氟苯尼考抗炎活性及对炎性信号传导通路的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟苯尼考为一新型的氯霉素类动物专用广谱抗菌药,主要用于治疗动物细菌性疾病,多病原、多病因引起的严重混合感染及母畜子宫内膜炎、乳腺炎等。本研究通过建立LPS诱导体外炎症反应和体内炎症模型,证实它的抗炎作用及抗炎作用机制。在体外试验中,采用MTT、ABC-夹心ELISA、Griess reagent、RT-PCR、免疫蛋白印迹、免疫荧光等方法,研究了氟苯尼考对主要细胞因子、炎性介质及炎性信号传导通路NF-κB和MAPK的影响;体内通过建立LPS所致的小鼠内毒血症和急性肺损伤模型,检测了氟苯尼考对两种动物模型的保护作用。体外研究结果表明,氟苯尼考通过调控NF-κB和MAPK通路抑制了炎性细胞因子TNF-α、IL-6的分泌,抑制了炎性介质NO和PGE2合成及iNOS和COX-2的mRNA和蛋白表达水平;体内研究结果表明,氟苯尼考通过调节小鼠血清中细胞因子水平提高了LPS诱导的小鼠内毒血症的生存率。氟苯尼考通过减轻肺水肿、抑制炎性细胞趋化、降低炎性细胞因子表达等多方面作用改善了LPS诱导的小鼠急性肺损伤。结论:首次证实氟苯尼考具有体内外抗炎活性,并借助信号传导通路平台探讨了其抗炎分子机制,从而为该药在临床上的合理应用提供理论和实验依据。
It has been shown that some antibacterials modulate the inflammatory responses by directly affecting host cell function in addition to exerting their antibacterial activity. In particular, drugs that target protein synthesis or DNA replication processes in bacteria have been suspected of causing this effect. Florfenicol is a new type broad-spectrum antibacterial that is used in the veterinary clinic. It has been widely used to treat a broad array of infectious diseases, such as for the treatments of bovine and porcine respiratory tract infections, actinobacillus pleuropneumonia in pigs, endometritis and mastitisand in female livestocks. However, florfenicol is widely used only as antibacterial in veterinary clinic. In order to fully educe clinical value and expand applied scope of florfenicol, we built in vitro inflammatory model by LPS-stimulated murine RAW 264.7 macrophages, and further explored anti-inflammatory molecular mechanism of florfenicol by inflammatory signal transduction pathway. Meanwhile, we studied the effects of florfenicol on LPS-induced murine toxicemia and ALI.
     First, we investigated the effect of different concentrations of florfenicol on cytokine TNF-α, IL-1β, IL-6 and IL-10, inflammatory mediator NO and PGE2 secretions in LPS-stimulated murine RAW 264.7 macrophages. The result showed that florfenicol inhibited TNF-α, IL-6 and IL-1βsecretion and increased IL-10 level in a dose-dependent manner, but had no significant effect on IL-1βand IL-10. Florfenicol also inhibited NO and PGE2 synthesis, iNOS and COX-2 mRNA and protein expressions in a dose-dependent manner. These indicated florfenicol may educe anti-inflammatory effect through regulating the secretion of cytokines and inflammatory mediators in inflammatory process.
     The mechanism by which LPS induces the production of cytokines and inflammatory mediators has been intensively investigated. There are several well-characterised signalling pathways involved. Among these, the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways may play an essential role. NF-κB is one of the most ubiquitous transcription factors and regulates the genes involved in cellular proliferation, inflammatory responses, and cell adhesion. The other major extracellular signal transduction pathway stimulated by inflammatory mediators is the MAPK pathway. The MAPKs are a family that includes ERK, p38 and JNK. They participate in LPS-induced intracellular signaling transmission and cytobiological response. Therefore, NF-κB and MAPKs are known as important targets for anti-inflammatory molecular mechanism. In order to study anti-infalmmatory molecular mechanism, we further investigated the effect of florfenicol on NF-κB and MAPKs signal transduction pathways in LPS-stimulated murine RAW264.7 macrophages. The result showed that florfenicol inhibited NF-κB activity, p38 and ERK1/2 protein phosphorylation in a dose-dependent manner. It suggested that florfenicol inhibited cytokine TNF-α, IL-6, NO and PGE2 secretion by regulating both NF-κB and p38, ERK1/2 MAPKs pathways.
     To provide objective evaluation index on clinical therapeutic of florfenicol, we further studied in vivo ant-inflammatory of florfenicol. We investigated the effect of different concentrations of florfenicol on preventive and therapeutic effect in LPS-induced toxicemia mice, and the effect on cytokine TNF-α,IL-1β,IL-6 and IL-10 production in murine serum. The result showed that florfenicol significantly improved murine survival rate and decreased TNF-αand IL-6, increased IL-10 level in serum, but had little effect on IL-1β. It suggested that florfenicol improved murine survival rate through regulating the level of cytokines.
     LPS-toxicemia will further cause systemic inflammatory response syndrome (SIRS) and most common and severe ALI, and lungs are involved in and first attacted organ by LPS because of its physiological characteristic. Therefore, we also studied the protection of florfenicol on murine ALI by building LPS-induced ALI model. The result showed that flrofenicol inhibited W/D ratio of lung, protein concentration and cellular scores of BALF; florfenicol significantly inhibited TNF-α, IL-1βand IL-6 level of BALF in LPS-induced ALI mice; lung histopathology also showed that florfenicol had certain protection on inflammatory infiltration of ALI.
     We first time demonstrate that florfenicol has anti-inflammatory effect through regulating NF-κB, p38 and ERK1/2 MAPKs signal pathway in addition to exerting its antibacterial activity, it will provide foundation for reasonable application of florfenicol in clinic and improve clinical value, and it may be of importance as a therapeutics in treatment of excessive inflammatory reaction, SIRS and MODS in macrophages.
引文
[1]赵德明主编.兽医病理学[M].北京:中国农业大学出版社, 1998, 103-104.
    [2]吉增福,张学富,赵永军,等.动物炎症性疾病的治疗[J].中国兽医科技, 1997, 27(12): 45-46.
    [3] TAKEDA K, AKIRA S. Regulation of innate immune responses by Toll-like receptors [J]. Jpn J Infect Dis, 2001, 54(6): 209-219.
    [4]吴丽颖,王兴鹏.阻断内毒素信号传导通路治疗脓毒症或脓毒性休克的研究进展[J].中华急诊医学杂志, 2003, 12(2): 135-137.
