小麦叶片上潜伏期条锈菌的巢式PCR检测及小麦与条锈菌互作中相关激酶类基因的表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分小麦叶片上潜伏期条锈菌的巢式PCR检测
     由小麦条锈菌(Puccinia striiformis f. sp. Tritici)引起的小麦条锈病是世界范围内小麦生产上的一个重要病害,主要发生在气候凉爽潮湿的地区。在条锈菌夏孢子越冬时期,被病原菌侵染的小麦叶片在潜伏期不表现任何症状,一种快速可靠的检测方法有助于提早预测小麦条锈病的爆发,有效控制病害发生。
     基于组织学,形态学等检测小麦条锈菌的传统方法费时耗力,还需要具备丰富的植物病理学知识。为加速并简化小麦条锈菌的检测方法,本研究建立了利用特异性高,灵敏度好的巢式PCR方法对小麦条锈菌进行检测。
     1.引物特异性检测。根据小麦条锈菌的PSR序列设计特异引物Pst1-Pst2,利用小麦条锈菌7个不同的生理小种夏孢子及6种其他小麦病原菌DNA为模板检测其特异性。小麦条锈菌的7个生理小种都产生约470bp的目的条带,而其他小麦病原菌无产物。这说明,引物Pst1-Pst2具有小麦条锈菌特异性,而无小种特异性,适于小麦条锈菌的检测。
     2.巢式PCR检测小麦条锈菌。第一轮PCR反应以依次稀释10倍的小麦条锈菌DNA为模板,利用引物Pst1-Pst2扩增,可检测到1pg小麦条锈菌。第二轮PCR反应以第一轮PCR产物为模板,利用内引物Nest1-Nest2扩增,检测灵敏度可达1fg。利用接种条锈菌的小麦叶片基因组DNA为模板,巢式PCR在接种24h后即可检测到病原菌的存在。巢式PCR特异性强,灵敏度高,在小麦条锈菌侵染早期即可检测到微量病原菌,为小麦条锈病的早期诊断提供了有利工具。
     第二部分小麦与条锈菌互作中相关激酶类基因的表达谱分析
     蛋白激酶是酶中的一个大家族,其可逆蛋白磷酸化作用在所有真核细胞基础功能调节中起重要作用,如细胞周期控制、能量代谢、细胞与细胞之间的通讯和介导与周围环境的复杂相互作用等。
     为阐明小麦-小麦条锈菌互作过程中的一些分子事件及有关蛋白激酶的功能,本研究在本实验室已建立的小麦与小麦条锈菌互作非亲和/亲和组合cDNA文库及小麦与小麦条锈菌互作非亲和/亲和组合SSH文库中挑选蛋白激酶类基因,通过斑点杂交检测其在小麦与条锈菌互作中的表达趋势。选取表达水平有明显变化的蛋白激酶类基因,通过实时荧光定量PCR更精确的检测小麦条锈菌感染小麦过程中,小麦相关激酶类基因表达水平的变化。
     1.斑点杂交检测小麦相关蛋白激酶类基因表达趋势。在实验室已建立的小麦与小麦条锈菌互作非亲和/亲和组合cDNA文库及小麦与小麦条锈菌互作非亲和/亲和组合SSH文库中挑选出94个蛋白激酶类基因的EST序列。对挑选出的93个EST质粒进行斑点杂交,检测在亲和及非亲和组合中,小麦在接种条锈菌0h,18h,24h,48h,72h后表达水平的变化。检测根据杂交结果,挑选出30个表达水平变化明显的激酶类基因。
     2.相关激酶类基因的real-time PCR分析。以18SrRNA持家基因为内参,利用SYBR GreenⅠreal-time PCR方法分析了19个激酶类基因在亲和及非亲和组合中,小麦在接种条锈菌0h,12h,18h,24h,48h,72h,120h后表达水平的变化。在非亲和组合中,多数蛋白激酶类基因在条锈菌侵染前期表达量较高,尤其在接种后12h和24h,可能参与植物感受病原菌刺激的信号转导过程。另外一些表达量基本没有变化或者在亲和及非亲和组合中表达趋势基本一致,可能为组成型表达基因或与植物其他抗逆反应或生物学功能有关。
     由于小麦基因组的复杂性,使小麦蛋白激酶的研究还属于零星的研究,远未能形成对蛋白激酶在各反应中的完整认识。小麦与条锈菌的互作是一个很复杂的过程,互作中小麦蛋白激酶的研究将为小麦的基础代谢、抗逆和抗病害的机理研究奠定基础。
PARTⅠDETECTION OF Puccinia striiformis IN LATEN INFECTED WHEAT LEAVES BY NESTED PCR
     Stripe rust, caused by Puccinia striiformis f. sp. Tritici, is one of the most devastating wheat diseases worldwide, especially in temperate regions with cool moist weather conditions. A rapid and reliable detection of the pathogen in latent infected wheat leaves during overwintering of the fungus in the dormant stage will contribute to determine the initial inoculum potential and thus to predict early outbreak and to improve effective management of the disease.
