沃尼妙林的抗炎作用及对炎症信号转导通路的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一些抗生素除了具有抗菌作用外,还被报道在体外具有调节免疫应答的作用。沃尼妙林是新一代广谱的截短侧耳素类半合成抗生素,对革兰氏阴性菌、革兰氏阳性菌、厌氧菌、支原体以及螺旋体均有效。临床上常被用来治疗猪的肠道疾病和急性多关节炎,以及猪和禽类的地方性肺炎。也被用在人类医学中耐药支原体感染的治疗。但目前该药仅作为抗菌剂在临床上应用,为了充分发挥沃尼妙林的药用价值,进一步扩大该药在临床上的应用范围,本研究利用LPS刺激小鼠RAW 264.7单核-巨噬细胞建立的体外炎症反应,研究沃尼妙林的体外抗炎活性,并在此基础上借助炎性信号传导通路平台进一步探索它的分子抗炎作用机制。同时构建LPS所致小鼠急性肺损伤(ALI)模型和内毒素性休克模型,检测沃尼妙林对两种动物模型的保护作用。
     巨噬细胞在特异性和非特异性炎症过程中都起到决定性作用。用脂多糖(LPS)活化巨噬细胞常用于评价众多药物的抗炎活性。LPS活化的巨噬细胞会分泌多种细胞因子,例如肿瘤坏死因子α(TNF-α),白细胞介素1p(IL-1p),白细胞介素6(IL-6)和白细胞介素10(IL-10)等;还可产生多种炎性介质,如一氧化氮(NO)和前列腺素E2(PGE2)等。大量产生这些细胞因子和炎性介质能够导致全身性炎症反应综合症(SIRS)、严重的组织损伤,甚至内毒素性休克。因此,本试验首先通过建立LPS诱导的小鼠单核-巨噬细胞RAW 264.7的体外炎症模型,研究了不同浓度沃尼妙林对RAW 264.7细胞的细胞因子TNF-α、IL-1β,IL-6和IL-10及炎性介质NO和PGE2分泌的影响。结果显示沃尼妙林剂量依赖的抑制了TNF-α、IL-6的分泌,提高了IL-10的水平,抑制了NO和PGE2的合成,但对IL-1β的作用不显著。这表明,沃尼妙林有可能通过调节细胞因子和炎性介质的分泌而发挥抗炎作用。
     LPS诱导细胞因子及炎性介质产生的机制已被深入研究,其中最常见的两条信号传导通路NF-κB和MAPKs起了关键作用。因为它们常被作为抗炎分子机制的重要靶位。本实验通过用LPS刺激小鼠的RAW 264.7细胞,测定沃尼妙林对NF-κB和MAPKs信号传导通路的影响,从而探究沃尼妙林抗炎分子机制。结果显示沃尼妙林显著抑制了LPS刺激的小鼠RAW 264.7巨噬细胞NF-κB的活力,同时显著抑制了LPS刺激的小鼠RAW 264.7巨噬细胞ERK、JNK和p38 MAPKs蛋白表达,作用呈剂量依赖方式。这说明,沃尼妙林通过调控NF-κB、ERK、JNK和p38 MAPKs通路而抑制细胞因子TNF-α、IL-6和炎性介质NO、PGE2合成。
     为了对沃尼妙林的临床疗效提供客观的评价指标,我们进一步验证了沃尼妙林在体内的抗炎作用。通过LPS诱导建立了急性炎症肺损伤模型,来研究预服用沃尼妙林(100 mg/kg)对急性肺损伤的作用。制备支气管肺泡灌洗液以检测蛋白浓度、细胞因子水平以及超氧化物歧化酶(SOD)的活性;收集肺组织以测定湿干重(W/D)比率、髓过氧化物酶(MPO)活性、炎性细胞因子mRNA的表达和观察组织学的变化。结果显示,预服用沃尼妙林显著的降低了肺的W/D比率、蛋白浓度和总白细胞数以及中性粒细胞数、巨噬细胞数、淋巴细胞数,并且组织学分析表明沃尼妙林明显的减弱了组织损伤。此外,沃尼妙林还显著的增大了支气管肺泡灌洗液中的SOD的活性,同时很好的减弱了肺中MPO的活性,这与对中性粒细胞浸润的影响一致。而且沃尼妙林还抑制了TNF-α、IL-6和IL-1β等炎性细胞因子的产生,这个结果与肺组织中mRNA的表达结果一致。这些结果表明,沃尼妙林对LPS诱导的急性炎症肺损伤小鼠模型具有保护作用。
     还通过构建LPS诱导的小鼠内毒素性休克模型,研究了不同浓度沃尼妙林对小鼠的预防和治疗作用及对小鼠血清中早期细胞因子TNF-α,IL-1β,IL-6和IL-10合成的影响。实验结果显示,沃尼妙林有效的改善了内毒素性休克小鼠的生存率;显著的降低了小鼠血清中TNF-α、IL-6的合成,提高了IL-10的水平,但对IL-1β作用不显著。表明沃尼妙林通过调节细胞因子水平提高了LPS所致内毒血症小鼠的生存率。
     本研究为沃尼妙林在临床上的合理应用提供了理论依据,提高其在兽医临床上的应用价值,同时使得该药物对由于单核-巨噬细胞等的过度激活导致的过度炎症反应,以及SIRS和MODS的防治具有重要意义。
Some antibacterial agents were shown to regulate immune and inflammatory responses, in addition to their antibacterial activity. Valnemulin is a broad-spectrum, pleuromutilin antibiotic; its broad-spectrum activity targets Gram-negative and Gram-positive bacteria, anaerobic bacteria, Mycoplasma and spirochaetes. It is used in veterinary medicine to treat enteric diseases and acute polyarthritis in pigs, and enzootic pneumonia in pigs and poultry. Valnemulin has also been used in human medicine to treat patients with mycoplasma infections that were resistant to conventional treatments. However, valnemulin is widely used only as antibacterial clinic. In order to fully educe clinical value and expand applied scope of valnemulin, we built in vitro inflammatory model by LPS-stimulated murine RAW 264.7 macrophages, and further explored anti-inflammatory molecular mechanism of valnemulin by inflammatory signal transduction pathway. Meanwhile, we studied the effects of valnemulin on LPS-induced murine ALI and endotoxic shock.