    [5] HSU L C, PARK J M, ZHONG K, et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4 [J]. Nature, 2004, 428(6980): 341-345.
    [6] BRIGHTBILL H D, MODLIN R L. Toll-like receptor: Molecular mechanisms of the mammalian immune response [J]. Immunology, 2000, 101(1): 1-10.
    [7] MEANS T K, GOLENBOXK D T, FETON M J. Structure and function of Toll-like receptor proteins [J]. Life Sci, 2000, 68(3): 241-258.
    [8] MEDZHITOV R, PRESTON-HURBURT P, JANEWAY C A, et al. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [J]. Nature, 1997, 388(6640): 394-397.
    [9] ROCK F L, HARDIUM G, TIMANS J C, et al. A family of human receptor structurally related to Drosophila Toll [J]. Proc Natl Acad Sci USA, 1998, 95(2): 588-593.
    [10] TAKEDA K, KAISHO T, AKIRA S. Toll-like receptors [J]. Annu Rev Immunol, 2003, 21: 335-376.
    [11] ZHANG D G, ZHANG M S, HAYDEN M B, et al. A Toll-like receptor that prevents infection by uropathogenic bacteria [J]. Science, 2004, 303(5663): 1522-1526.
    [12] HYUNG S Y, JOO Y L, KATHERINE A F, et al. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: Molecular targets are TBK1 and RIP1 in TRIF complex [J]. J Immunol, 2005,175(5): 3339-3346.
    [13] KIRSCHNING C J, WESCHE H, AUGRES J M, et al. Human TLR2 confers responsiveness to bacterial LPS [J]. J Exp Med, 1998, 188(11): 2091-2097.
    [14] CHOW J C, YOUNG D W, GOLENBOCK D T, et al. TLR4 mediates LPS-induced signal transduction [J]. J Biol Chem, 1999, 274(16): 10689-10692.
    [15]谢金文,万勇,余为一. CD14分子的研究进展[J].安徽农学通报, 2006, 12(4): 35-37.
    [16] TOBAS P S, TAPPING R I, GEGNER J A. Endotoxin interactions with lipopolysacharide-responsive cells [J]. Clin Infect Dis, 1999, 28(3): 476-481.
    [17] TOBIAS P S, SOLDAU K, ULEVITCH R J. Isolation of a lipopolysaccaride-binding acute phase reactant from rabbit serum [J]. J Exp Med, 1986, 164(3): 777-793.
    [18] JACK R S. Lipopolysaccaride-binding protein is a reguirex to combat a murine gram-negative bacterial infection [J]. Nature, 1997, 389(6652): 742-745.
    [19]唐光华,黄启福,姜良铎.艾麻口服液对慢性支气管炎大鼠支气管TNF-α、ICAM-1蛋白及mRNA表达的影响[J].中国病理生理杂志, 2002, 18(7): 834-836.
    [20] SHIMAZU R, AKASHI S, OGATA H, et al. MD-2, a molecule that confers lipopolysaccaride responsiveness on Toll-like receptor 4 [J]. J Exp Med, 1999, 189(11): 1777-1782.
    [21] YANG H, YOUNG D W, GUSOVSKY F, et al. Cellular events mediated by lipopolysaccharide-stimulated Toll-like receptor 4. MD-2 is required for activation of mitogen-activated protein kinases protein kinases and Elk-1 [J]. J Biol Chem, 2000, 275(27): 20861-20866.
    [22] GEWIRTZ A T, NAVAS T A, LYONS S, et al. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression [J]. J Immunol, 2001, 167(4): 1882-1885.
    [23] ADEREM A, ULEVITCH R J. Toll-like receptors in the induction of the innate immune response [J]. Nature, 2000, 406(6797): 782-787.
    [24]李永旺,毛宝龄,钱桂生.内毒素诱导的TLR4-MD2信号传导通路[J].中国药理学通报, 2002, 18(2): 121-125.
    [25]李永旺,王宝国. Toll样受体信号转导通路介导的脑缺血耐受[J].中国药理学通报, 2006, 22(1): 9-13.
    [26] MUZIO M, MANTOVANI A. Toll-like receptors [J]. Microbes Infect, 2002, 2(3): 251-255.
    [27]苏剑东,吴灵飞. NF-κB与细胞死亡[J].世界华人消化杂志, 2007, 15(12): 1411-1416.
    [28] GHOSH S, MAY M J, KOPP E B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses [J]. Annu Rev Immunol, 1998, 16: 225-260.
    [29] HUXFORD T, MALEK S, GHOSH G. Structure and mechanism in NF-kappa B/I kappa B signaling [J]. Cold Spring Harb Symp Quant Biol, 1999, 64: 533-540.
    [30] HATADA E N, NIETERS A, WULCZYN F G, et al. The ankyrin repeat domains of the NF-kappaB precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-kappa B DNA binding [J]. Proc Natl Acad Sci USA, 1992, 89(6): 2489-2493.
    [31] MALEK S, HUANG D B, HUXFORD T, et al. X-ray crystal structure of an IkappaB beta x NF-kappaB p65 homodimer complex [J]. J Biol Chem, 2003, 278(25): 23094-230100.
    [32] GHOSH S, KARIN M. Missing pieces in the NF-kappaB puzzle [J]. Cell, 2001, 109 (Suppl): S81-S96.
    [33] MAYB M J, MARIENFELD R B, GHOSH S. Characterization of the Ikappa B-kinase NEMO binding domain [J]. J Biol Chem, 2001, 277(48): 45992-46000.
    [34] BONIZZI G, KARIN M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity [J]. Trends Immunol, 2004, 25(6): 280-288.
    [35] LUO J L, KAMATA H, KARIN M. IKK/NF-kappaB signaling: balancing life and death-a new approach to cancer therapy [J]. J Clin Invest, 2005, 115(10): 2625-2632.
    [36]张劲松,王兴宇,单佑安,等.转录因子NF-κB的研究进展[J].科学通报, 2002, 47(5): 323-329.
    [37] CALZADO M A, BACHER S, SCHMITZ M L. NF-kappa B inhibitors for thetreatment of inflammatory diseases and cancer [J]. Curr Med Chem, 2007, 14(3): 367-376.
    [38] CAMANDOLA S, MATTSON M P. NF-kappa B as a therapeutic target in neurodegenerative diseases [J]. Expert Opin Ther Targets, 2007, 11(2): 123-132.