     The identification of Puccinia striiformis based on morphology or physiological is rather labor-intensive and time-consuming. In order to accelerate and simplify the process of detection, a nested PCR assay was developed for specific and sensitive detection of P. striiformis in this research.
     1. Detection of primers specificity.
     Specific primers Pst1-Pst2 were designed according to a genome-specific sequence of P. striiformis. To evaluate the specificity of the primers, seven different isolates and races of P. striiformis as well as six other pathogens of wheat were tested. All isolates of P. striiformis yielded a distinct band of a fragment of 470bp, while using DNA of the other wheat pathogens as template no amplification product was detected. Primers internal to the species-specific outer primers Pst1-Pst2 were subsequently designed .
     2. Detection of Puccinia striiformis in laten infected wheat leaves by nested PCR.
     In nested PCR, with a 10-fold dilution series of template DNA, the limit amount of detection was 1pg DNA in the first PCR with the primers Pst1-Pst2. The second round PCR was then performed using amplified product from the first PCR as the template and Nest1-Nest2 as the primers. Amplification signal was detectable even when only 1fg of P. striiformis f. sp. Tritici DNA was used as the template for the first PCR. With nested PCR, the sensitivity of detection was enhanced by 100 folds. Using extracts from P. striiformis infected wheat leaves, the fungus could be determined in the leaves before symptom appeared. The assay provides a rapid and sensitive method for detection of P. striiformis in latent infected leaves of overwintering wheat plants.
    
     PARTⅡEXPRESSION PROFILES ANALYSIS OF RELATED PROTEIN KINASE DURING THE INTERATION BETWEEN WHEAT AND STRIPE RUST
     Protein kinase plays important roles in basic function regulation in all eukaryotic cells, such as regulation of cell cycles, energy metabolism, mediation of complex interactions between cells and surrounding environments and so on.
     In order to demonstrate the molecular incidents and the functions of protein kinases during the comunication between wheat and stripe rust, protein kinase related genes were selected in the cDNA library and SSH library established during the interaction between wheat and stripe. The expression levels of all the selected genes were firstly detected by dot blot, then some of the genes interested in were analyzed by real-time PCR for more information about their expression.
     1.Detection of kinase related genes expression by dot blot.
     94 kinase related genes were selected and the expression levels of 0h, 18h, 24h, 48h and 72h after inocultion in compatible and incompatible groups were detected by dot blot . According to the dot blot results, 30 kinase related genes that shown obvious changes in expression levels were chosen.
     2. Real-time PCR analysis of interesting kinase related genes.
     In this research, SYBR GreenⅠreal-time PCR assay were established to detect the expression of kinase related genes during the process of stripe rust infecting wheat. 19 kinase related genes were analyzed by real-time PCR with the 18SrRNA as the control gene. For most kinase genes, the expression levels increased in the early stage after pathogen infection in incompatible reaction, which may be concerned with the signal transduction of pathogen infection. Some others kept the same expression levels during the infection process or shown the similar expression levels in both compatible and incompatible groups, which may be constitutely expressed engaged in other biological functions.
     Nowdays, the wheat kinase was seldomly studied for the complicated genome of wheat, and the roles kinase played in basic function regulations haven’t been completely recognized. The interaction between wheat and stripe rust is an complicated process, and the study of wheat kinase would contribute to the research of wheat basic metabolism and the mechnism of disease resistance.
