GSNO或诱生型NOS激活糖酵解通路及HIF-1α相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分GSNO致内皮细胞HIF-1αS-亚硝基化激活糖酵解通路
     目的:
     探索S-亚硝基谷胱甘肽(S-nitrosoglutathione, GSNO)致内皮细胞线粒体异常时,以醛缩酶(aldolase, ALD)家族为核心的糖酵解因子表征,及HIF-1α蛋白激活对其调控作用;进一步探讨S-亚硝基化修饰及PI3K/Akt通路对HIF-la调控,论证GSNO引起糖酵解流量调控的可能分子机制。
     方法:
     1.采用外源性GSNO处理内皮细胞,致细胞线粒体功能异常。MTT法检测内皮细胞1h,3h,6h,12h细胞活力,NO试剂盒检测细胞培养液GSNO释放NO水平,JC-1染色法检测线粒体膜电位(mitochondrial membrane potential,△Ψm)变化,电镜考察GSNO处理内皮细胞后线粒体形态学变化。2.RT-PCR法考察GSNO处理内皮细胞后糖酵解酶系和葡萄糖转运体1mRNA表达情况。3. RT-PCR法和免疫细胞化学方法考察ALD家族在内皮细胞中主要亚型。Western blot法考察ALD蛋白表达情况,ALD酶活性试剂盒检测ALD催化活性。乳酸测定试剂盒检测上清液乳酸释放水平。4.为进一步探讨GSNO引起内皮细胞糖代谢因子变化,考察HIF-1α转录和蛋白翻译水平变化,免疫荧光法考察HIF-1α;是否入核被激活;siHIF-1α进一步确认HIF-1α是否介导GSNO引起内皮细胞糖酵解通路变化。5.Modified Biotin Switch法检测GSNO对内皮细胞S-亚硝基化水平影响,通过加入二硫键还原剂二硫苏糖醇(1,4-dithiothreitol, DTT)或P13K抑制剂LY294002,分别评价S-亚硝基化修饰和PI3K/Akt信号通路是否参与GSNO引起糖酵解因子变化机制。
     结果:
     1. GSNO作用于内皮细胞1h,3h,6h,12h, NO水平呈时间依赖性上调;过量NO致内皮细胞△Ψm下降以及线粒体结构异常;而对内皮细胞存活率并无显著影响;提示GSNO作用于内皮细胞损伤细胞线粒体功能,而对内皮细胞存活率无明显影响。2.通过对糖酵解酶系mRNA水平考察,GSNO可引起GLUT1、 ALD A、 LDHA以及PDK1上调;GSNO上调ALD A, GLUT1蛋白表达及增加乳酸释放;结果提示GSNO可上调糖酵解因子转录和翻译水平进而激活糖酵解通路。3.GSNO上调HIF-1α转录水平,维持HIF-1α蛋白稳定表达,促HIF-1α入核激活低氧信号通路。siHIF-1α可减弱由GSNO引起的ALD A、 GLUT1蛋白上调,提示HIF-1α蛋白稳定表达是GSNO引起糖酵解因子ALDA、 GLUT1上调的关键因素。4. Modified Biotin Switch法结果显示GSNO可易化内皮细胞S-亚硝基化修饰水平;加入DTT后,GSNO引起的S-亚硝基化修饰被明显抑制,提示DTT可作为S-亚硝基化修饰的抑制剂。DTT可阻滞由GSNO引起的HIF-1α蛋白积聚及下游因子ALD A、 GLUT1蛋白上调,提示GSNO经由S-亚硝基化修饰维持HIF-1α蛋白稳定表达影响糖酵解。5. GSNO可上调Akt磷酸化水平,LY294002可部分抑制HIF-1α蛋白积聚及下游因子ALDA、 GLUT1上调,提示PI3K/Akt通路也可能参与调控HIF-1α表达。
     结论:
     1.过量GSNO可上调内皮细胞ALD A表达和酶活性,上调GLUT1, ALD A, LDHA, PDK1转录,激活糖酵解通路;该作用与乳酸释放上调相平行,提示GSNO可促进糖酵解流量。
     2.过量GSNO可上调内皮细胞HIF-1α转录、维持HIF-1α蛋白快速稳定表达,该过程受PI3K/Akt信号通路调控。siHIF-1α阻止GSNO上调ALD A和GLUT1蛋白表达,提示HIF-1α稳定表达是GSNO激活糖酵解过程关键因素。
     3.过量GSNO可经由S-亚硝基化修饰维持HIF-1α蛋白稳定,持续激活糖酵解通路。
     第二部分LPS致大鼠内毒素血症激活糖酵解通路伴HIF-1α上调
     目的:
     LPS致大鼠内毒素血症中,大量生成NO可诱发若干蛋白发生体内S-亚硝基化修饰。本部分进一步探讨LPS致大鼠内毒血症早期,以ALD家族为核心的糖酵解因子在其脑、肝脏和骨骼肌组织等表达特征,并论证其表达变化的可能机制,为揭示糖酵解因子在内毒素血症早期表达特征和生物学意义提供实验依据。
     方法:
     1.SD大鼠12只,250g-300g,雌雄各半。分为两组,每组6只。阴性组腹腔注射生理盐水,给药组腹腔注射LPS (2mg/kg)制备内毒素血症模型。给药6h后,断颈椎处死。取新鲜大鼠脑、肝、骨骼肌等3个组织备用。2. RT-PCR测定各组织GLUT家族,HK家族,PFK1, ALD家族,ENO1, PGK1, PDK1和LDH家族mRNA表达。3. Western blot法考察ALD家族及低氧效应因子HIF-1α表达。4.取新鲜骨骼肌组织与GSNO共孵育,用醛缩酶KIT检测骨骼肌中ALD A酶活性变化,检测ALD A是否被GSNO翻译后修饰。
     结果:
     1.LPS腹腔注射给药6h,糖酵解因子基因转录层面表达特征:在脑组织中,GLUT1、 ALDC、 ENO1、 PGK1、 PDK1以及LDHA mRNA水平上调,提示此时脑组织糖酵解通路转录层面激活相关。在骨骼肌组织中,GLUT1和ALD A mRNA表达上调,提示此时可影响骨骼肌中糖酵解因子。在肝组织未发现有糖酵解相关因子mRNA表达上调,可能与肝组织尚具备糖异生作用相关。上述结果提示LPS致大鼠内毒素血症早期,糖酵解变化顺序依次为脑组织>骨骼肌组织>肝脏组织。
     2.LPS腹腔注射给药后6h,ALD家族及HIF1α蛋白表达特征:骨骼肌中ALD A表达上调,脑组织中ALDC表达上调,而肝脏组织中ALDB表达无明显变化。检测脑、肝、骨骼肌三个组织中低氧诱导因子HIF-1α蛋白表达情况,发现脑、骨骼肌组织中HIF-1α蛋白积聚与ALD家族表达相平行,提示其可能是ALD家族表达上调关联的促发低氧信号通路的分子事件。
     3. GSNO在200-1000μmol/L浓度范围内,作用于新鲜骨骼肌组织1h后,对骨骼肌中ALDA催化活性有明显抑制,且呈浓度依赖性抑制。结合课题组前期研究,GSNO可S-亚硝基化修饰纯ALDA蛋白抑制其催化活性,提示骨骼肌ALDA也可能受GSNO介导的S-亚硝基化修饰活性位点,从而影响了酶催化活性。
     结论:
     1.大鼠腹腔注射LPS6h,可上调脑组织、骨骼肌组织器官糖酵解因子,糖酵解因子变化幅度依次为脑组织>骨骼肌组织>肝脏组织。提示在LPS致内毒素模型早期机体具备自我调控糖酵解通路的特性。
     2.大鼠腹腔注射LPS6h,脑与骨骼肌组织中ALD家族蛋白上调与HIF-1α表达相平行,提示糖酵解因子表达变化可能受HIF-1α调控。
     3.外源性高浓度GSNO可能通过S-亚硝基化修饰骨骼肌ALDA蛋白游离巯基而抑制其催化活性。该结果对探讨骨骼肌ALDA催化酶活性调控机制具有重要意义。
Part I S-Nitrosoglutathione activated glycolysis pathway via HIF-1α accumulation by S-nitrosylation in human endothelial cells Objective
     Present study attempted to elucidate the role of glycolysis factors in S-Nitrosoglutathione (GSNO) induced mitochondria function loss on human endothelial cells, as well as to explore the regulatory mechanisms by S-nitrosylation and PI3K/Akt activation involved in this process, so as to clarify the energy metabolism regulation from a new perspective.
     Methods
     1. Cell viability was observed by MTT assay with GSNO treatment for1h,3h,6h,12h. NO release was detected by NO KIT. JC-1staining was performed to determine mitochondrial membrane potential. The structure of mitochondrial was obversed by transmission electron microscope.2. RT-PCR assay was established to evaluate glycolysis factors-HK family, PFK1, ALD family, PGK1, ENO1, LDHA, LDHB, PDK1, GLUT family mRNA levels.3. ALD family location on human endothelial cells was detected by immunochemistry staining. When endothelial cells were treated with GSNO, ALD family expression was determined by RT-PCR or Western blot, respectively. ALD A activity was detected by ALDOLASE KIT. And lactate release was evaluated by Lactic acid KIT.4. To further elucidate the mechanism of GSNO induced glycolysis factors changes, HIF-1α expression and activation were evaluated. Suppression of HIF-1a with siRNA against HIF-1a to endothelial cells was used to confirm the role of HIF-1a in GSNO-induced glycolysis factors.To further evaluate the details mechanism of GSNO-induced HIF-1a accumulation, modified biotin switch method was established to detect whether GSNO enhanced S-nitrosylation on endothelial cells. Disulfide bonds inhibitor dithiothreitol (DTT) was used to confirm GSNO-induced HIF-1a accumulation through S-nitrosylation.5. Akt phosphorylation was detected with GSNO treatment. After adding the PI3K inhibitor LY294002, expression of HIF-1a and GLUT1, ALD A proteins was examined.