    [39] O’SULLIVAN B, THOMPSON A, THOMAS R. NF-kappa B as a therapeutic target in autoimmune disease [J]. Expert Opin Ther Targets, 2007, 11(2): 111-122.
    [40] DAVIS R J. Signal transduction by the JNK group of MAP kinases [J]. Cell, 2000, 103(2): 193-200.
    [41] JIN H, AXTEL M, DAHLBECK D, et a1. NPK1, all MEKK1-like mitogen-activated protein kinase kinase kinase,regulates innate immunity and development in plants [J]. Dev Cell, 2002, 3(2): 291-297.
    [42] JIANG Y, LIU A H, HUANG Q B. p38 MAPK Signal is Necessary for TNF-alpha Gene Expression in RAW Cells [J]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao, 1999, 31(1): 9-15.
    [43] NIEHOH A, CAMPS M, GILLIEMN C, et a1. Subsate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3 [J]. J Biol Chem, 2000, 275(32): 24613-24621.
    [44] KOLCH W. Meaningful relationships: the regulation of the Rmc/Raf/MEK/ERK pathway by protein intemetions [J]. Biochem J, 2000, 351(Pt 2): 289-305.
    [45] DANG C, DAVIS R J, FLAVELL R A. Signalling by the JNK group of MAP kinases-c-Jun N-terminal kinase [J]. J Clin Immtmol, 2001, 21(4): 253-257.
    [46] DAVIS R J. Signal transction by the JNK group of MAP kinases [J]. Cell, 2000, 103(2): 239-252.
    [47] HAPER S J, LOGRMSO P. Signalling for survival and death in neurones:the role of stress-activated kinase, JNK and p38 [J]. Cell Signal, 2001, 13(5): 299-310.
    [48] ROEDER A, KIRSCHNING C J, RUPEC R A, et al. Toll-like receptors as key mediators in innate antifungal immunity [J]. Med Mycol, 2004, 42(6): 485-498.
    [49]张霞,剡根强,王静梅.细菌内毒素的研究概况[J].上海畜牧兽医通讯, 2006, (4): 4-5.
    [50] RUSMIN S, DELUCA P P. Effect of antibiotics and osmotic change on the release of endotoxin by bacteria retained on intravenous inline filters [J]. Am J Hosp Pharm, 1975, 32: 378-380.
    [51] SCHULTZ M J, SPEELMAN P, ZAAT S, et al. Erythromycin inhibits tumor necrosis factor alpha and interleukin 6 production induced by heat-killed Streptococcus pneumoniae in whole blood [J]. Antimicrob Agents Chemother, 1998, 42(7): 1605-1609.
    [52] SHAPIRA L, SOSKOLNE W A, HOURI Y, et al. Protection against endotoxic shock and lipopolysaccharideinduced local inflammation by tetracycline: correlation with inhibition of cytokine secretion [J]. Infect Immun, 1996, 64(3): 825-828.
    [53] CAO X Y, DONG M, SHEN J Z, et al. Tilmicosin and tylosin have anti-inflammatory properties via modulation of COX-2 and iNOS gene expression and production of cytokines in LPS-induced macrophages and monocytes [J]. Int J Antimicrob Agents, 2006, 27(5): 431-438.
    [54] PURSWANI M, ECKERT S, ARORA H, et al. The effect of three broad-spectrum antimicrobials on mononuclear cell responses to encapsulated bacteria: evidence for downregulation of cytokine mRNA transcription by trovafloxacin [J]. J Antimicrob Chemother, 2000, 46(6): 921-929.
    [55] ZIEGELER S, RADDATZ A, HOFF G, et al. Antibioticsmodulate the stimulated cytokine response to endotoxin in a human ex vivo, in vitro model [J]. Acta Anaesthesiol Scand, 2006, 50(9): 1103-1110.
    [56] ITAKIN I H, MENZEL M L, et al. The use of macrolide antibiotic substances in the treatment of asthma [J]. J Allergy, 1970, 45(3): 146-162.
    [57] SPECTOR SL, FARR R S. Bronchial inhalation procedures in asthmatics [J]. Med Clin North Am, 1974, 58(1): 71-84.
    [58] PLEWIG G, SCH?PF E. Anti-inflammatory effects of antimicrobial agents: an in vivo study [J]. Investigative Dermatol, 1975, 65(6): 532-536.
    [59] YAMAMOTO M, KONDO A, TAMURA M, et al. Long-term therapeutic effectsof erythromycin and newquinolone antibacterial agents on diffuse panbronchiolitis [J]. Nihon Kyobu Shikkan Gakkai Zasshi, 1990, 28(10): 1305-1313.
    [60] NELSON S, SUMMER W R, TERRY P B, et al. Erythromycin-induced suppression of pulmonary antibacterial defenses. A potential mechanism of superinfection in the lung [J]. Am Rev Respir Dis, 1987, 136(5): 1207-1212.
    [61] KADOTA J, SAKITO O, KOHNO S, et al. A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis [J]. Am Rev Respir Dis, 1993, 147(1): 153-159.
    [62] TAMAOKI J, SAKAI N, TAGAYA E, et al. Macrolide antibiotics protect against endotoxin-induced vascular leakage and neutrophil accumulation in rat trachea [J]. Antimicrob Agents Chemother, 1994, 38(7): 1641-1643.
    [63] MIKASA K, KITA E, SAWAKI M, et al. The anti-inflammatory effect of erythromycin in zymosan-induced peritonitis of mice [J]. J Antimicrob Chemother, 1992, 30(3): 339-348.
    [64] AGEN C, DANESI R, BLANDIZZI C, et al. Macrolide antibiotics as antiinflammatory agents: roxithromycin in an unexpected role [J]. Agents Actions, 1993, 38(1-2): 85-90.
    [65] SCAGLIONE F, ROSSONI G. Comparative anti-inflammatory effects of roxithromycin, azithromycin and clarithromycin [J]. J Antimicrob Chemother, 1998, 41(Suppl B): 47-50.
    [66] SHAPIRA L, BARAK V, SOSKOLEN W A, et al. Effects of tetracycliens on the pathologic activity of endotoxin: in vitro and in vivo studies [J]. Adv Dent Res, 1998, 12(2): 119-122.
    [67] ANIS A K, TERI R S, FAUSTO G A, et al. Protection against lipopolysaccharide-induced death by fluoroquinolones [J]. Antimicrob Agents Chemother, 2000, 44(11): 3169-3173.