引文
[1] 李振歧,曾士迈.中国小麦锈病[M].中国农业出版社,2002.1~254
    [2] 李振歧.李振歧院士论文集[M].西安:西北农林科技大学出版社,1999
    [3] Saari EE and Prescott JM (1985) World distribution in relation to economic losses. In the cereal ruse Vol2. Diseases distribution epidemiology and control. Edited by A.P.Roelfs and W.R,Boshell. Academic Press, Orlando, Fla. Pp260-298
    [4] Li, Z. Q., & Zeng, S. M. (2002). Wheat rusts in China. Beijing:China Agriculture Press.
    [5] 陈刚,王海光,张录达,王滔,马占鸿.小麦条锈病区域流行性相关研究报告[J].中国农学通报,2006,22(7):415-421
    [6] Wan A, Zhao E, Chen X, He E, Jia S, Jia Q, Yao G, Yang F, Wang B, Li G, Bi Y and Yuan Z (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease 88:896-904
    [7] Zeng SM and Luo Y(2007). Systems analysis of wheat stripe rust epidemics in China. Eur J Plant Pathol
    [8] Goodwin PH, English JT, Nether DA, Duniway JM, Kirkpatrick BC (1990) Detection of phytophthora parasitica from soil and host tissue with a species-specific DNA probe. Phytopathology 80:277-281
    [9] Lacourt I, Duncan JM (1997) Specific detection of Phytophthora nicotianae using the polymerase chain reaction and primers based on the DNA sequences of its elicitin gene ParaA1. European Journal of Plant Pathology 103: 73-83
    [10] Grote D, Olmos A, Kofoet A, Tuset JJ, Bertolini E, Cambra M (2002) Specific and sensitive detection of Phytophthora nicotianae by simple and nested-PCR. European Journal of Plant Pathology 108: 197-207
    [11] Ippolito A, Schena L, Nigro F (2002) Detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soils by nested PCR. European Journal of Plant Pathology 108: 855-868
    [12] Judelson HS, Tooley PW (2000) Enhanced polymerase chain reaction methods for detecting and quantifying Phytophthora infestans in plants. Phytopathology 90: 1112-1119
    [13] Li S, Hartman G L (2003) Molecular detection of Fusarium solani f.sp. glycines in soybean roots and soil. Plant Pathology 52: 74-83
    [14] Frederick RD, Snyder CL, Peterson GL, Bonde MR (2002) Polymerase chain reaction assays for the detection and discrimination of the soybean rust pathogens Phakopsora pachyrhizi and P. meibomiae. Phytopathology 92: 217-227
    [15] Mills PR, Sreenivasaprasad S and Brown AE (1992) Detection and differentiation of Colletotrichum gloeosporioides isolates using PCR. FEMS Microbiological Letters 98: 137–144
    [16] Tisserat NA, Hulbert SH, Nus A (1991) Identification of Leptosphaeria korrae by cloned DNA probes. phytopathol 81:917-921
    [17] Zheng WM, Chen SY, Kang ZS, Wang Y, Li ZQ, Wu LR (2000) Specificity and stability of PSR(Puccinia striiformis Repeat) sequence. Acta phytopathologica sinica 30(3):222-225
    [18] Zhao J, Wang XJ, Chen CQ, Huang LL and Kang ZS(2007). A PCR-Based Assay for Detection of Puccinia striiformis f. sp. tritici in Wheat. Plant disease 91:1669-1674
    [19] Wang XJ, Zheng WM, Heinrich Buchennauer, Zhao J, Han QM, Huang LL and Kang ZS(2008). The development of a PCR-based method for detecting Puccinia striiformis latent infections in wheat leaves. Eur J Plant Pathol 120:241-247
    [20] Moukhamedov R, Hu X, Nazar R N and Robb J. Use of polymerase chain reaction-amplified ribosomal intergenic sequences for the diagnosis of Verticillium tricorpus (J). Phytopathology,1994, 84: 256~259
    [21] Nakamura K, Izumiyama N, Ohtsubo K, Koiso Y,Terashima Y, Ogiwara K, Kojima M, Kubo C, Seki A and Fujie A. Primers based on specific ITS sequences of rDNAs for PCR detection of two fairy ring fungi of turgrass, Vascellumpratense and Lycoperdon pusillum (J). Mycoscience, 2002,43:261~265
