method inestimating the base temperature for non-Fourier fins International[J]. Journal of Heat andMass Transfer. Volume49, Issues25.26,,December2006, Pages4893-4902
    [97] Chi-Wai Leung. Fourier analysis on domains in compact groups[J]. Journal ofFunctional Analysis,2006,238(2):636-648P
    [98] Ruixian Cai, Chenhua Gou and Hongqiang Li. Algebraically explicit analytical solutionsof unsteady3D nonlinear non-Fourier (hyperbolic) heat conduction. International Journalof Thermal Sciences,2006,45(9):893-896P
    [99] Jun Xu and Xinwei Wang. Simulation of ballistic and non-Fourier thermal transport inultra-fast laser heating[J]. Physica B: Condensed Matter,2004,351(12):213-226P
    [100] Pao-Tung Hsu and Yuan-Hsiang Chu. An inverse non-Fourier heat conduction problemapproach for estimating the boundary condition in electronic device[J]. AppliedMathematical Modelling,2004,28(7):639-652P
    [101] G. E. Cossali. Periodic conduction in materials with non-Fourier behaviour.International Journal of Thermal Sciences,2004,43(4):347-357P
    [102] WilfriedRoetzel, Nandy Putra and Sarit K. Das. Experiment and analysis fornon-Fourier conduction in materials with non-homogeneous inner structure[J].International Journal of Thermal Sciences,2003,42(6):541-552P
    [103]谷超豪等.数学物理方程[M].上海:上海科学技术出版社,1960:45-96页
    [104]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001:125-188页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700