    [68] NORIO H, KAZUFUMI H, KENJI K, et al. Pretreatment of mice with clindamycin improves survival of endotoxic shock by modulating the release of inflammatory cytokines [J]. Antimicrob Agents Chemother, 2001, 45(9): 2638-2642.
    [69] MURLI U P, SUSAN J E, HARMAN K A, et al. Effect of ciproflocacin on lethal and sublethal challenge with endotoxin and on early cytokine responses in a murine in vivo model [J]. J Antimicrob Chemother, 2002, 50(1): 51-58.
    [70] ZHANG X, SONG Y, CI X, et al. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice [J]. Inflamm Res, 2008, 57(11): 524-529.
    [71] CI X X, SONG Y, ZENG FQ, et al. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-κB and MAPK. BBRC, 2008, 372 (1): 73-77.
    [72] AN N, SONG Y, ZHANG X M, et al. Pretreatment of mice with rifampicin prolongs survival of endotoxic shock by modulating the levels of inflammatory cytokines [J]. Immunopharm Immunot, 2008, 30(3): 437-446.
    [73]李现东,单丽红,贾宗岭,等.红霉素对内毒素诱导急性肺损伤大鼠为症因子的影响[J].军医进修学院学报, 2008, 29(2): 90-92.
    [74] ICHIKAWA Y, NINOMIYA H, KOGA H, et al. Erythromycin reduces neutrophils and neutrophil-derived elastolytic-like activity in the lower respiratory tract of bronchiolitis patients [J]. Am Rev Respir Dis, 1992, 146(1): 196-203.
    [75] KADOTA J, SAKITO O, KOHNO S, et al. A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis [J]. Am Rev Respir Dis, 1993, 147(1): 153-159.
    [76] OISHI K, SONODA F, KOBAYASHI S, et al. Role of interleukin-8 (IL-8) and an inhibitory effect of erythromycin on IL-8 release in the airways of patients with chronic airway diseases [J]. Infect Immun, 1994, 62(10): 4145-4152.
    [77] SAKITO O, KADOTA J, KOHNO S, et al. Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: a potential mechanism of macrolide therapy [J]. Respiration, 1996, 63(1): 42-48.
    [78] THATTE U, DAHANUKAR S. Apoptosis: clinical relevance and pharmacological manipulation [J]. Drugs, 1997, 54(4): 511-523.
    [79] HASLETT C. Granulocyte apoptosis and inflammatory disease [J]. Br Med Bull,1997, 53(3): 669-683.
    [80] UCHIMURA E, KCNTAIRA T, KUROSAKA K, et a1. Interaction of phagocytes with apoptotic cells leads to production of proinflammatory cytokines [J]. Biochem Biophys Res Commun, 1997, 239(3): 799-803.
    [81] KANNO N, GLASER S, CHOWDHURY U, et a1. Gatin inhibits cholangiocarcinoma growth through increased apoptosis by activation of Ca2+-dependent protein kinase C-alpha [J]. J Hepatol, 2001, 34(2): 284-291.
    [82] ZHAO D M, XUE H H, CHIDA K, et a1. Efect of erythromyein on ATP-indueed intraeellular calcium response in A549 cells [J]. Am J Physiol Lung Cell Mol Physiol, 2000, 278(4): 726-736.
    [83] VIKTOROV A V, YURKIV V A. Effect of ivermectin on function of liver macrophages [J]. Bull Exp Biol, 2003, 136(6): 569-571.
    [84] MITSUYAMA T, TANAKA T, HIDAKA K, et a1. Inhibition by erythromycin of superoxide anion production by human polymorphonuelear leukocyte through the action of cyclic AMP-dependent protein kinase [J]. Respiration, 1995, 62(5): 269-273.
    [85] IANAM A, IALENTI A, MAFFIA P, et a1. Anti-inflammatory activity of macrolide antibiotics [J]. J Pharmacol Exp Ther, 2000, 292(1): 156-163.
    [86] TAMAOKI J, KONDO M, KOHRI K, et al. Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages [J]. J Immunol, 1999, 163(5): 2909-2915.
    [87] SHAPIRA L, BARAK V, SOSKOLEN W A, et al. Effects of tetracycliens on the pathologic activity of endotoxin: in vitro and in vivo studies [J]. Adv Dent Res, 1998, 12(2): 119-122.
    [88] KOHRI K, TAMAOKI J, KONDO M, et a1. Macrolide antibiotics inhibit nitric oxide generation by rat pulmonary alveolar macrophages [J]. Eur Respir J, 2000, 15(1): 62-67.
    [89] CHAN T A. Nonsteroidal anti-inflammatory drugs, apoptosis and colon-cancer, chemoprevention [J]. Lancet Oncol, 2002, 3(3): 166-174.
    [90] ZHANG X M, SONG Y, XIONG H Z, et a1. Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 87macrophages [J]. Int Immunopharmacol, 2009, 9(3): 354-359.
    [91] KHAIR O A, DEVALIA L, ABDELAZIZ M M, et al. Effect of erythromycin on Haemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells [J]. Eur Repir J, 1995, 8(9): 1451-1457.
    [92] KAWASAKI S, TAKIZAWA H, OHTOSHI T, et al. Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro [J]. Antimicrob Agents Chemother, 1998, 42(6): 1499-1502.
    [93] TAKIZAWA H, DESAKI M, OHTOSHI T, et al. Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells [J]. Am J Respir Crit Care Med, 1997, 156(1): 266-271.
    [94] LIN H C, WANG C H, LIU C Y, et a1. Erythromycin inhibits beta2-integrin (CD116/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils [J]. Reapir Med, 2003, 94(7): 654.
    [95] MACLEOD C M,HAMID Q A, CAMERON L, et a1. Anti-inflammatory activity of clarithromycin in adults with chronically inflamed sinus mucosa [J]. Adv Ther, 2001, 18(2): 175.
    [96] KOHYAMA T, TAKIZAWA H, KAWASAKI S, et al. Fourteen-member macrolides inhibit IL-8 release by human cosinophils from atopic donors [J]. Aatimicrob Agents Chemother, 1999, 43(4): 907-916.
    [97] ARAUJO F, SLIFER T, LI S, KUVER A, et al. Gemifloxacin inhibits cytokine secretion by lipopolysaccharide stimulated human monocytes at the post-transcriptional level [J]. Clinical Microbiology and Infection, 2004, 10(3): 213-219.
    [98]薛玉文,李玉,王玲,等.红霉素抗哮喘气道炎症机理的研究[J].免疫学杂志, 1998, 14(3): 184-185.