     Results
     1. GSNO evoked a sharp NO release in a time-dependent manner. GSNO triggered△Ψm decrease and impacted inner cristae integrity. Cell viability had no changes after GSNO treatment within12h.2. GSNO induced an enhancement in the gene expression of glycolytic enzyme ALD A as well as GLUT, LDHA, PDK1. As a consequence of GSNO treatment, an enhanced total ALD A activity and lactate release by endothelial cells, indicated glycolysis enhancement under NO-induced mitochondria dysfunction.3. HIF-1a represented possible regulator of glycolysis enhancement due to the protein stability by GSNO-induced S-nitrosylation as well as ALD A and GLUT1upregulation on endothelial cells, which were prevented by downregulating HIF-1α using a free thiol agent DTT. SiHIF-1a inhibited glycolysis factors which activated by GSNO without HIF-1α accumulation.4. GSNO increased Akt phosphorylation. The PI3K inhibitor LY294002reversed GSNO induced the ratio of p-Akt/Akt. LY294002also reduced HIF-1α accumulationblocked HIF-1α downstream factor ALD A and GLUT1. It indicated that PI3K/Akt participated into GSNO induced HIF-1α upregulation.
     Conclusion
     1. GSNO upregulated ALD A expression and activity, as well as glycolysis related factors mRNA levels, suggesting to be related to influence glycolysis, which was indicated to be related to the increased lactic acid release.
     2. GSNO increased HIF-1α mRNA and protein stability to enhance glycolysis flux, which was regulated by PI3K/Akt signaling pathway. si-HIF-1a reduced GSNO-induced ALD A and GLUT1upregulation, indicating that HIF-1a protein stability might play an important role in GSNO effects on glycolysis factors.
     3. GSNO induced HIF-1a accumulation to activate glycolysis via S-nitrosylation.
     Part II Glycolysis pathway was activated in LPS-induced endotoxemic rats with HIF-1α upregulation
     Objective
     Characterization of glycolysis factors in LPS-induced endotoxemic rats was investigated, and this information helps to understand potential roles of glycolysis factors in endotoxemic rats.
     Methods
     1. SD rats were treated with a single dose injection (i.p.) of LPS (2mg/kg), and rats in control group were given equal amount of NaCl (0.9%)(n=6). After6h, brain, liver and skeletal muscle tissues were abtained from the rats.2. The mRNA expression of GLUT family, HK family, PFK1, ALD family, ENO1, PGK1, PDK1and LDH family were assayed by RT-PCR.3. The proteins expression of ALD family and hypoxia-related factors were determined by Western blot.4. Rat skeletal muscle was treated with50μmol/L,200μmol/L,500μmol/L,1000μmol/L GSNO, and ALD activity was detected by ALDOLASE KIT.
     Results
     1. Glycolysis related factors mRNA levels were detected in brain, liver and skeletal muscles after LPS challenged. In brain tissue, LPS increased GLUT1, ALD C, ENO1, PGK1, PDK1and LDHA mRNA levels, it indicated that LPS might impact glycolysis flux in the brain tissue. LPS had no effects on liver tissue. However, ALD A and GLUT1mRNA up regulated in skeletal muscle with LPS treatment. As showed above, LPS targeted to glycolysis in brain and skeletal muscle rather than liver.2. LPS increased ALD A and ALD C expression in skeletal muscle or brain respectively after LPS challenged. But LPS had no effects on ALD B in liver tissue. To further determine the hypoxia related signaling role in LPS challenged rats, HIF-1α protein was detected. It showed that HIF-la accumulated in brain and skeletal muscle. It indicated that hypoxia related signaling might involve in LPS induced endotoxemic rats.3. Functionally, GSNO (200,500,1000μmol/L) inhibited ALD activity in a dose-dependent manner. It indicated that ALD activity site was blocked thought a post-transcriptional manner.
     Conclusions
     1. The characterization of glycolysis factors was organ-specific in LPS-induced endotoxemic rats, which suggested their multifaceted roles in glycolysis and organs functions. LPS targeted to brain and muscles rather that liver, indicating certain rats organs played the roles in glycolysis regulation.
     2. The upregulation of ALD family was matched to HIF-1a accumulation in brain and skeletal muscle, indicating HIF-1αaccumulation might be important in regulation glycolysis in LPS-challenged rats.
     3. Skeletal muscle ALD A activity could be inhibited by exogenous GSNO. It might be related with S-nitrosylation. This data contributed to the regulatory mechanisms of enzyme activity.
引文
[1]Zheng, J. Energy metabolism of cancer:Glycolysis versus oxidative phosphorylation (Review). Oncol Lett,2012,4 (6):1151-1157
    [2]Bar-Even, A., Flamholz, A., Noor, E., Milo, R. Rethinking glycolysis:on the biochemical logic of metabolic pathways. Nat Chem Biol,2012,8 (6):509-517
    [3]Chapman, R. G.,Schaumburg, L. Glycolysis and glycolytic enzyme activity of aging red cells in man. Changes in hexokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and glutamic-oxalacetic transaminase. Br J Haematol, 1967,13 (5):665-678
    [4]Lu, W., Hu, Y., Chen, G., Chen, Z., Zhang, H., Wang, F., Feng, L., Pelicano, H., Wang, H., Keating, M. J., Liu, J., McKeehan, W., Wang, H., Luo, Y.,Huang, P. Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol,2012,10 (5): 1001326
    [5]Lew, C. R.,Tolan, D. R. Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism. Journal of Biological Chemistry,2012,287 (51):42554-42563
    [6]Cano-Ramirez, D., Torres-Vargas, C. E., Guerrero-Castillo, S., Uribe-Carvajal, S., Hernandez-Pando, R., Pedraza-Chaverri, J., Orozco-Ibarra, M. Effect of glycolysis inhibition on mitochondrial function in rat brain. J Biochem Mol Toxicol,2012,26 (5): 206-211
    [7]Starnes, G. L., Coincon, M., Sygusch, J., Sibley, L. D. Aldolase is essential for energy production and bridging adhesin-actin cytoskeletal interactions during parasite invasion of host cells. Cell Host Microbe,2009,5 (4):353-364
    [8]Kapoor, S. Glucose transporter 1 (GLUT1) and its emerging role as a significant prognostic marker in systemic malignancies. International Journal of Colorectal Disease, 2012
    [9]Horecker, B. L., MacGregor, J. S., Singh, V. N., Melloni, E., Pontremoli, S. Aldolase and fructose bisphosphatase:key enzymes in the control of gluconeogenesis and glycolysis. Curr Top Cell Regul,1981,18:181-197
    [10]Yamagata, H. Changes in aldolase associated with development of the human embryo. Nihon Shonika Gakkai Zasshi,1971,75 (7):560-569
    [11]Kajita, E., Moriwaki, J., Yatsuki, H., Hori, K., Miura, K., Hirai, M.,Shiokawa, K. Quantitative expression studies of aldolase A, B and C genes in developing embryos and adult tissues of Xenopus laevis. Mech Dev,2001,102 (1):283-287
    [12]Talageri, V. R., Mashelkar, B. N.,Ranadive, K. J. Respiration, glycolysis and aldolase activity in normal and malignant tissues of mice. Indian J Biochem,1969,6 (4):211-213
    [13]Liu, J., Wang, R., Desai, K., Wu, L. Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovascular Research,2011,92 (3):494-503
    [14]Wang, Y., Kuramitsu, Y., Takashima, M., Yokoyama, Y., Iizuka, N., Tamesa, T., Sakaida, I., Oka, M., Nakamura, K. Identification of four isoforms of aldolase B down-regulated in hepatocellular carcinoma tissues by means of two-dimensional Western blotting. In Vivo,2011,25 (6):881-886
    [15]Yokoyama, T., Ida, M. [Aldolase]. Nihon Rinsho,2004,62 Suppl 11:372-374
    [16]Casciola-Rosen, L., Hall, J. C., Mammen, A. L., Christopher-Stine, L., Rosen, A. Isolated elevation of aldolase in the serum of myositis patients:a potential biomarker of damaged early regenerating muscle cells. Clinical and Experimental Rheumatology, 2012,30 (4):548-553
    [17]Colbert, M. C., Ciejek-Baez, E. The proximal promoter of the aldolase A gene remains active during myogenesis in vitro and muscle development in vivo. Developmental Biology,1992,149 (1):66-79
    [18]Privitera, D., Corti, V., Alessio, M., Volonte, A., Lampasona, V., Comi, G., Martino, G., Franciotta, D., Furlan, R.,Fazio, R. Proteomic identification of aldolase A as an autoantibody target in patients with atypical movement disorders. Neurological Sciences,2012,2 (4):27-34