    [22] Tooley P W, Bunyard B A, Carras M M and Hatziloukas E. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophora species infecting potatoes (J). Applied and Environental Microbiology, 1997, 63:1467~1475
    [23] Antonio Ippolito, Leonardo Schena and Franco Nigro(2002) Detection of Phytophthora nicontiane and P.citrophthora in citrus roots and soils by nested PCR. European Journal of Plant Pathology 108:855-868
    [24] Zhou YL(2004) Specific and sensitive detection of the fungal pathogen Ustilaginoidea Virens by nested PCR. Mycosystema 23(1):102-108
    [25] 陈微,文景之,李永刚.应用巢式 PCR 检测黄瓜尖镰孢菌(Fusarium oxysporum f.sp. cucunbrum)[J].东北农业大学学报.2007,38(3):335-338
    [26] TASI HL, Huang LC, Ann PJ, and Liou RF(2006) Detection of orchid Phytophthora disease by nested PCR. Botanical Studies 47:379-387
    [27] 刘少华,陆金萍,朱瑞良,戴富明. 一种快速简便的植物病原真菌基因组DNA提取方法[J]. 植物病理学报. 2005,35(4):362—365
    [28] 曹丽华,康振生,魏国荣. 小麦条锈菌基因组DNA的分离及其RAPD分析体系的建立.西北农林科技大学学报(自然科学版). 2004,32 (4)
    [29] Wan A, Zhao E, Chen X, He E, Jia S, Jia Q, Yao G, Yang F, Wang B, Li G, Bi Y and Yuan Z (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease 88:896-904
    [1] Flor H.H. 1971. Current status of the gene-for-gene concept. Annu. Rev[J]. Phytopathol. 9:275-296.
    [2] Keen N.T.1990.Gene-for-gene complementarity in plant-pathogen interaction[J]. Annu. Rev. Genet.24:447-463.
    [3] Gabriel, D.W. (1999) The Xanthomonas avr/pth gene family[J]. In Plant Microbe Interactions (Vol. 4) (Stacey, G. and Keen, N.T., eds), pp. 39-55, APS Press
    [4] Wei W., Plovanich-Jones A., Deng W., Jin Q., Collmer A., Huang H., and He SY. 2000. The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato[J]. Proc.Natl. Acad. Sci. USA. 97:2247-2252
    [5] Taraporewala et al.1997. Structural and functional conservation of thetobamoviruses[J]. Molecular Plant-Microbe Interaction 1997, 5:597-604
    [6] Lauge R, Goodwin PH, Joosten MH AJ et al. Specific HR-associated recognition of secreted protein from Cladosporium fulvum occurs in both host and non-host plants[J]. Plant Journal, 2000, (23): 735~745.
    [7] Waly Dioh, Didier Tharreau, Jean Loup Notteghem, Marc Orbach, and Marc-Henri Lebrun. Mapping of Avirulence Genes in the Rice Blast Fungus, Magnaporthe grisea, with RFLP and RAPD Markers[J].Molecular Plant-Microbe Interactions,2000, 13(2):217-227
    [8] Bruening, G., Buzayan, J., Hampel, A. and W. Gerlach. Replication of small satellite RNAs and viroids: possible participation in non-enzymatic reactions[J].1988.
    [9] Dangl, J.L.Debener, T. Lehnackers, H. Arnold, M. Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate[J]. Plant genetics and breeding;Plant diseases.1991. v. 1(3) p. 289-302
    [10] AF Bent, BN Kunkel, D Dahlbeck, KL Brown, R Schmidt, J Giraudat, J Leung, and BJ Staskawicz. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes[J]. Science.1994.V265:1856-1860
    [11] Dong H,Delaney TP,Bauer DE,and Beer SV. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene[J].PLANT j.,20:207-215
    [12] Mindrinos M., Katagiri F, Yu G.L., Ausubel FM. 1994. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats[J]. Cell 78:1089-1099.
    [13] Salmeron J.M, Staskawicz B.J. 1993. Molecular characterization and hrp dependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato[J]. MGG. 239:2-16.
    [14] Whalen M C, Innes R W, Bent A, et al. Identification of Pseudo-monas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean[J]. Plant Cell, 1991, 3:49-59 34 ...