    [99]王晓斌,李志超,贾斌,等.罗红霉索对内毒索性急性肺损伤的保护作用[J].第四军医大学学报, 2002, 23(3): 1181-1183.
    [100] CI X X, SONG Y, ZENG F Q, et al. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-κB and MAPK [J]. BBRC, 2008, 372 (1): 73-77.
    [101] BALDWIN A S. The NF-kappa B and I kaapa B proteins: 1996 new discoveries and insights [J]. Ann Rev Immunol, 1996, 14: 649-683.
    [102] SHAO R, HU M C, ZHOU B P, et a1. E1A sensitizes cells to tumor necrosis factor-induced apoptosis through inhibition of I-kappaB kinases and nuclear factor kappaB activities [J]. Biol Chem, 1999, 274(31): 21495-21498.
    [103] ICHIYAMA T, NISHIKAWA M, YOSHITOMI T, et a1. CIarithromycin inhibits NF-kappaB activation in human peripheral blood mononuclear cells and pulmonary epithelial cells [J]. Antimicrob Agents Chemother, 2001, 45(1): 44.
    [104]李永春,何冰,王海斌,等.红霉素对肺纤维化大鼠核因子КB活性及细胞因子mRNA表达的影响[J].中华结核和呼吸杂志, 1999, 22(12): 752-757.
    [105]中华人民共和国农业部.兽药质量标准[S]. 2003, 81-85.
    [106]董永军.新型兽用广谱抗菌素氟苯尼考的研究进展[J].安徽农业科学, 2006, 34(15): 3693-3694.
    [107]刘九生.氟苯尼考的研究进展及临床应用[J].兽医导刊, 2008, (4): 31-34.
    [108] VARMA K J, ADAMS P E, POWERS T F, et al. Pharmacokinetics of florfenicol in veal calves [J]. J Vet Pharmacol Therap, 1986, 9(4): 412-425.
    [109]李秀波,石波.新型广谱抗菌药-氟苯尼考[J].国外畜牧科技, 1999, 26(3): 50-52.
    [110]本刊编辑部.氟苯尼考[J].中国兽药杂志, 2003, 37(7): 44-48.
    [111]李秀波,沈建忠,胡顶飞.氟苯尼考静注及肌注在绵羊体内的药代动力学研究[J].畜牧兽医学报, 2003, 34(6): 609-612.
    [112] LIU J Z, FUNG K F. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with actinobacillus pleuropneumoniae [J]. Antimicrobial Agents and Chemotherapy, 2003, 47(2): 820-823.
    [113]胡顶飞,沈建忠,吴先爱.氟苯尼考静注及肌注在鸡体内药代动力学研究[J].畜牧兽医学报, 2002, 33(4): 384-388.
    [114]吴先爱,沈建忠,胡顶飞,等.静注与内服氟苯尼考在大肠杆菌感染肉鸡体内的药代动力学[J].中国兽医学报, 2002, 22(6): 609-611.
    [115] VOORSPOELS J, D'HAESE E, DE CRAENE B A, et al. Pharmacokinetics of florfenicol after treatment of pigs with single oral or intramuscμlar doses or with medicated feed for three days [J]. The Veterinary Record, 1999, 145(14):397-399.
    [116]邱银生,吴佳.兽用广谱抗菌药物氟甲砜霉素[J].中国兽医杂志, 1995, 30(2): 47-48.
    [117] LOBELL R D, VARMA K J, JOHNSON J C, et al. Pharmacokinetics of florfenicol following intravenous and intramuscular doses to cattle [J]. J Vet Pharmacol Therap, 1994, 17(4): 253-258.
    [118]张贵增,王庆,加春生.氟苯尼考药效学研究进展[J].养殖技术顾问, 2007, (7): 108-200.
    [119] GRAHAM R, PALMER D, PRATT B C, et al. In vitro activity of florphenicol [J]. Eur J Clin Microbiol Infect Dis, 1988, 7(5): 691-694.
    [120] SYRIOPOULOU V P, HARDING A L, GOLDMANN D A, et al. In vitro antibacterial activity of fluorinated analogs of chloramphenicol and thiamphenicol [J]. Antimicrob Agents Chemother, 1981, 19(2):294-297.
    [121] DE CRAENE B A, DEPREZ P, D'HAESE E, et al. Pharmacokinetics of florfenicol in cerebrospinal fluid and plasma of calves [J]. Antimicrob Agents Chemother, 1997, 41(9): 1991-1995.
    [122] SOBACK S, PAAPE M J, FILEP R, et al. Florfenicol pharmacokinetics in lactating cows after intravenous, intramuscular and intramammary administration [J]. J Vet Pharmacol Ther, 1995, 18(6): 413-417.
    [123] UEDA Y, OHTSUKI S, NARUKAWA N. Efficacy of florfenicol on experimental Actinobacillus pleuropneumonia in pigs [J]. J Vet Med Sci, 1995, 57(2): 261-265.
    [124]苑丽,胡功政,刘智明.氟苯尼考与多西环素联合对鸡大肠杆菌病的治疗效果[J].河南农业大学学报, 2005, 39(1): 93-97.
    [125]毕聪明,周铁忠,王坤,等.氟苯尼考长效制剂对鸡大肠杆菌病的疗效试验[J].中国兽药杂志, 2004, 38(7): 29-31.
    [126]张永强,罗国群.氟苯尼考粉对鸡金黄色葡萄球菌病的疗效试验[J].畜牧兽医科技信息, 2005, (6): 67-68.
    [127]曾振灵,宋冶萍,杨桂香,等.氟苯尼考与氯霉素对鸡大肠杆菌病的疗效比较[J].中国兽医科技, 2001, 31(8): 25-27.
    [128]杨鸿,陆英杰,王敏儒,等.氟甲砜霉素对鸭大肠杆菌病的药效研究[J].中国家禽, 2002, 24(22), 9-11.
    [129]邓绍基.氟苯尼考防治鸭传染性浆膜炎的效果[J].养殖技术顾问, 2004, (12): 44.
    [130]刘小艳.氟苯尼考注射液治疗鸭疫里默氏杆菌病的疗效试验[J].吉林畜牧兽医, 2004, (6): 51.
    [131] PAAPE M J, MILLER R H, ZIV G. Pharmacologic enhancement or suppression of phagocytosis by bovine neutrophils [J]. Am J Vet Res, 1991, 52(2): 363-366.