    [19]Esposito, G., Vitagliano, L., Cevenini, A., Amelio, T., Zagari, A.,Salvatore, F. Unraveling the structural and functional features of an aldolase A mutant involved in the hemolytic anemia and severe rhabdomyolysis reported in a child. Blood,2005,105 (2):905-906
    [20]Asaka, M. Clinical study on aldolase isoenzyme-the development of the method of cancer diagnosis with muscle type aldolase. Hokkaido Igaku Zasshi,1979,54 (4): 365-377
    [21]Peng, S. Y., Lai, P. L., Pan, H. W., Hsiao, L. P.,Hsu, H. C. Aberrant expression of the glycolytic enzymes aldolase B and type II hexokinase in hepatocellular carcinoma are predictive markers for advanced stage, early recurrence and poor prognosis. Oncology Reports,2008,19 (4):1045-1053
    [22]Tsutsumi, K., Daimon, M., Tsutumi, R., Numazaki, M., Sato, J., Ishikawa, K. Rat aldolase isozyme gene:structure and expression in the liver during both fetal development and chemical carcinogenesis. Gan To Kagaku Ryoho,1985,12 (2): 616-621
    [23]Jean, J. C., Rich, C. B.,Joyce-Brady, M. Hypoxia results in an HIF-1-dependent induction of brain-specific aldolase C in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol,2006,291 (5):L950-L956
    [24]Staugaitis, S. M., Zerlin, M., Hawkes, R., Levine, J. M., Goldman, J. E. Aldolase C/zebrin II expression in the neonatal rat forebrain reveals cellular heterogeneity within the subventricular zone and early astrocyte differentiation. Journal of Neuroscience, 2001,21 (16):6195-6205
    [25]Slemmer, J. E., Haasdijk, E. D., Engel, D. C., Plesnila, N.,Weber, J. T. Aldolase C-positive cerebellar Purkinje cells are resistant to delayed death after cerebral trauma and AMPA-mediated excitotoxicity. European Journal of Neuroscience,2007,26 (3): 649-656
    [26]Jiang, B. H., Rue, E., Wang, G. L., Roe, R., Semenza, G. L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. Journal Of Biological Chemistry,1996,271 (30):17771-17778
    [27]Tanimoto, K., Makino, Y., Pereira, T., Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. Embo Journal,2000,19 (16):4298-4309
    [28]Carver, D. J., Gaston, B., Deronde, K., Palmer, L. A. Akt-mediated activation of HIF-1 in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am J Respir Cell Mol Biol,2007,37 (3):255-263
    [29]Olson, N., Kasahara, D. I., Hristova, M., Bernstein, R., Janssen-Heininger, Y.,van der Vliet, A. Modulation of NF-kappaB and hypoxia-inducible factor-1 by S-nitrosoglutathione does not alter allergic airway inflammation in mice. Am J Respir Cell Mol Biol,2011,44 (6):813-823
    [30]Riano, A., Ortiz-Masia, D., Velazquez, M., Calatayud, S., Esplugues, J. V., Barrachina, M. D. Nitric oxide induces HIF-1alpha stabilization and expression of intestinal trefoil factor in the damaged rat jejunum and modulates ulcer healing. Journal Of Gastroenterology,2011,46 (5):565-576
    [31]Li, F., Sonveaux, P., Rabbani, Z. N., Liu, S., Yan, B., Huang, Q., Vujaskovic, Z., Dewhirst, M. W.,Li, C. Y. Regulation of HIF-1alpha stability through S-nitrosylation. Molecular Cell,2007,26 (1):63-74
    [32]Carver, D. J., Gaston, B., Deronde, K., Palmer, L. A. Akt-mediated activation of HIF-1 in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am J Respir Cell Mol Biol,2007,37 (3):255-263
    [33]Li, F., Sonveaux, P., Rabbani, Z. N., Liu, S., Yan, B., Huang, Q., Vujaskovic, Z., Dewhirst, M. W.,Li, C. Y. Regulation of HIF-1alpha stability through S-nitrosylation. Molecular Cell,2007,26 (1):63-74
    [34]Chen, R., Sun, S., Wang, C., Li, Y., Liang, Y., An, F., Li, C., Dong, H., Yang, X., Zhang, J., Zuo, J. The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Research,2009, 19 (12):1377-1387
    [35]Chen, X., Chen, Q., Wang, L., Li, G. Ghrelin induces cell migration through GHSR1a-mediated PI3K/Akt/eNOS/NO signaling pathway in endothelial progenitor cells. Metabolism-Clinical and Experimental,2012
    [36]Zhang, P., Hu, X., Xu, X., Chen, Y.,Bache, R. J. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt. Arterioscler Thromb Vasc Biol,2011,31 (4):890-897
    [37]Shi, F., Wang, Y. C., Zhao, T. Z., Zhang, S., Du TY, Yang, C. B., Li, Y. H.,Sun, X. Q. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS One,2012,7 (7): e40365
    [38]Ma, X., Tsuda, S., Yang, X., Gu, N., Tanabe, H., Oshima, R., Matsushita, T., Egawa, T., Dong, A. J., Zhu, B. W., Hayashi, T. Pu-Erh Tea Hot-Water extract activates Akt and induces insulin-independent glucose transport in rat skeletal muscle. J Med Food,2013
    [39]Qazi, A. K., Hussain, A., Hamid, A., Qurishi, Y., Majeed, R., Ahmed, M., Najar, R. A., Bhat, J. A., Singh, S. K., Zargar, M. A., Ali, S.,Saxena, A. K. Recent development in targeting PI3K-Akt-mTOR signaling for anticancer therapeutic strategies. Anticancer Agents Med Chem,2013,11 (2):103-109
    [40]Yuan, L., Hu, J., Luo, Y., Liu, Q., Li, T., Parish, C. R., Freeman, C., Zhu, X., Ma, W., Hu, X., Yu, H.,Tang, S. Upregulation of heparanase in high-glucose-treated endothelial cells promotes endothelial cell migration and proliferation and correlates with Akt and extracellular-signal-regulated kinase phosphorylation. Molecular Vision, 2012,18:1684-1695
    [41]Fournier, N. M., Lee, B., Banasr, M., Elsayed, M., Duman, R. S. Vascular endothelial growth factor regulates adult hippocampal cell proliferation through MEK/ERK- and PI3K/Akt-dependent signaling. Neuropharmacology,2012,63 (4): 642-652
    [42]Liu, Q. B., Liu, L. L., Lu, Y. M., Tao, R. R., Huang, J. Y., Han, F.,Lou, Y. J. The induction of reactive oxygen species and loss of mitochondrial Omi/HtrA2 is associated with S-nitrosoglutathione-induced apoptosis in human endothelial cells. Toxicol Appl Pharmacol,2010,244 (3):374-384
    [43]Bernardini, C., Greco, F., Zannoni, A., Bacci, M. L., Seren, E.,Forni, M. Differential expression of nitric oxide synthases in porcine aortic endothelial cells during LPS-induced apoptosis. Journal of Inflammation,2012,9 (1):47
    [44]Godfrey, V., Martin, A. L., Struthers, A. D., Lyles, G. A. Effects of aldosterone and related steroids on LPS-induced increased expression of inducible NOS in rat aortic smooth muscle cells. Br J Pharmacol,2011,164 (8):2003-2014
    [45]Patruno, A., Franceschelli, S., Pesce, M., Maccallini, C., Fantacuzzi, M., Speranza, L., Ferrone, A., De Lutiis, M. A., Ricciotti, E., Amoroso, R.,Felaco, M. Novel aminobenzyl-acetamidine derivative modulate the differential regulation of NOSs in LPS induced inflammatory response:role of PI3K/Akt pathway. Biochim Biophys Acta, 2012,1820 (12):2095-2104
    [46]Tamura, E. K., Cecon, E., Monteiro, A. W., Silva, C. L.,Markus, R. P. Melatonin inhibits LPS-induced NO production in rat endothelial cells. Journal Of Pineal Research, 2009,46 (3):268-274
    [47]Bouis, D., Hospers, G. A., Meijer, C., Molema, G., Mulder, N. H. Endothelium in vitro:a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis,2001,4 (2):91-102
    [48]Edgell, C. J., Haizlip, J. E., Bagnell, C. R., Packenham, J. P., Harrison, P., Wilbourn, B.,Madden, V. J. Endothelium specific Weibel-Palade bodies in a continuous human cell line, EA.hy926. In Vitro Cell Dev Biol,1990,26 (12):1167-1172
    [49]Liu, Q. B., Liu, L. L., Lu, Y. M., Tao, R. R., Huang, J. Y., Han, F.,Lou, Y. J. The induction of reactive oxygen species and loss of mitochondrial Omi/HtrA2 is associated with S-nitrosoglutathione-induced apoptosis in human endothelial cells. Toxicol Appl Pharmacol,2010,244 (3):374-384
    [50]Shi, Q., Chen, H. F., Lou, Y. J. Further evidence that rat liver microsomal glutathione transferase 1 is not a cellular protein target for S-nitrosylation. Chem Biol Interact,2006,162 (3):228-236
    [51]Liu, Q. B., Liu, L. L., Lu, Y. M., Tao, R. R., Huang, J. Y., Han, F.,Lou, Y. J. The induction of reactive oxygen species and loss of mitochondrial Omi/HtrA2 is associated with S-nitrosoglutathione-induced apoptosis in human endothelial cells. Toxicol Appl Pharmacol,2010,244 (3):374-384