    [15] MARTIN G B,BROMMONSCHENKEL S H,CHUNWONGSE J,et al.Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science, 1993(262) : 1432-1436
    [16] Johal G S, Briggs S P. Reductase activity encoded by the Hm1 disease resistance gene in maize[J].Science, 1992,258:985~987
    [17] Lagudah ES, Moullet O, Apples R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich repeat region at the Cre3 nematode resistance locus of whea[J]t. Genome,1997,40:659~665
    [18] Jones DA, Thomas CM, Hammond-Kosack KE, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging[J]. Science,1994,266:789~793
    [19] Whitham S, Dinesh-Kumar SP, Choi D, et al. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor[J]. Cell,1994,78:1011~1015
    [20] Lahaye T, Shirasu K, Schulze-lefert P. Chromosome landing at the barley Rar1 locus[J]. Mol Gen Gent,1998,260:92~101
    [21] Lindgren P B, Peet R C, Panopoulos N J. Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity on nonhost plants[J]. J Bacteriol, 1986, 168: 512~522
    [22] Wei, Z.M., Laby, R.J., Zumoff, C.H., Bauer, D.W., He, S.Y., Collmer, A. and Beer, S.V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora[J]. Science 257: 85-88.
    [23] He S Y, H.C. Huang, and Han Collmer. 1993. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants[J]. Cell, Vol 73. 1255-1266.
    [24] Arlat M.F., Van Gijsegem, J.C. Huet, J.C. Pernollet, and C.A. Boucher. 1994. PopA1, a protein which induces a hypersensitive-like response on specific petunia genotypes, is secreted via the Hrp pathway of Pseudomonassolanacearum[J]. EMBO J. 13:543-553.
    [25] Lawrence GJ, Finnegan EJ, Ayliffe MA, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N[J]. Plant Cell,1995, 7:1195~1206
    [26] Multani DS, Meeley RB, Paterson AH, et al. Plant-pathogen microevolution: molecular basis for the origin of a fungal disease in maize[J]. Proc Natl Acad Sci USA, 1998,95:1686~1691
    [27] Lahaye T, Shirasu K, Schulze-lefert P. Chromosome landing at the barley Rar1 locus[J]. Mol Gen Gent,1998,260:92~101
    [28] 蔡 冲,吕均良,陈昆松.蛋 白 激 酶 的 研 究 (综 述) [J].亚热带植物学报.2002,31(1):63-67
    [29] HAN KS S K,QU INN A M , HUN TER T. The p rotein kinase fam ily: conserved features and deduced phylogeny of the catalytic domains[J]. S cience, 1988, 241: 42- 52.
    [30] FEN G X H, ZHAO Y,BOTT INO P J , et al. Clong and characterization of a novelmember of p rotein kinase fam ily from soybean[J]. B iochim icaet B iophy sica A cta, 1993, 1172: 200- 204.
    [31] N IU J i2Shan, YU L ing,MA Zheng2Q iang, et al. Molecular cloning and characterization of a serine?threonine p rotein kinase gene from T riticum aestivu[J]. A cta B otanica S inica, 2002, 44: 325- 328.
    [32] Hanks S K, et al. Protein kinases catalytic domain sequence database: identification of conserved features of primary structure and classification of family members[J]. Methods Enzymol., 1991, 200: 38-62.
    [33] Wei L, et al. Protein kinase superfamily-comparisons of sequence data with three-dimensional structures[J].Curr. Opin.Struct. Biol., 1994,(4): 450-455.
    [34] Huilica L S. Chromosomal nonhistone proteins[M]. Boca: CRC Press Inc., 1983. 93-171.
    [35] Metthews H R., et al. Nuclear protein kinases[J]. Molecular and Cellular Biochem., 1984,59: 81-99.
    [36] Detal C J. Hormone action part F protein kinases[M]. Method in Enzymalogy, Vol.99, New York, Academic Press Inc., 1983. 51-379.
    [37] 牛吉山. 植物和小麦蛋白激酶的研究现状[J]. 西北植物学报.2003, 23 (1) : 143—150
    [38] FAN TL W J , JON SON D E,W ILL IAM S L T. Signalling by recep tor tyrosine kinases[J]. A nnu. R ev. B iochem. , 1993, 62: 453- 481.
    [39] LAM ERSM B A C,AN TSON A A , HUBBARD R E, et al. Structure of the p rotein tyrosine kinase domain of c2term inal Src kinase (CSK) in complex w ith staurosporine[J]. J. M ol. B iol. , 1999, 285: 713- 725.
    [40] BONN EROT C,BR IKEN V ,BRACHET V , et al. Syk p rotein tyrosine kinase regulates Fc recep tor C2chain2mediated transport to lysosomes[J]. EM BO, 1998, 17: 4 606- 4 616.