    [132] HU C, ZAWISTOWSKI J, LING W, et al. Black rice (Orya sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in both chemical and biological models [J]. J Agric Food Chem, 2003, 51(18): 5271-5277.
    [133]茅苏萍,程凯灵,周韵芬.黄芪对单疱病毒性角膜炎患者Th1/Th2细胞因子的调节作用[J].中国中西医结合杂志, 2004, 24 (2): 121-123.
    [134] HSU L C, PARK J M, ZHONG K, et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4 [J]. Nature, 2004, 428(6980): 341-345.
    [135] PAIK Y H, SCHWABE R F, BATALLER R, et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells [J]. Hepatology, 2003, 37(5): 1043-1055.
    [136] MANIGOLD T, BOCKER U, HANCK C, et al. Differential expression of Toll-like receptor 2 and 4 in patients with liver circhosia [J]. Eur J Gastroenterol Hepatol, 2003, 15(3): 275-282.
    [137] ERTEL W, KEEL M, STECKHOLZER U, et al. Interleukin-10 attenuates the release of proinflammatory cytokines but depresses splenocyte functions in murine endotoxemia [J]. Arch Surg, 1996, 131(1): 51-56.
    [138] LANG R, RUTSCHMAN R L, GREAVES D R, et al. Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter [J]. J Immunol, 2002, 168(7): 3402-3411.
    [139] TAKEUCHI O, SATO S, HORIUCHI T, et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins [J]. J Immun, 2002, 169(1): 10-14.
    [140] SU H, BIDERE N, ZHENG L, et al. Requirement for caspase-8 in NF-kappaB activation by antigen receptor [J]. Science, 2005, 307(5714): 1465-1468.
    [141] WANG H Q, SAMRT R C. Overexpression of protein kinase C-alpha in the epidermis of transgenic mice results in striking alterations in phorbol ester induced inflammation and COX-2, MIP-2 and TNF-alpha expression but not tumor promotion [J]. J Cell Sci, 1999, 112(20): 3497-3506.
    [142] POSADAS I, TERENCIO M C, GUILLéN I, et al. Coregulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation [J]. Naunyn-Schmiedebergs Arch Pharmacol, 2000, 361(1): 98-106.
    [143] JONES E, ADCOCK I M, AHMED B Y, et al. Modulation of LPS stimulated NF-kappaB mediated Nitric Oxide production by PKCepsilon and JAK2 in RAW macrophages [J]. J Inflamm, 2007, 4: 23-31.
    [144] KIM J B, HAN A R, PARK E Y, et al. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-κB inactivation in RAW 264.7 macrophage cells [J]. Biol Pharm Bull, 2007, 30(12): 2345-2351.
    [145]黄锋,王立为.中药抗炎免疫药理研究进展[J].新乡医学院学报, 2002, 19(4): 340-343.
    [146] WEINSTEIN S L, GOLD M R, DEFRANCO A L. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages [J]. Proc Natl Acad Sci USA, 1991, 88(10): 4148-4152.
    [147] RAETZ C R. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction. J Bacteriol, 1993, 175(18): 5745-5753.
    [148] MACMICKING J, XIE Q W, NATHAN C. Nitric oxide and macrophage function [J]. Annu Rev Immunol, 1997, 15: 323-350.
    [149] BOGDAN C. Nitric oxide and the immune response [J]. Nat Immunol, 2001, 2(10): 907-916.
    [150] MILJKOVIC D, TRAJKOVIC V. Inducible nitric oxide synthase activation by interleukin-17 [J]. Cytokine Growth Factor Rev, 2004, 15(1): 21-32.
    [151] BIAN K, HARARI Y, ZHONG M. Down-regulation of inducible nitric-oxide synthase (NOS-2) during parasite-induced gut inflammation: a path to identify aselective NOS-2 inhibitor [J]. Mol Pharmacol, 2001, 59(4): 939-947.
    [152] KIM N D, KIM E M, KANG K W, et al. Ginsenoside Rg3 inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase [J]. Br J Pharmacol, 2003, 140(4): 61-70.
    [153] HOBBS A J, HIGGS A, MONCADA S. Inhibition of nitric oxide synthase as a potential therapeutic target [J]. Annu Rev Pharmacol Toxicol, 1999, 39: 191-220.
    [154] ANNENBAUM H, DAVIS P, RUSSELL A S, et al. An evidence-based approach to prescribing NSAIDs in musculoskeletal disease: a Canadian consensus [J]. Can Med Assoc J, 1996, 155(1): 77-88.
    [155] YANG J, LIU H G. Progress of the study on molecular mechanism of traditional Chinese medicine on anti-inflammatory effect [J]. Guangxi Sciences, 2005, 12(3): 208-213.
    [156] VANE J R, BAKHLE Y S, BOTTING R M. Cyclooxygenases 1 and 2 [J]. Annu Rev Pharmacol Toxicol, 1998, 38: 97-120.
    [157] LIM B V, LEE C Y, KANG J O, et al. Bee venom suppresses ischemia-induced increment of apoptosis and cell proliferation in hippocampal dentate gyrus [J]. Korean J Oriental Physiol Pathol, 2004, 18: 236-242.
    [158] IALENTI A, MONCADA S, DI ROSA M. Modulation of adjuvant arthritis by endogenous nitric oxide [J]. British Journal of Pharmacology, 1993, 110(2): 701-706.
    [159] MONGAN L C, JONES T, PATRICK G. Cytokine and free radical responses of alveolar macrophages in vitro to asbestos fibres [J]. Cytokine, 2000, 12(8): 1243-1247.
    [160] STADNYK A W, GILLAN T L, ANDERSON R. Respiratory syncytial virus triggers synthesis of IL-6 in BALB/c mouse alveolar macrophages in the absence of virus replication [J]. Cellular Immunology, 1997, 176(2): 122-126.
    [161] INUI Y, AZUMA Y, OHURA K. Differential alteration of functions of rat peritoneal macrophages responsive to endogenous opioid peptide endomorphin-1 [J]. International Immunopharmacology, 2002, 2(8): 1133-1142.
    [162] PARRILLO J E, PARKER M M, NATANSON C, et al. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, andtherapy [J]. Annals of Internal Medicine, 1990, 113(3): 227-242.
    [163] HAN J, LEE J D, BIBBS L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells [J]. Science, 1994, 265(5173): 808-811.
    [164] SENFTLEBEN U, KARIN M. The IKK/NF-κB pathway [J]. Critical Care Medicine, 2002, 30(Suppl 1): S18-S26.