    [52]Tsujita, M., Batista, W. L., Ogata, F. T., Stern, A., Monteiro, H. P., Arai, R. J. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis. Biochem Biophys Res Commun,2008,369 (4):1001-1006
    [53]Callsen, D., Brune, B. Role of mitogen-activated protein kinases in S-nitrosoglutathione-induced macrophage apoptosis. Biochemistry,1999,38 (8): 2279-2286
    [54]Ho, Y. S., Liu, H. L., Duh, J. S., Chen, R. J., Ho, W. L., Jeng, J. H., Wang, Y. J.,Lin, J. K. Induction of apoptosis by S-nitrosoglutathione and Cu2+ or Ni2+ ion through modulation of bax, bad, and bcl-2 proteins in human colon adenocarcinoma cells. Mol Carcinog,1999,26 (3):201-211
    [55]Hour, T. C., Shiau, S. Y., Lin, J. K. Suppression of N-methyl-N'-nitro-N-nitrosoguanidine- and S-nitrosoglutathione-induced apoptosis by Bcl-2 through inhibiting glutathione-S-transferase pi in NIH3T3 cells. Toxicology Letters,1999,110 (3):191-202
    [56]Anderson, P. J. The number, location, and reactivity of the cysteine residues of sturgeon muscle aldolase. Can J Biochem,1972,50 (2):111-119
    [57]Casciola-Rosen, L., Hall, J. C., Christopher-Stine, L., Mammen, A. L., Rosen, A. Isolated elevation of aldolase in the serum of myositis patients:a potential biomarker of damaged early regenerating muscle cells. Clinical and Experimental Rheumatology, 2012,14(2):313-320
    [58]Marcondes, M. C., Sola-Penna, M., Torres, R. S., Zancan, P. Muscle-type 6-phosphofructo-l-kinase and aldolase associate conferring catalytic advantages for both enzymes. Iubmb Life,2011,63 (6):435-445
    [59]Dukes, A. A., Van Laar, V. S., Cascio, M., Hastings, T. G. Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. Journal Of Neurochemistry,2008,106 (1):333-346
    [60]Liu, J., Wang, R., Desai, K., Wu, L. Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovascular Research,2011,92 (3):494-503
    [61]Poellinger, L., Johnson, R. S. HIF-1 and hypoxic response:the plot thickens. Current Opinion In Genetics & Development,2004,14 (1):81-85
    [62]Semenza, G. L. Life with oxygen. Science,2007,318 (5847):62-64
    [63]Gleadle, J. M., Ratcliffe, P. J. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood,1997,89 (2):503-509
    [64]Mathupala, S. P., Rempel, A., Pedersen, P. L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. Journal of Biological Chemistry,2001,276(46): 43407-43412
    [65]Semenza, G. L., Roth, P. H., Fang, H. M.,Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal Of Biological Chemistry,1994,269 (38):23757-23763
    [66]Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P.,Giallongo, A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry,1996,271 (51):32529-32537
    [67]Almeida, A., Moncada, S., Bolanos, J. P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biology,2004,6 (1):45-51
    [68]Lum, J. J., Bui, T., Gruber, M., Gordan, J. D., DeBerardinis, R. J., Covello, K. L., Simon, M. C.,Thompson, C. B. The transcription factor HIF-lalpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev,2007,21 (9):1037-1049
    [69]Jean, J. C., Rich, C. B., Joyce-Brady, M. Hypoxia results in an HIF-1-dependent induction of brain-specific aldolase C in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol,2006,291 (5):L950-L956
    [70]Wang, C. F., Yuan, C. Z., Wang, S. H., Zhang, H., Hu, X. X., Zhang, L., Wu, C.,Li, N. Differential gene expression of aldolase C (ALDOC) and hypoxic adaptation in chickens. Animal Genetics,2007,38 (3):203-210
    [71]Scharte, M., Han, X., Uchiyama, T., Tawadrous, Z., Delude, R. L., Fink, M. P. LPS increases hepatic HIF-1alpha protein and expression of the HIF-1-dependent gene aldolase A in rats. Journal Of Surgical Research,2006,135 (2):262-267
    [72]Shi, Q., Chen, H. F., Lou, Y. J. Further evidence that rat liver microsomal glutathione transferase 1 is not a cellular protein target for S-nitrosylation. Chem Biol Interact,2006,162(3):228-236
    [73]Shi, Q., Lou, Y. J. Microsomal glutathione transferase 1 is not S-nitrosylated in rat liver microsomes or in endotoxin challenged rats. Pharmacological Research,2005,51 (4):303-310
    [74]Lima, B., Forrester, M. T., Hess, D. T., Stamler, J. S. S-nitrosylation in cardiovascular signaling. Circulation Research,2010,106 (4):633-646
    [75]Schulman, I. H., Hare, J. M. Regulation of cardiovascular cellular processes by S-nitrosylation. Biochim Biophys Acta,2012,1820 (6):752-762
    [76]Murphy, E., Kohr, M., Sun, J., Nguyen, T., Steenbergen, C. S-nitrosylation:a radical way to protect the heart. Journal Of Molecular And Cellular Cardiology,2012, 52 (3):568-577
    [77]Lima, B., Lam, G. K., Xie, L., Diesen, D. L., Villamizar, N., Nienaber, J., Messina, E., Bowles, D., Kontos, C. D., Hare, J. M., Stamler, J. S.,Rockman, H. A. Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci U S A,2009,106 (15):6297-6302
    [78]Ke, Q., Costa, M. Hypoxia-inducible factor-1 (HIF-1). Molecular Pharmacology, 2006,70 (5):1469-1480
    [79]Kim, S. H., Jeong, J. W., Park, J. A., Lee, J. W., Seo, J. H., Jung, B. K., Bae, M. K.,Kim, K. W. Regulation of the HIF-1alpha stability by histone deacetylases. Oncology Reports,2007,17(3):647-651
    [80]Li, F., Sonveaux, P., Rabbani, Z. N., Liu, S., Yan, B., Huang, Q., Vujaskovic, Z., Dewhirst, M. W.,Li, C. Y. Regulation of HIF-1 alpha stability through S-nitrosylation. Molecular Cell,2007,26 (1):63-74
    [81]Brune, B., Zhou, J. The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1 alpha. Current Medicinal Chemistry,2003,10 (10):845-855
    [82]Carver, D. J., Gaston, B., Deronde, K., Palmer, L. A. Akt-mediated activation of HIF-1 in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am J Respir Cell Mol Biol,2007,37(3):255-263
    [83]Choi, N. S., Hahm, J. H., Maeng, P. J.,Kim, S. H. Comparative study of enzyme activity and stability of bovine and human plasmins in electrophoretic reagents, beta-mercaptoethanol, DTT, SDS, Triton X-100, and urea. Journal Of Biochemistry And Molecular Biology,2005,38 (2):177-181
    [84]Shen, K., Ji, L., Gong, C., Ma, Y., Yang, L., Fan, Y., Hou, M., Wang, Z. Notoginsenoside Ft1 promotes angiogenesis via HIF-1alpha mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Biochemical Pharmacology,2012,84 (6):784-792
    [85]Shen, W. Q., Cheng, K. J., Bao, Y. Y., Zhou, S. H.,Yao, H. T. Expression of Glut-1, HIF-1alpha, PI3K and p-Akt in a case of ceruminous adenoma. Head Neck Oncol,2012, 4:18
    [86]Tseng, W. P., Yang, S. N., Lai, C. H., Tang, C. H. Hypoxia induces BMP-2 expression via ILK, Akt, mTOR, and HIF-1 pathways in osteoblasts. Journal Of Cellular Physiology,2010,223 (3):810-818
    [87]Xie, S. R., Wang, Y., Liu, C. W., Luo, K., Cai, Y. Q. Liquiritigenin inhibits serum-induced HIF-1alpha and VEGF expression via the AKT/mTOR-p70S6K signalling pathway in HeLa cells. Phytotherapy Research,2012,26 (8):1133-1141
    [88]Yang, X. M., Wang, Y. S., Zhang, J., Li, Y., Xu, J. F., Zhu, J., Zhao, W., Chu, D. K.,Wiedemann, P. Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1alpha and VEGF in laser-induced rat choroidal neovascularization. Invest Ophthalmol Vis Sci,2009,50 (4):1873-1879
    [89]Yun, S. P., Lee, M. Y., Ryu, J. M., Song, C. H.,Han, H. J. Role of HIF-lalpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol:involvement of PKC, PI3K/Akt, and MAPKs. Am J Physiol Cell Physiol,2009,296 (2):317-326
    [90]Agani, F., Jiang, B. H. Oxygen-independent regulation of HIF-1:novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets,2013
    [91]Guo, J. Y., Yang, T., Sun, X. G., Zhou, N. Y., Li, F. S., Long, D., Lin, T., Li, P. Y.,Feng, L. Ischemic postconditioning attenuates liver warm ischemia-reperfusion injury through Akt-eNOS-NO-HIF pathway. Journal Of Biomedical Science,2011,18: 79
    [92]Park, J. H., Lee, J. Y., Shin, D. H., Jang, K. S., Kim, H. J.,Kong, G. Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-lalpha mediated by the PTEN/PI3K/Akt pathway. Oncogene,2011,30 (45): 4578-4589