    [41] GOM EZ2ESCOBAR N , CHOU C F, L IN W W , et al. The G11 gene located in the major histocompatibility comp lex encodes a novel nuclear serine?threonine p rotein kinase[J]. J. B iol. Chem. , 1998, 273: 30 954- 30 960.
    [42] PLOWMAN G D, SUDARSANAM S, B IN GHAM J , et al. The p rotein kinases of Caenorhabd itis elegans: a model for signal transduction inmulticellular organism s[J]. PN A S , 1999, 96: 13 603- 13 610.
    [43] BAUD INO S, HAN SEN S,BRETTSCHN E IDER R, et al. Molecullar characterization of two novelmaize LRR recep tor2like kinases,which belong to the S ER K gene fam ily[J]. P lanta, 2001, 213: 1- 10.
    [44] Daowen Wang,Xiangqi Zhang,Huanbin Zhou.Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection[J]. The Plant Journal. 2007
    [45] CHEN SH, CHEN J. The structure and function of calcium2dependent p rotein kinases in p lant [J]. Chinese B ulletin ofB otany, 2001, 18: 143- 148.
    [46] Hetherington A. Trewavas A. Calcium- dependent protein kinase in pea shoot membranes [J]. FEBS Lett. 1982,145:67-71.
    [47] HARMON A C, PU TNAM 2EVAN S C, CORM IER M J. A calcium2dependent but calmodulin2independent p rotein kinase from soybean[J].P lant Phy siol. , 1987, 83: 830- 837.
    [48] HARPER J F, SU SSMAN M R, SCHALL ER G E, et al. A calcium2dependent p rotein kinase w ith a regulatory domain sim ilar to Calmodulin[J]. S cience, 1991, 252: 951- 954.
    [49] Anil and Rao. Calcium-mediated signal transduction in plants: a perspective on the role of Ca2+ and CDPKs during early plant development[J]. Journal of Plant Physiology 2001, 158:1237-1256
    [50] XIN G T, H IGGIN S V J ,BLUMWALD E. Regulation of p lant defense response to fungal pathogens: two types of p rotein kinases in the reversible phosphorylation of the host p lasma membrane H+ 2A TPase[J]. P lant Cell, 1996, 8: 555- 564.
    [51] WANG X Q, WU W H. Involvement of calcium2dependent p rotein kinases in ABA 2regulation of stomatalmovement[J].A cta botanica S inica, 1999, 41: 556- 559.
    [52] 刘贯山,陈珈. 钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用[J]. 植物学通报, 2003, (02) .
    [53] 陈硕,陈珈. 植物中钙依赖蛋白激酶(CDPKs)的结构与功能[J]. 植物学通报 , 2001, (02)
    [54] Harper J F, et al. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-likedomain[J]. Biochem., 1994, 33: 7267-7277.
    [55] Harm on A C, et al. Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain[J].Biochem., 1994, 33: 7278-7287
    [56] 杨万年, 梁述平, 吕应堂. 钙调素依赖型蛋白激酶在烟草中的免疫定位[J]. 科学通报 2000 Vol.45 (16 ): 1747-1752
    [57] 罗云波,傅达奇. 番茄中病毒诱导基因沉默体系的建立及LeEIN2基因功能分析[D].中国农业大学:2005
    [58] Tianbao, Poovaiah B W. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action[J]. The Journal of Biological Chemistry, 2000, 275:3137-3143.
    [59] 梁述平,汪杏芬,L.J.Feldman,吕应堂. 钙调素依赖型蛋白激酶在植物开花调控中的作用[J].中国科学C辑,2001,04:306-311
    [60] Walker J C. Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica [J]. Nature.1990. 345:743 - 746.