    [165] LI Q, VERMA I M. NF-kappaB regulation in the immune system [J]. Nat Rev Immunol, 2002, 2(10): 725-734.
    [166] BAYON Y, ORTIZ M A, LOPEZ-HERNANDEZ F J, et al. Inhibition of IkappaB kinase by a new class of retinoid-related anticancer agents that induce apoptosis [J]. Molecular and Cellular Biology, 2003, 23(3): 1061-1074.
    [167] GUHA M, MACKMAN N. LPS induction of gene expression in human monocytes [J]. Cellular Signalling, 2001, 13(2): 85-94.
    [168] NISHIDA E, GOTOH Y. The MAP kinase cascade is essential for diverse signal transduction pathways [J]. Trends in Biochemical Sciences, 1993, 18(4): 128-131.
    [169] HAMBLETON J, WEINSTEIN S L, LEM L, et al. Acivation of c-jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(7): 2774-2778.
    [170] CHEN C C, WANG J K. p38 but not p44/42 mitogen-activated proteins kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages [J]. Molecular Pharmacology, 1999, 55(3): 481-488.
    [171]卢家凯. MAPK与内毒素诱导炎症反应的关系[J].《国外医学》麻醉学与复苏分册, 2000, 21(2): 65-67.
    [172] BAEUERLE P A, BALTIMORE D. NF-kappa B: ten years after [J]. Cell, 1996, 87(1): 13-20.
    [173] LE P C, POPESCU O. Disruption of NF-κB signaling and chemokine gene activation by retroviral mediated expression of IKK-gamma/NEMO mutants [J]. Virology, 2001, 286(2): 422-433.
    [174] ESPINOSA L, INGLéS-ESTEVE J, ROBERT-MORENO A. IkappaBalpha and p65 regulate the cytoplasmic shuttling of nuclear corepressors: cross-talkbetween Notch and NFkappaB pathways [J]. Molecular Biology of the Cells, 2003, 14(2): 491-502.
    [175] MLIENHARD S, MARCOS A, PATRICK A. Transactivation domain 2 (TA2) of NF-κB p65 [J]. J Biol Chem, 1995, 270(26): 15576-15584.
    [176] TILG H, TREHU E, ATKINS M B, et al. Interleukin-6(IL-6) as an anti-inflammatory cytokine: induction of circulating receptor antagonist and soluble tumor necrosis factor receptor [J]. Blood, 1994, 83(1): 113-118.
    [177] ZHANG Y L, DONG C. MAPKinases in immune responses [J]. Cell Mol Immunol, 2005, 2(1): 20-27.
    [178] SWANTEK J L, COBB M H, GEPPERT T D. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/MAPK [J]. Mol Cell Biol, 1997, 17(11): 6274-6282.
    [179] VAN DER BRUGGEN T, NINJENHIUS S, RAAIJ V E, et al. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the Raf-1/MEK1-MEK2/ERK1-ERK2 pathway [J]. Infect Immun, 1999, 67(8): 3824-3829.
    [180] ANDERSON K, SUNDLER R. Signaling to translational activation of tumour necrosis factor-alpha expression in human THP-1 cells [J]. Cytokine, 2000, 12(12): 1784-1787.
    [181] XARAGORI A, ROUSSOS C, PAPAPETROPOULOS A. Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin [J]. Br J Pharmacol, 2002, 136(7): 1058-1064.
    [182] CAIVANO M. Role of MAP kinase cascades in inducing arginine transporters and nitric oxide synthetase in RAW 264.7 macrophages [J]. FEBS Lett, 1998, 429(3): 249-253.
    [183] PAUL A, CUENDA A, BRYANT C E, et al. Involvement of mitogen-activated protein kinase homologues in the regulation of lipopolysaccharide-mediated induction of cyclo-oxygenase-2 but not nitric oxide synthase in RAW 264.7 macrophages [J]. Cell Signal, 1999, 11(7): 491-497.
    [184] MEYER C F, WANG X, CHANG C, et al. Interaction between c-Rel and the mitogen-activated protein kinase kinase kinase 1 signaling cascade in mediating kappaB enhancer activation [J]. J Biol Chem, 1996, 271(15): 8971-8976.
    [185] JANEWAY C A. Approaching the asymptote? Evolution and revolution in immunology [J]. Cold Spring Harb Sump Quant Biol, 1989, 54(1): 1-13.
    [186] SHIN S J, KANG S G, NABIN R, et al. Evaluation of the antimicrobial activity of florfenicol against bacteria isolated from bovine and porcine respiratory disease [J]. Vet Microbiol, 2005, 106(1-2): 73-77.
    [187] PRIEBE S, SCHWARZ S. In vitro activities of florfenicol against bovine and porcine respiratory tract pathogens [J]. Antimicrob Agents Chemother, 2003, 47(8): 2703-2705.
    [188] ASLAN V, MADEN M, ERGANIS O, et al. Clinical efficacy of florfenicol in the treatment of calf respiratory tract infections [J]. Vet Q, 2002, 24(1): 35-39.
    [189] O'CONNOR A M, WELLMAN N G, EVANS R B, et al. A review of randomized clinical trials reporting antibiotic treatment of infectious bovine keratoconjunctivitis in cattle [J]. Anim Health Res Rev, 2006, 7(1-2): 119-127.
    [190] ANGELOS J A, DUEGER E L, GEORGE L W, et al. Efficacy of florfenicol for treatment of naturally occurring infectious bovine keratoconjunctivitis [J]. J Am Vet Med Assoc, 2000, 216(1): 62-64.
    [191] BONE R C, BALK R A, CERRA F B, et a1. Definilions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine [J]. Chest, 1992, 10l(6): 1644-l655.
    [192] TSLOTOU A G, SAKORAFAS G H, ANAGUOSTOPOULOS G, et a1. Septic shock; current pathogenetic concepts from a clinical perspective [J]. Med Sci Monit, 2005, 11(3): 76-85.
    [193] MESTERS R, HELTERBRAND J, UTTERBACK B G, et al. Prognostic value of protein C concentrations in neutropenic patients at high risk of severe septic complications [J]. Crit Care Med, 2000, 28: 2209-2216.
    [194] ABREU M T,ARDITI M. Innate imunity and toll-like receptom: linical implications of basic science research [J]. Pediatr, 2004, 144(4): 421-429.