    [93]Pez, F., Dayan, F., Durivault, J., Kaniewski, B., Aimond, G., Le Provost, G. S., Deux, B., Clezardin, P., Sommer, P., Pouyssegur, J.,Reynaud, C. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Research,2011,71 (5): 1647-1657
    [94]Shafee, N., Kaluz, S., Ru, N.,Stanbridge, E. J. PI3K/Akt activity has variable cell-specific effects on expression of HIF target genes, CA9 and VEGF, in human cancer cell lines. Cancer Letters,2009,282 (1):109-115
    [95]Alexaki, V. I., Charalampopoulos, I., Kampa, M., Vassalou, H., Theodoropoulos, P., Stathopoulos, E. N., Hatzoglou, A., Gravanis, A.,Castanas, E. Estrogen exerts neuroprotective effects via membrane estrogen receptors and rapid Akt/NOS activation. Faseb Journal,2004,18 (13):1594-1596
    [96]Carver, D. J., Gaston, B., Deronde, K., Palmer, L. A. Akt-mediated activation of HIF-1 in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am J Respir Cell Mol Biol,2007,37(3):255-263
    [97]Befani, C. D., Vlachostergios, P. J., Hatzidaki, E., Patrikidou, A., Bonanou, S., Simos, G., Papandreou, C. N.,Liakos, P. Bortezomib represses HIF-1alpha protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J Mol Med (Berl),2012,90 (1):45-54
    [98]Jiao, M., Nan, K. J. Activation of PI3 kinase/Akt/HIF-1alpha pathway contributes to hypoxia-induced epithelial-mesenchymal transition and chemoresistance in hepatocellular carcinoma. International Journal Of Oncology,2012,40 (2):461-468
    [99]Blancher, C., Moore, J. W., Robertson, N.,Harris, A. L. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3'-kinase/Akt signaling pathway. Cancer Research,2001,61 (19):7349-7355
    [100]Lee, W., Yang, E. J., Ku, S. K., Song, K. S., Bae, J. S. Anti-inflammatory Effects of Oleanolic Acid on LPS-Induced Inflammation In Vitro and In Vivo. Inflammation, 2013,36 (1):94-102
    [101]Kanczkowski, W., Chatzigeorgiou, A., Samus, M., Tran, N., Zacharowski, K., Chavakis, T., Bornstein, S. R. Characterization of the LPS-induced inflammation of the adrenal gland in mice. Molecular And Cellular Endocrinology,2013
    [102]Golembiowska, K., Wardas, J., Noworyta-Sokolowska, K., Kaminska, K.,Gorska, A. Effects of Adenosine Receptor Antagonists on the In Vivo LPS-Induced Inflammation Model of Parkinson's Disease. Neurotox Res,2013
    [103]Yao, S. Y., Natarajan, C., Sriram, S. nNOS mediated mitochondrial injury in LPS stimulated oligodendrocytes. Mitochondrion,2012,12 (2):336-344
    [104]Silverman, M. N., Mukhopadhyay, P., Belyavskaya, E., Tonelli, L. H., Revenis, B. D., Doran, J. H., Ballard, B. E., Tam, J., Pacher, P.,Sternberg, E. M. Glucocorticoid receptor dimerization is required for proper recovery of LPS-induced inflammation, sickness behavior and metabolism in mice. Mol Psychiatry,2012
    [105]Scharte, M., Han, X., Uchiyama, T., Tawadrous, Z., Delude, R. L.,Fink, M. P. LPS increases hepatic HIF-1alpha protein and expression of the HIF-1-dependent gene aldolase A in rats. Journal of Surgical Research,2006,135 (2):262-267
    [106]Lall, H., Coughlan, K.,Sumbayev, V. V. HIF-lalpha protein is an essential factor for protection of myeloid cells against LPS-induced depletion of ATP and apoptosis that supports Toll-like receptor 4-mediated production of IL-6. Molecular Immunology, 2008,45(11):3045-3049
    [107]Kim, C., Kim, S. Taurine chloramine inhibits LPS-induced glucose uptake and glucose transporter 1 expression in RAW 264.7 macropages. Adv Exp Med Biol,2009, 643:473-480
    [108]Katsuyama, K., Kojima, R., Yokoyama, S., Yanai, M., Sueda, N., Sugita, M., Momose, K., Yamada, H. N2733, 1-[3-(3-pyridyl)-acryloyl]-2-pyrrolidinone hydrochloride inhibits LPS-induced TNF-alpha production and improves survival in endotoxemic mice. Biosci Biotechnol Biochem,1998,62 (11):2177-2181
    [109]Yang, H. Y., Pu, X. P. Chronic morphine administration induces over-expression of aldolase C with reduction of CREB phosphorylation in the mouse hippocampus. European Journal of Pharmacology,2009,609 (1-3):51-57
    [110]Garcia-Lazaro, J. F., Thieringer, F., Luth, S., Czochra, P., Meyer, E., Renteria, I. B., Galle, P. R., Lohse, A. W., Herkel, J.,Kanzler, S. Hepatic over-expression of TGF-betal promotes LPS-induced inflammatory cytokine secretion by liver cells and endotoxemic shock. Immunology Letters,2005,101 (2):217-222
    [111]Maniratanachote, R., Shibata, A., Kaneko, S., Yamamori, I., Wakasugi, T., Sawazaki, T., Katoh, K., Tokudome, S., Nakajima, M., Yokoi, T. Detection of autoantibody to aldolase B in sera from patients with troglitazone-induced liver dysfunction. Toxicology,2005,216 (1):15-23
    [112]Liu, J., Chen, M., Wang, X. Calcitonin gene-related peptide-enhanced nitric oxide release and inducible NOS activity and mRNA expression in LPS-stimulated mouse peritoneal macrophages. Shock,2001,16 (1):64-69
    [113]Godfrey, V., Martin, A. L., Struthers, A. D.,Lyles, G. A. Effects of aldosterone and related steroids on LPS-induced increased expression of inducible NOS in rat aortic smooth muscle cells. Br J Pharmacol,2011,164 (8):2003-2014
    [114]Cheng, Y. W., Chang, C. Y., Lin, K. L., Hu, C. M., Lin, C. H.,Kang, J. J. Shikonin derivatives inhibited LPS-induced NOS in RAW 264.7 cells via downregulation of MAPK/NF-kappaB signaling. Journal of Ethnopharmacology,2008, 120 (2):264-271
    [115]Shen, S., Yu, S., Binek, J., Chalimoniuk, M., Zhang, X., Lo, S. C.,Hannink, M., Wu, J., Fritsche, K., Donato, R.,Sun, G. Y. Distinct signaling pathways for induction of type Ⅱ NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochemistry International,2005,47 (4):298-307
    [116]Kamoun, W. S., Karaa, A., Kresge, N., Merkel, S. M., Komeszczuk, K., Clemens, M. G. LPS inhibits endothelin-1-induced endothelial NOS activation in hepatic sinusoidal cells through a negative feedback involving caveolin-1. Hepatology,2006,43 (1):182-190
    [117]Raghavendra, V., Agrewala, J. N., Kulkarni, S. K. Role of centrally administered melatonin and inhibitors of COX and NOS in LPS-induced hyperthermia and adipsia. Prostaglandins Leukot Essent Fatty Acids,1999,60 (4):249-253
    [118]Feuillet-Fieux, M. N., Golub, R. M., Nguyen, A. T., Zamfirescu, P., Descamps-Latscha, B. Effect of LPS on the oxidative metabolism of peritoneal and spleen cells from LPS sensitive and resistant mice. J Clin Lab Immunol,1984,15 (3): 155-161
    [119]Bundz, S., Molina, P. E., Lang, C. H.,Abumrad, N. N. Endogenous opiates do not modulate LPS-induced alterations in carbohydrate metabolism. Shock,1995,4(6): 397-402
    [120]Shi, Q., Feng, J., Qu, H., Cheng, Y. Y. A proteomic study of S-nitrosylation in the rat cardiac proteins in vitro. Biological & Pharmaceutical Bulletin,2008,31 (8): 1536-1540
    [121]Del, B. A., Bernad, J., Dardenne, C., Verda, D., Meunier, J. R., Rousset, F., Martinozzi-Teissier, S.,Pipy, B. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS. Toxicol Appl Pharmacol,2011,256 (1):35-43
    [122]Greenberg, S. S., Xie, J., Ouyang, J., Zhao, X. Ethanol metabolism is not required for inhibition of LPS-stimulated transcription of inducible nitric oxide synthase. Alcohol,1999,17 (3):203-213
    [123]Johann, S., Kampmann, E., Denecke, B., Arnold, S., Kipp, M., Mey, J., Beyer, C. Expression of enzymes involved in the prostanoid metabolism by cortical astrocytes after LPS-induced inflammation. Journal Of Molecular Neuroscience,2008,34 (2) 177-185
    [124]Silverman, M. N., Mukhopadhyay, P., Belyavskaya, E., Tonelli, L. H., Revenis, B. D., Doran, J. H., Ballard, B. E., Tam, J., Pacher, P.,Sternberg, E. M. Glucocorticoid receptor dimerization is required for proper recovery of LPS-induced inflammation, sickness behavior and metabolism in mice. Mol Psychiatry,2012
    [125]von Bismarck, P., Winoto-Morbach, S., Herzberg, M., Uhlig, U., Schutze, S., Lucius, R., Krause, M. F. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model. Pulmonary Pharmacology & Therapeutics,2012,25 (3):228-235
    [126]Ryan, J. L., Glode, L. M., Rosenstreich, D. L. Lack of responsiveness of C3H/HeJ macrophages to lipopolysaccharide:the cellular basis of LPS-stimulated metabolism. Journal of Immunology,1979,122 (3):932-935