    [61] 王贵禧,韩雅珊,于梁. 浸钙对猕猴桃果实硬度变化影响的生化机制[J]. 园艺学报,1995;37(3):198-203
    [62] Rose J KC, Hadfield K A, Labavitch J M, et al. Polygalacturonasegene expression in ripe melon fiuit supports a role for poly-galacturonase in ripening-associated pectin disassembly[J]. Plant Physiol, 1998; 117(2): 345-361
    [63] 王贵禧,韩雅珊,于梁. 猕猴桃总淀粉酶活性与果实软化的关系 [J].园艺学报,1994;21(4):329-333
    [64] Chin L H,Ali Z M, Lazan H,et al. Cell wall modifications degrading enzymes and sofening of Carambolu fruit during ripening[J]. Journal of Experimental Botany, 1990; 50(335): 767-775
    [65] Prabha T N. Bhagyalakshmi N TI. Carbohydrate metabolism in ripening banana fruit[J]. Phytochemistry, 1998; 48(6):915-919
    [66] BECRA FT PW. Receptor kinases in p lant development [J]. T rend s P lant S cience, 1998, 3: 384- 388.
    [67] FLETCHER J C, BRAND U, RUNN IN GM P, et al. Signaling of cell fate decisions by CLAVA TA 3 in A rabid opsis shoot meristem s[J]. S ci2ence, 1999, 283: 1 911- 1 914.
    [68] 张蕾,吕应堂.植物受体蛋白激酶研究进展[J]. 生命科学.2002,14(2):95-98
    [69] Song Wenyuan, Pi Liya, Wang Guoliang. et a1. Evolution of the rice Xa21 disease resistance gene family[J].Plant Cel1.1997,9:1279-1287
    [70] Mizoguchi T , Ichimura K, Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinases [J] . Trends Biotech, 1997 , 15(15 ): 194 -213.
    [71] Jonak C, Ligterink W, Hirt H. MAP kinases in plant signal transduction[J]. Cellul . Mol . Life Sci . , 1999 , 55 (2) : 20
    [72] Kovtun Y, Chiu WL, Tena G, et al. Functional analysis of oxidative stress-activatedmitogen-activated protein kinase cascade in plants [J]. Proc. Natl. Acad. Sci. USA, 2000, 97 (6) :2940-2945.
    [73] Hoyos M E, Zhang S Q. Calcium2independent activation of salicylic acid2induced protein kinase and a 402 kilodalton protein kinase by hyper-osmotic stress [J] . Plant Physiol, 2000, 122(4) : 1355-1363
    [74] Asai T, Tena G, Plotnikova J , et al . MAP kinase signalling cascade in Arabidopsis innate immunity [J] . Nature , 2002 ,415 :977-983.
    [75] Chenk P W, Snaar Jagalska B E. Signal perception and transduction: the role of protein kinases [J] . Biochim.Biophys. Acta ,1999 , 1449 :1- 24.
    [76] Burnett E C, Desikan R, Moser R C, et al . ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA[J]. J . Exp. Bot, 2000, 51(343) :197- 205.
    [77] Boger L, Calderini O, Binarova P, et al . A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division[J] . Plant Cell , 1999 , 11 (1) :101-113.
    [78] Nakashima M, Hirano K, Nakashima S , et al . The expression pattern of the gene for NPK1 protein kinase related to mitogen2activated protein kinase kinase kinase (MAPKKK) in a tobacco plant : correlation with cell proliferation [J]. Plant Cell Physiol.1998, 39 (7) : 690-700.
    [79] Prestamo G, Testillano P S, Vicente O, et al . Ultrastructural distribution of a MAP kinase and transcripts in quiescent and cycling plant cells and pollen grains [J] . J . Cell Sci, 1999 , 112 (7) : 1065-1076.
    [80] Tena G, Renaudin J P. Cytosolic acidification but not auxin at physiological concentration is an activator of MAP kinases in tobacco cells [J]. Plant J, 1998 ,16 : 173-182.
    [81] M izoguch i T, Irie K, H irayama T, et al. A gene encoding a m itogen2activated p ro tein k inase k inase k inase is induced simultaneously w ith gene fo r a m itogen-activated protein k inase and an S6 ribosomal protein k inase by touch, co ld, and water stress in A rabidopsis thaliana [J]. Proc Natl Acad Sc i USA, 1996,93: 765-769.
    [82] Zhang S, Klessig D F. Salicylic acid activates a 482kD MA P kinase in tobacco [J]. Plant Cell, 1997, 9: 809-824.
    [83] Zhang S, Du H, Klessing D F. A ctivation of the tobacco SIP kinase by Both a cell wall derived carbohydrate elicitor and purified proteinaceous elicitins from Phytopathora spp [J]. Plant Cell, 1998, 10: 435-450.