    [195] COHEN J. The immunopathogenesis of sepsis [J]. Nature,2002, 420(6917): 885-891.
    [196] PETSCH D, ANSPACH F B. Endotoxin removal from protein solutions [J]. Biotechnol, 2000, 76(2-3): 97-119.
    [197] FIORENTINO D F, ZLOTNIK A, MOSMAMM T R, et al. IL-10 inhibits cytokine production by activated macrophages [J]. J Immunol, 1991, 147(11): 3815-3822.
    [198] BERG D J, KüHN R, RAJEWSKY K, et al. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the shwartzman reaction but not end toxin tolerance [J]. J Clin Invest, 1995, 96(5): 2339-2347.
    [199] MACCALLUM N S, EVANS T W. Epidemiology of acute lung injury [J]. Curr Opin Crit Care, 2005, 11(1): 43-49.
    [200]钱桂生.急性肺损伤和急性呼吸窘迫综合征研究现状与展望[J].解放军医学杂志, 2003, 28(2): 97-101.
    [201]姚红伊,陈季强,杜晓刚,等.隐孔菌多糖对小鼠内毒素性肺损伤的保护作用[J].中国药理学通报, 2008, 24(3): 408-412.
    [202]章卓,秦大莲,万敬员,等.积雪草苷对LPS诱导小鼠急性肺损伤炎症因子平衡的影响[J].中药材, 2008, 31(4): 547-549.
    [203]许国根,陈雯,陈颖.急性肺损伤病人中性粒细胞凋亡变化的研究[J].中国急救医学, 2004, 24(4): 242-244.
    [204]叶正龙,徐巧莲,邱海波.中性粒细胞凋亡在大鼠急性肺损伤发病机制中的意义[J].中国急救医学, 2004, 24(4): 25-27.
    [205]刘振千,俞森洋,刘岩.急性肺损伤大鼠肺泡内中性粒细胞凋亡的延迟[J].中国病理生理杂志, 2003, 19(5): 636-638.
    [206] STEINBERG K P, HUDSN L D, GOODMAN R B, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome [J]. N Engl J Med, 2006, 354(16): 1671-1684.
    [207]姚纪元,栾维民,姜怀志.氟苯尼考临床应用的研究进展[J].吉林畜牧兽医, 2007, (4): 13-15.
    [208] SZARKA R J, WANG N, GORDON L, et al. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation [J]. J ImmunolMethods, 1997, 202(1): 49-57.
    [209] CULIC O, ERAKOVIC V, PARNHAM M J, et al. Anti-inflammatory effects of macrolide antibiotics [J]. Eur J Pharmacol, 2001, 429(13): 209-214.
    [210] VITO L, DENNIS R, WEISEL R, et al. Sepsis presenting as acute respiratory in sufficiency [J]. Surg Gynecol Obstet, 1974, 138(6): 896-900.
    [211]金惠铭主编.病理生理学[M].北京:人民卫生出版社, 2000: 219-220.
    [212]侯一峰,周艳春,周永双.全身炎性反应综合征一急性肺损伤大鼠模型的研究[J].中国实验动物学报, 2003, 11(3): 147-150.
    [213] PUNEET P, MOOCHHALA S, BHATIA M. Chemokines in acute respiratory distress syndrome [J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(1): 3-15.
    [214] REUTERSHAN J, MORRIS M A, BURCIN T L, et al. Critical role of endothelial CXCR2 in LPS induced neutrophil migration into the lung [J]. J Clin Invest, 2006, 116(3): 695-702.
    [215] SONE Y, SERIKOV V B, STAUB N C. Intravascular macrophage depletion attenuates endotoxin lung injury in anesthetized sheep [J]. J Appl Physiol, 1999, 87: 1354-1359.
    [216] STAUB N C, LONGWORTB K E, SERIKOV V, et al. Detergent inhibits 70-90% of responses to intravenous endotoxin in awake sheep [J]. J Appl Physiol, 2001, 90(5): 1788-1797.
    [217]钱桂生.急性肺损伤和急性呼吸窘迫综合征研究现状与展望[J].重庆医学, 2002, 31(9): 769-771.
    [218] DESAI S R. Acute respiratory distress syndrome: imaging of the injured lung [J]. Clin Radiol, 2002, 57(1): 8-17.
    [219] WARE L B, MATTHAY M A. The acute respiratory distress syndrome [J]. N Engl J Med, 2000, 342(18): 1334-1349.
    [220] KONO H, ASAKAWA M, FUJII H, et a1. Edaravone, a novel free radical scavenger, prevents liver injury and mortality in rats administered endotoxin [J]. J Pharmacol Exp Ther, 2003, 307(1): 74-82.
    [221] ROJAS M, WOODS C R, MORN A L, et a1. Endotoxin-induced lung injury in mice: structural,functional,and biochemical responses [J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(2): 333-341. 98
    [222] OSHIKAWA K, SNGLYAMA Y. Gene expresion of toll-like receptors and associated molecules induced by inflammatory stimuli in the primary alveolar macrophage [J]. Biochem Biophys Res Commun, 2003, 308(3): 649-655.
    [223] GIEBELEN I A, VAN WESTERLOO D J, LAROSA G J, et al. Local stimulation of alpha7 cholinergic receptors inhibits LPS-induced TNF-alpha release in the mouse lung [J]. Shock, 2007, 28(6): 700-703.
    [224] GOODMAN R B, PUGIN J, LEE J S, et al. Cytokine-mediated inflammation in acute lung injury [J]. Cytokine & Growth Factor Reviews, 2003, 14(6): 523-535.
    [225] MATTHAY M A, ZIMMENNAN G A. Acute lung injury and the acute respiatory distress syndrome: four decades of inquiry into pathogenesis and rational management [J]. Am J Respir Cell Mol Biol, 2005, 33(4): 319-327.
    [226]朱桂军,胡振杰,于占彪.大蒜素对脂多糖致急性肺损伤小鼠防治作用的实验研究[J].中国急救医学, 2005, 25(10): 736-738.
    [227] REUTERSHAN J, BASIT A, GALKINA E V, et al. Sequential recruitment of neutrophils into lung and lung injury bronchoalveolar lavage fluid in LPS-induced acute lung injure [J]. Am J Physiol Lung Cell Mol Physiol, 2005, 289(5): 807-815.
    [228]谢俊然,郁丽娜,曾因明. IL-8和IL-10在家兔内毒素性急性肺损伤中的作用[J].中华急诊医学杂志, 2005, 14(10): 823-825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700