    [127]Grove, R. I., Allegretto, N. J., Kiener, P. A., Warr, G. A. Lipopolysaccharide (LPS) alters phosphatidylcholine metabolism in elicited peritoneal macrophages. J Leukoc Biol,1990,48 (1):38-42
    [128]Pfau, J. C., Walker, E., Card, G. L. Monoclonal antibodies to CD45 modify LPS-induced arachidonic acid metabolism in macrophages. Biochim Biophys Acta, 2000,1495 (3):212-222
    [129]Bala, M., Kopp, A., Wurm, S., Buchler, C., Scholmerich, J.,Schaffler, A. Type 2 diabetes and lipoprotein metabolism affect LPS-induced cytokine and chemokine release in primary human monocytes. Exp Clin Endocrinol Diabetes,2011,119 (6): 370-376
    [130]Fock, R. A., Vinolo, M. A., de Moura, S. R. V., de Sa, R. L.,Borelli, P. Protein-energy malnutrition decreases the expression of TLR-4/MD-2 and CD14 receptors in peritoneal macrophages and reduces the synthesis of TNF-alpha in response to lipopolysaccharide (LPS) in mice. Cytokine,2007,40 (2):105-114
    [131]Fock, R. A., Vinolo, M. A., Crisma, A. R., Nakajima, K., Rogero, M. M.,Borelli, P. Protein-energy malnutrition modifies the production of interleukin-10 in response to lipopolysaccharide (LPS) in a murine model. J Nutr Sci Vitaminol (Tokyo),2008,54 (5):371-377
    [132]Pchejetski, D., Nunes, J., Coughlan, K., Lall, H., Pitson, S. M., Waxman, J., Sumbayev, V. V. The involvement of sphingosine kinase 1 in LPS-induced Toll-like receptor 4-mediated accumulation of HIF-1alpha protein, activation of ASK1 and production of the pro-inflammatory cytokine IL-6. Immunology And Cell Biology, 2011,89 (2):268-274
    [133]Sumbayev, V. V. LPS-induced Toll-like receptor 4 signalling triggers cross-talk of apoptosis signal-regulating kinase 1 (ASK1) and HIF-1alpha protein. Febs Letters, 2008,582 (2):319-326
    [134]Semenza, G. L., Roth, P. H., Fang, H. M.,Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal Of Biological Chemistry,1994,269 (38):23757-23763
    [135]Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P.,Giallongo, A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry,1996,271 (51): 32529-32537
    [136]Salceda, S., Beck, I., Caro, J. Absolute requirement of aryl hydrocarbon receptor nuclear translocator protein for gene activation by hypoxia. Archives Of Biochemistry And Biophysics,1996,334 (2):389-394
    [137]Lu, H., Forbes, R. A.,Verma, A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. Journal Of Biological Chemistry,2002,277 (26):23111-23115
    [138]Scharte, M., Han, X., Uchiyama, T., Tawadrous, Z., Delude, R. L., Fink, M. P. LPS increases hepatic HIF-1alpha protein and expression of the HIF-1-dependent gene aldolase A in rats. Journal of Surgical Research,2006,135 (2):262-267
    [139]Yan, J., Shi, Q., Chen, Z., Zhuang, R., Chen, H., Zhu, D.,Lou, Y. Skeletal muscle aldolase an overexpression in endotoxemic rats and inhibited by GSNO via potential role for S-nitrosylation in vitro. Journal Of Surgical Research,2011,170 (1):57-63
    [140]Coma, M., Guix, F. X., Uribesalgo, I., Espuna, G., Sole, M., Andreu, D., Munoz, F. J. Lack of oestrogen protection in amyloid-mediated endothelial damage due to protein nitrotyrosination. Brain,2005,128 (Pt7):1613-1621
    [141]Ghiso, J., Frangione, B. Cerebral amyloidosis, amyloid angiopathy, and their relationship to stroke and dementia. J Alzheimers Dis,2001,3(1):65-73
    [142]Guo, S., Kim, W. J., Lok, J., Lee, S. R., Besancon, E., Luo, B. H., Stins, M. F., Wang, X., Dedhar, S.,Lo, E. H. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci U S A,2008,105 (21): 7582-7587
    [143]Chen, W. F., Lau, W. S., Cheung, P. Y., Guo, D. A.,Wong, M. S. Activation of insulin-like growth factor I receptor-mediated pathway by ginsenoside Rg1. Br J Pharmacol,2006,147 (5):542-551
    [144]Cheung, L. W., Leung, K. W., Wong, C. K., Wong, R. N.,Wong, A. S. Ginsenoside-Rgl induces angiogenesis via non-genomic crosstalk of glucocorticoid receptor and fibroblast growth factor receptor-1. Cardiovascular Research,2011,89(2): 419-425
    [145]Fang, F., Chen, X., Huang, T., Lue, L. F., Luddy, J. S.,Yan, S. S. Multi-faced neuroprotective effects of Ginsenoside Rgl in an Alzheimer mouse model. Biochim Biophys Acta,2012,1822 (2):286-292
    [146]Jover-Mengual, T., Zukin, R. S., Etgen, A. M. MAPK signaling is critical to estradiol protection of CA1 neurons in global ischemia. Endocrinology,2007,148 (3) 1131-1143
    [147]Meltser, I., Tahera, Y.,Canlon, B. Glucocorticoid receptor and mitogen-activated protein kinase activity after restraint stress and acoustic trauma. J Neurotrauma,2009, 26 (10):1835-1845
    [148]Wang, W., Liao, Q. P., Quan, L. H., Liu, C. Y., Chang, Q., Liu, X. M.,Liao, Y. H. The effect of Acorus gramineus on the bioavailabilities and brain concentrations of ginsenosides Rgl, Re and Rbl after oral administration of Kai-Xin-San preparations in rats. Journal Of Ethnopharmacology,2010,131 (2):313-320
    [149]Grammas, P., Martinez, J., Miller, B. Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med,2011,13:e19
    [150]Luo, J., Martinez, J., Yin, X., Sanchez, A., Tripathy, D., Grammas, P. Hypoxia induces angiogenic factors in brain microvascular endothelial cells. Microvascular Research,2012,83 (2):138-145
    [151]Sumbayev, V. V., Yasinska, I. M. Mechanisms of hypoxic signal transduction regulated by reactive nitrogen species. Scandinavian Journal Of Immunology,2007,65 (5):399-406
    [152]Nakamura, M. M., Simons, W. W., Samuels, R., Daniel, J., Mandl, K. D. Service-oriented architecture for pediatric immunization decision support. AMIA Annu Symp Proc,2007:1056
    [153]Han, F., Ali, R. A., Shioda, N., Qin, Z. H.,Fukunaga, K. Accumulation of beta-amyloid in the brain microvessels accompanies increased hyperphosphorylated tau proteins following microsphere embolism in aged rats. Neuroscience,2008,153 (2): 414-427
    [154]Brune, B., Zhou, J., Knethen, A. Nitric oxide, oxidative stress, and apoptosis. Kidney Int Suppl,2003 (84):S22-S24
    [155]Komatsu, D. E., Hadjiargyrou, M. Activation of the transcription factor HIF-1 and its target genes, VEGF, HO-1, iNOS, during fracture repair. Bone,2004,34 (4): 680-688
    [156]Kroll, J., Waltenberger, J. VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem Biophys Res Commun,1998, 252 (3):743-746
    [1]Poellinger, L., Johnson, R. S. HIF-1 and hypoxic response:the plot thickens. Current Opinion In Genetics & Development,2004,14 (1):81-85
    [2]Semenza, G. L. Life with oxygen. Science,2007,318 (5847):62-64
    [3]Wang, G. L., Jiang, B. H., Rue, E. A., Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proc Natl Acad Sci U S A,1995,92 (12):5510-5514
    [4]Jiang, B. H., Rue, E., Wang, G. L., Roe, R., Semenza, G. L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. Journal Of Biological Chemistry,1996,271 (30):17771-17778
    [5]Pugh, C. W., O'Rourke, J. F., Nagao, M., Gleadle, J. M., Ratcliffe, P. J. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. Journal Of Biological Chemistry,1997,272 (17):11205-11214
    [6]Huang, L. E., Gu, J., Schau, M., Bunn, H. F. Regulation of hypoxia-inducible factor 1 alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A,1998,95 (14):7987-7992
    [7]Rechsteiner, M., Rogers, S. W. PEST sequences and regulation by proteolysis. Trends In Biochemical Sciences,1996,21 (7):267-271
    [8]Chun, Y. S., Kim, M. S., Park, J. W. Oxygen-dependent and-independent regulation of HIF-1alpha. Journal Of Korean Medical Science,2002,17 (5):581-588
    [9]Kallio, P. J., Okamoto, K., O'Brien, S., Carrero, P., Makino, Y., Tanaka, H., Poellinger, L. Signal transduction in hypoxic cells:inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. Embo Journal,1998,17 (22):6573-6586
    [10]Min, J. H., Yang, H., Ivan, M., Gertler, F., Jr Kaelin, W. G., Pavletich, N. P. Structure of an HIF-1alpha-pVHL complex:hydroxyproline recognition in signaling. Science,2002,296 (5574):1886-1889
    [11]Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W.,Ratcliffe, P. J. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science,2001,292 (5516):468-472