    [84] Mo rris P C, Guerrier D, L eung J , et al. Cloning and characterization ofM EK1, an A rabid op sis gene encoding a homologue of MAP kinase [J]. PlantMol Biol, 1997, 35: 1057-1064.
    [85] Stratmann JW , Ryan C A. M yelin basic p ro tein kinase activity in tomato leaves is induced system ically by wounding and increase in response to system in and polysaccharide elicito rs[J]. Proc Natl Acad Sc i USA,1997, 94: 11085-11089.
    [86] Tena G, Renaudin J P. Cryp tozo ic acidification but no tauxin at physio logical concentration is an activato r of MAP kinases in tobacco cells[J]. Plant J, 1998, 16:173-182.
    [87] L i J , W ang X Q , W atsonMB, et al. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AA PK k inase [J]. Sc ience, 2000, 287:300-303.
    [88] Stratmann J W, Ryan C A. Myelin basic protein kinase activity in tomato leaves is inducedsystemically by wounding and increases in response to systemin and oligosaccharide elicitors [J] . Proc. Natl . Acad. Sci .USA ,1997 , 94 :11085-11089.
    [89] Zhang S, Klessig D F. Resistance gene N2mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection [J]. Proc. Natl . Acad. Sci . USA , 1998 ,95 :7433 - 7439.
    [90] Bustin S A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J. Mol. Encocrinol., 2000,25:169-193
    [91] Tania G, Maria C, Terron.. Use of multiplex reverse transcription-PCR to study the expression of a laccase gene family in a basidiomycetous fungus[J]. Appl. nviron. icrobio., 2003, 9: 7083-7090
    [92] 张蓓,沈立松.实时荧光定量PCR的研究及其进展[J]. 国外医学(临床生物化学与检验学分册),2003,24(6):327-329
    [93] Leonardo S, Franco N, Antonio I, Donato G.Real-time quantitative PCR: A new technology to detect and study phytopathogenic and antagonistic fungi[J]. Eur. J. Plant Pathol, 2004, 110(9): 893-906(16)
    [94] Schaad N W, Berthier-Schaad Y, Sechler A, Knorr D. Detection of Clavibacrer michiganensis subsp. sepedonicus in potato tubers by BIO-PCR and automated realtime fluorescence detection system[J]. Plant Dis., 1999,83:1095-1100
    [95] Weller S A, Elphinstone J G, Smith N, Stead D E. Detection of Ralstonia solanacearum from potato tissue by post enriched Taq-ManTM PCR[J]. OEPP/EPPO Bull., 2000, 30:381-383
    [96] Schaad N W, Opgenorth D, Gaush P. Real-time PCR for one-hour on-site diagnosis of Pierce’s disease of grape in early season asyuptomatic vines[J]. Phytopathol., 2002,92:721-728
    [97] Weller S A, Stead D E. Detection of root mat associated Agrobacterium strains from plant material and other sample types by post-enrichment TaqMan PCR[J].J. Appl. Microbiol., 2002,92(1):118-126
    [98] Eun A J, Seoh M, Wong S. Simultaneous quantitation of two orchid viruses by the TaqMan real-time RT-PCR[J]. J. Virol. Methods., 2000, 87(1-2):151-160
    [99] 王粱燕,洪奇华,张耀洲.实时定量PCR技术及其应用[J].细胞生物学杂志,2004,26:62-67
    [100] 潘良文,陈家华,喻德跃.油菜籽中转基因抗草甘膦油菜籽的定量检测[J].农业生物技术学报,2004,12(2):152-156
    [101] 李振歧,曾士迈.中国小麦锈病[M].中国农业出版社,2002.1-254
    [102] Song FM , Goodman R M. OsBIMK1, a rice MAP kinase gene involved in disease resistance responses[J].Planta, 2002, 215 (6) : 99721005.
    [103] Jia Y, M artin G B. Rap id transcrip t accumulation of pathogenesis related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants[J]. PlantMol Biol, 1999, 40: 4552465.
    [104] Song WY, Wang GL, Chen LL, et al. A receptor k nase-like protein encoded by the rice disease resistance gene, X a21 [J]. Sc ience, 1995, 270: 1804-1806.
    [105] 张宏昌,韩青梅,王晨芳,黄丽丽,张庆勤,康振生.小麦新抗源一粒葡抗条锈病的组织学和超微结构研究[J].植物病理学报.2008,38 (2): 153-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700