    [12]Semenza, G. L. Transcriptional regulation by hypoxia-inducible factor 1 molecular mechanisms of oxygen homeostasis. Trends Cardiovasc Med,1996,6 (5):151-157
    [13]Cockman, M. E., Masson, N., Mole, D. R., Jaakkola, P., Chang, G. W., Clifford, S. C., Maher, E. R., Pugh, C. W., Ratcliffe, P. J.,Maxwell, P. H. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. Journal Of Biological Chemistry,2000,275 (33):25733-25741
    [14]Tanimoto, K., Makino, Y., Pereira, T., Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. Embo Journal,2000,19 (16):4298-4309
    [15]Salceda, S., Caro, J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. Journal Of Biological Chemistry,1997,272 (36):22642-22647
    [16]Wang, G. L., Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. Journal Of Biological Chemistry,1995,270 (3):1230-1237
    [17]Chernikov, V. P. Role of hypoxia-induced transcriptional factor HIF-1 in the regulation of enterocytic metabolism. Arkh Patol,2008,70 (6):6-9
    [18]Morten, K. J., Badder, L.,Knowles, H. J. Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts. Journal of Pathology,2013
    [19]Semenza, G. L. HIF-1:upstream and downstream of cancer metabolism. Current Opinion In Genetics & Development,2010,20 (1):51-56
    [20]Marin-Hernandez, A., Gallardo-Perez, J. C., Ralph, S. J., Rodriguez-Enriquez, S., Moreno-Sanchez, R. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem,2009,9 (9):1084-1101
    [21]Xie, M.,Roy, R. Increased levels of hydrogen peroxide induce a HIF-1-dependent modification of lipid metabolism in AMPK compromised C. elegans dauer larvae. Cell Metab,2012,16 (3):322-335
    [22]Archer, S. L., Gomberg-Maitland, M., Maitland, M. L., Rich, S., Garcia, J. G., Weir, E. K. Mitochondrial metabolism, redox signaling, and fusion:a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol,2008,294 (2): H570-H578
    [23]Candelario, K. M., William, S. C.,Cunningham, L. A. Neural stem/progenitor cells (NSPCs) Display a Low Requirement for Oxidative Metabolism Independent of Hypoxia Inducible Factor-1alpha (HIF-1alpha) Expression. Journal of Neurochemistry, 2013
    [24]Gleadle, J. M., Ratcliffe, P. J. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood,1997,89 (2):503-509
    [25]Mathupala, S. P., Rempel, A., Pedersen, P. L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type Ⅱ hexokinase gene to hypoxic conditions. Journal of Biological Chemistry,2001,276(46): 43407-43412
    [26]Semenza, G. L., Roth, P. H., Fang, H. M.,Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal Of Biological Chemistry,1994,269 (38):23757-23763
    [27]Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P.,Giallongo, A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal Of Biological Chemistry,1996,271 (51):32529-32537
    [28]Suda, T., Takubo, K., Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell,2011,9 (4):298-310
    [29]Takubo, K. [Regulation of hematopoietic stem cells by oxygen metabolism]. Rinsho Ketsueki,2010,51 (2):95-103
    [30]Simsek, T., Kocabas, F., Zheng, J., Deberardinis, R. J., Mahmoud, A. I., Olson, E. N., Schneider, J. W., Zhang, C. C.,Sadek, H. A. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell,2010, 7 (3):380-390
    [31]Warburg, O., Wind, F., Negelein, E. THE METABOLISM OF TUMORS IN THE BODY. Journal Of General Physiology,1927,8(6):519-530
    [32]Jiang, B. H., Agani, F., Passaniti, A., Semenza, G. L. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1:involvement of HIF-1 in tumor progression. Cancer Research,1997,57 (23):5328-5335
    [33]Kim, J. W., Gao, P., Liu, Y. C., Semenza, G. L., Dang, C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Molecular And Cellular Biology,2007,27 (21):7381-7393
    [34]Minchenko, A., Leshchinsky, I.,Opentaaova,I.,Sang, N., Srinivas, V., Armstead, V., Caro, J. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. Journal of Biological Chemistry,2002,277 (8):6183-6187
    [35]Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O'Meally, R., Cole, R. N., Pandey, A.,Semenza, G. L. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell,2011,145 (5):732-744
    [36]Kim, J. W., Tchernyshyov, I., Semenza, G. L., Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase:a metabolic switch required for cellular adaptation to hypoxia. Cell Metab,2006,3 (3):177-185
    [37]Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab,2006,3 (3):187-197
    [38]Chen, Z., Li, Y., Zhang, H., Huang, P., Luthra, R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene,2010,29 (30):4362-4368
    [39]Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., Dang, C. V.,Semenza, G. L. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell,2007,11 (5):407-420
    [40]Zhang, Z., Sun, H., Dai, H., Walsh, R. M., Imakura, M., Schelter, J., Burchard, J., Dai, X., Chang, A. N., Diaz, R. L., Marszalek, J. R., Bartz, S. R., Carleton, M., Cleary, M. A., Linsley, P. S.,Grandori, C. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle,2009,8 (17):2756-2768
    [41]Zhang, H., Bosch-Marce, M., Shimoda, L. A., Tan, Y. S., Baek, J. H., Wesley, J. B., Gonzalez, F. J.,Semenza, G. L. Mitochondrial autophagy is an HIF-1-dependent-112- adaptive metabolic response to hypoxia. Journal of Biological Chemistry,2008,283 (16):10892-10903
    [42]Landes, T., Emorine, L. J., Courilleau, D., Rojo, M., Belenguer, P., Arnaune-Pelloquin, L. The BH3-only Bnip3 binds to the dynamin Opal to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. Embo Reports, 2010,11 (6):459-465
    [43]Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V.,Semenza, G. L. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell,2007,129 (1):111-122
    [44]Semenza, G. L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda),2009,24:97-106
    [45]Wang, X. L., Suzuki, R., Lee, K., Tran, T., Gunton, J. E., Saha, A. K., Patti, M. E., Goldfine, A., Ruderman, N. B., Gonzalez, F. J.,Kahn, C. R. Ablation of ARNT/HIFlbeta in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones. Cell Metab,2009,9 (5):428-439
    [46]Kucejova, B., Sunny, N. E., Nguyen, A. D., Hallac, R., Fu, X., Pena-Llopis, S., Mason, R. P., Deberardinis, R. J., Xie, X. J., Debose-Boyd, R., Kodibagkar, V. D., Burgess, S. C.,Brugarolas, J. Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Oncogene,2011,30 (18):2147-2160
    [47]Tajima, T., Goda, N., Fujiki, N., Hishiki, T., Nishiyama, Y., Senoo-Matsuda, N., Shimazu, M., Soga, T., Yoshimura, Y., Johnson, R. S., Suematsu, M. HIF-1alpha is necessary to support gluconeogenesis during liver regeneration. Biochem Biophys Res Commun,2009,387 (4):789-794
    [48]Pescador, N., Villar, D., Cifuentes, D., Garcia-Rocha, M., Ortiz-Barahona, A., Vazquez, S., Ordonez, A., Cuevas, Y., Saez-Morales, D., Garcia-Bermejo, M. L., Landazuri, M. O., Guinovart, J.,del, P. L. Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1. PLoS One,2010,5 (3):9644
    [49]Ochiai, D., Goda, N., Hishiki, T., Kanai, M., Senoo-Matsuda, N., Soga, T., Johnson, R. S., Yoshimura, Y., Suematsu, M. Disruption of HIF-1alpha in hepatocytes impairs glucose metabolism in diet-induced obesity mice. Biochem Biophys Res Commun, 2011,415 (3):445-449
    [50]Nepal, M., Gong, Y. D., Park, Y. R., Soh, Y. An activator of PHD2, KRH102140, decreases angiogenesis via inhibition of HIF-1alpha. Cell Biochemistry And Function, 2011,29 (2):126-134
    [51]Jean, J. C., Rich, C. B., Joyce-Brady, M. Hypoxia results in an HIF-1-dependent induction of brain-specific aldolase C in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol,2006,291 (5):L950-L956
    [52]Wang, C. F., Yuan, C. Z., Wang, S. H., Zhang, H., Hu, X. X., Zhang, L., Wu, C.,Li, N. Differential gene expression of aldolase C (ALDOC) and hypoxic adaptation in chickens. Animal Genetics,2007,38 (3):203-210
    [53]Akakura, N. Significance of constitutive expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) protein in pancreatic cancer. Hokkaido Igaku Zasshi,2001,76 (6): 375-384
    [54]Scharte, M., Han, X., Uchiyama, T., Tawadrous, Z., Delude, R. L., Fink, M. P. LPS increases hepatic HIF-1alpha protein and expression of the HIF-1-dependent gene aldolase A in rats. Journal Of Surgical Research,2006,135 (2):262-267
    [55]Slemmer, J. E., Haasdijk, E. D., Engel, D. C., Plesnila, N.,Weber, J. T. Aldolase C-positive cerebellar Purkinje cells are resistant to delayed death after cerebral trauma and AMPA-mediated excitotoxicity. European Journal Of Neuroscience,2007,26 (3): 649-656-114-
    [56]De Ponti, C., Carini, R., Alchera, E., Nitti, M. P., Locati, M., Albano, E., Cairo, G.,Tacchini, L. Adenosine A2a receptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. J Leukoc Biol,2007,82 (2):392-402
    [57]Jean, J. C., Rich, C. B., Joyce-Brady, M. Hypoxia results in an HIF-1-dependent induction of brain-specific aldolase C in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol,2006,291 (5):L950-L956
    [58]Jones, N. M., Bergeron, M. Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J Cereb Blood Flow Metab,2001,21 (9):1105-1114
    [59]McClain, D. A., Abuelgasim, K. A., Nouraie, M., Salomon-Andonie, J., Niu, X., Miasnikova, G., Polyakova, L. A., Sergueeva, A., Okhotin, D. J., Cherqaoui, R., Okhotin, D., Cox, J. E., Swierczek, S., Song, J., Simon, M. C., Huang, J., Simcox, J. A., Yoon, D., Prchal, J. T.,Gordeuk, V. R. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia:a role for HIF in glucose metabolism. J Mol Med (Berl),2013,91(1):59-67
    [60]Luo, Y., He, D. L., Jiang, Y. G., Ning, L., Shen, S. L., Zhao, J. H.,Cui, X. H. [Role of beta-catenin signaling pathway in EMT of human prostate cancer induced by HIF-1alpha].Zhonghua Yi Xue Za Zhi,2010,90 (16):1131-1136
    [61]Melstrom, L. G., Salabat, M. R., Ding, X. Z., Strouch, M. J., Grippo, P. J., Mirzoeva, S., Pelling, J. C.,Bentrem, D. J. Apigenin down-regulates the hypoxia response genes:HIF-1alpha, GLUT-1, and VEGF in human pancreatic cancer cells. Journal Of Surgical Research,2011,167 (2):173-181
    [62]Biswas, S., Charlesworth, P. J., Turner, G. D., Leek, R., Thamboo, P. T., Campo, L., Turley, H., Dildey, P., Protheroe, A., Cranston, D., Gatter, K. C., Pezzella, F.,Harris, A. L. CD31 angiogenesis and combined expression of HIF-1alpha and HIF-2alpha are prognostic in primary clear-cell renal cell carcinoma (CC-RCC), but HIFalpha transcriptional products are not:implications for antiangiogenic trials and HIFalpha biomarker studies in primary CC-RCC. Carcinogenesis,2012,33 (9):1717-1725
    [63]Burrows, N., Babur, M., Resch, J., Ridsdale, S., Mejin, M., Rowling, E. J., Brabant, G., Williams, K. J. GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factor-1 alpha (HIF-1 alpha) pathways. J Clin Endocrinol Metab,2011,96 (12): E1934-E1943
    [64]Havelund, B. M., Sorensen, F. B., Ploen, J., Lindebjerg, J., Spindler, K. L.,Jakobsen, A. Immunohistological expression of HIF-1alpha, GLUT-1, Bcl-2 and Ki-67 in consecutive biopsies during chemoradiotherapy in patients with rectal cancer. Apmis,2013,121 (2):127-138
    [65]Seeber, L. M., Horree, N., van der Groep, P., van der Wall, E., Verheijen, R. H.,van Diest, P. J. Necrosis related HIF-1alpha expression predicts prognosis in patients with endometrioid endometrial carcinoma. Bmc Cancer,2010,10:307
    [66]Havelund, B. M., Sorensen, F. B., Lindebjerg, J., Spindler, K. L., Jakobsen, A. Pretreatment HIF-1alpha and GLUT-1 expressions do not correlate with outcome after preoperative chemoradiotherapy in rectal cancer. Anticancer Research,2011,31 (5): 1559-1565
    [67]Hyseni, A., van der Groep, P., van der Wall, E., van Diest, P. J. Subcellular FIH-1 expression patterns in invasive breast cancer in relation to HIF-1 alpha expression. Cell Oncol(Dordr),2011,34 (6):565-570
    [68]Fallone, F., Britton, S., Nieto, L., Salles, B., Muller, C. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression. Oncogene,2012
    [69]Ousset, M., Bouquet, F., Fallone, F., Biard, D., Dray, C., Valet, P., Salles, B.,-116- Muller, C. Loss of ATM positively regulates the expression of hypoxia inducible factor 1 (HIF-1) through oxidative stress:Role in the physiopathology of the disease. Cell Cycle,2010,9(14):2814-2822
    [70]Yan, J., Zhou, B., Taheri, S.,Shi, H. Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke. PLoS One,2011,6 (11):e27798
    [71]Almeida, A., Moncada, S., Bolanos, J. P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biology,2004,6 (1):45-51
    [72]Lum, J. J., Bui, T., Gruber, M., Gordan, J. D., DeBerardinis, R. J., Covello, K. L., Simon, M. C.,Thompson, C. B. The transcription factor HIF-lalpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev,2007,21 (9):1037-1049
    [73]Lopez-Hernandez, B., Posadas, I., Podlesniy, P., Abad, M. A., Trullas, R., Cena, V. HIF-lalpha is neuroprotective during the early phases of mild hypoxia in rat cortical neurons. Experimental Neurology,2012,233 (1):543-554
    [74]Posadas, I., Lopez-Hernandez, B., Clemente, M. I., Jimenez, J. L., Ortega, P., de la Mata, J., Gomez, R., Munoz-Fernandez, M. A.,Cena, V. Highly efficient transfection of rat cortical neurons using carbosilane dendrimers unveils a neuroprotective role for HIF-lalpha in early chemical hypoxia-mediated neurotoxicity. Pharmaceutical Research, 2009,26 (5):1181-1191
    [75]Du F, Wu, X. M., Gong, Q., He, X., Ke, Y. Hyperthermia conditioned astrocyte-cultured medium protects neurons from ischemic injury by the up-regulation of HIF-1 alpha and the increased anti-apoptotic ability. European Journal Of Pharmacology,2011,666 (1-3):19-25
    [76]Du F, Zhu, L., Qian, Z. M., Wu, X. M., Yung, W. H.,Ke, Y. Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. Biochim Biophys Acta,2010,1802(11): 1048-1053
    [77]Li, D. F., Tian, J., Guo, X., Huang, L. M., Xu, Y., Wang, C. C., Wang, J. F., Ren, A. J., Yuan, W. J.,Lin, L. Induction of microRNA-24 by HIF-1 protects against ischemic injury in rat cardiomyocytes. Physiological Research,2012,61 (6):555-565
    [78]Yang, Z. H., Sun, K., Yan, Z. H., Suo, W. H., Fu, G. H.,Lu, Y. Panaxynol protects cortical neurons from ischemia-like injury by up-regulation of HIF-1alpha expression and inhibition of apoptotic cascade. Chem Biol Interact,2010,183 (1):165-171
    [79]Marin-Hernandez, A., Gallardo-Perez, J. C., Ralph, S. J., Rodriguez-Enriquez, S., Moreno-Sanchez, R. HIF-1 alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem,2009,9 (9):1084-1101
    [80]Xue, W., Liu, Y., Zhao, J., Cai, L., Li, X., Feng, W. Activation of HIF-1 by metallothionein contributes to cardiac protection in the diabetic heart. Am J Physiol Heart Circ Physiol,2012,302 (12):H2528-H2535
    [81]Narravula, S., Colgan, S. P. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. Journal Of Immunology,2001,166 (12):7543-7548
    [82]Rankin, E. B., Rha, J., Selak, M. A., Unger, T. L., Keith, B., Liu, Q.,Haase, V. H. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Molecular And Cellular Biology,2009,29 (16):4527-4538
    [83]Minamishima, Y. A., Moslehi, J., Padera, R. F., Bronson, R. T., Liao, R., Jr Kaelin, W. G. A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Molecular And Cellular Biology,2009,29 (21):5729-5741-118-
    [84]Kim, W. Y., Safran, M., Buckley, M. R., Ebert, B. L., Glickman, J., Bosenberg, M., Regan, M., Jr Kaelin, W. G. Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. Embo Journal,2006,25 (19):4650-4662
    [85]Krishnan, J., Suter, M., Windak, R., Krebs, T., Felley, A., Montessuit, C., Tokarska-Schlattner, M., Aasum, E., Bogdanova, A., Perriard, E., Perriard, J. C., Larsen, T., Pedrazzini, T., Krek, W. Activation of a HIFlalpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab,2009,9(6):512-524
    [86]Nishiyama, Y., Goda, N., Kanai, M., Niwa, D., Osanai, K., Yamamoto, Y., Senoo-Matsuda, N., Johnson, R. S., Miura, S., Kabe, Y., Suematsu, M. HIF-lalpha induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. Journal Of Hepatology,2012,56 (2):441-447
    [87]Guzman, M., Castro, J. Zonation of fatty acid metabolism in rat liver. Biochemical Journal,1989,264 (1):107-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700