     Macrophages play a crucial role in both the specific and nonspecific inflammatory processes. Therefore, lipopolyssacharide (LPS)-activated macrophages have typically been used to evaluate the anti-inflammatory effects of various materials. LPS-mediated activation of macrophages leads to the production of various cytokines such as tumour necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6 (IL-6) and interleukin-10 (IL-10), and inflammation mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2). The production of these cytokines may result in the systemic inflammatory response syndrome (SIRS), severe tissue damage, and septic shock. So. first, we investigated the effect of different concentrations of valnemulin on cytokine TNF-α. IL-1β, IL-6 and IL-10. inflammatory mediator NO and PGE2 secretions in LPS-stimulated murine RAW 264.7 macrophages. The result showed that valnemulin inhibited TNF-α, IL-6 and IL-1βsecretion and increased IL-10 level in a dose-dependent manner, and valnemulin also inhibited NO and PGE2 synthesis, but had no significant effect on IL-1β.These indicated valnemulin may educe anti-inflammatory effect through regulating the secretion of cytokines and inflammatory mediators in inflammatory process.
     The mechanism by which LPS induces the production of cytokines and inflammatory mediators has been intensively investigated. Among these. MAPKs and NF-κB pathways may play an essential role. NF-κB and MAPKs are known as important targets for anti-inflammatory molecular mechanism. In order to study anti-infalmmatory molecular mechanism, we further investigated the effect of valnemulin on NF-κB and MAPKs signal transduction pathways in LPS-stimulated murine RAW264.7 macrophages. The result showed that valnemulin inhibited NF-κB activity, ERK, JNK and p38 protein phosphorylation in a dose-dependent manner. It suggested that valnemulin inhibited cytokine TNF-α, IL-6, NO and PGE2 secretion by regulating both NF-κB and ERK, JNK and p38 MAPKs pathways.
     To provide objective evaluation index on clinical therapeutic of valnemulin, we further studied in vivo ant-inflammatory of valnemulin. In this study, we established a mouse model of LPS-induced inflammatory lung injury and investigated the effect of valnemulin (100 mg/kg) on acute lung injury eight hours after LPS challenge. We prepared bronchoalveolar lavage fluid (BALF) for measuring protein concentrations, cytokine levels and superoxidase dismutase (SOD) activity, and collected lungs for assaying wet-to-dry weight (W/D) ratios, myeloperoxidase (MPO) activity, cytokine mRNA expression and histological change. We found that the preadministration of valnemulin significantly decreases the W/D ratio of lungs, protein concentrations and the number of total cells, neutrophils, macrophages and leukomonocytes, and histologic analysis indicates that valnemulin significantly attenuates tissue injury. Furthermore, valnemulin significantly increases LPS-induced SOD activity in BALF. and decreases lung MPO activity as well, consistent with its effects on neutrophil infiltration. In addition, valnemulin also inhibits the production of TNF-α, L-6, and IL-1β, which is consistent with mRNA expression in lung. The results showed that valnemulin had a protective effect on LPS-induced inflammatory lung injury in mice.
     We investigated the effect of different concentrations of valnemulin on preventive and therapeutic effect in LPS-induced endotoxic shock mice, and the effect on cytokine TNF-α, IL-1β, IL-6 and IL-10 production in murine serum. The result showed that valnemulin significantly improved murine survival rate and decreased TNF-αand IL-6, increased IL-10 level in serum, but had little effect on IL-1β. It suggested that valnemulin improved murine survival rate through regulating the level of cytokines.
     The study will provide foundation for reasonable application of valnemulin in clinic and improve clinical value, and it may be of importance as a therapeutics in treatment of excessive inflammatory reaction, SIRS and MODS in macrophages.
引文
[1]Takeda K, Aakira S. Regulation of innate immune responses by Toll-like receptors[J]. Jpn J Infect Dis,2001,54(6):209-219.
    [2]吴丽颖,王兴鹏.阻断内毒素信号传导通路治疗脓毒症或脓毒性休克的研究进展[J].中华急诊医学杂志,2003,12(2):135-137.
    [3]Hsu LC, Park JM, Zhang K, Luo JL, et al.The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4[J]. Nature,2004,428(6980):341-345.
    [4]Itakin IH, Menzel ML. The use of macrolide antibiotic substances in the treatment of asthma[J]. J Allergy,1970,45(3):146-162.
    [5]Yamamoto M, Kondo A, Tamura M, et al. Long-term therapeutic effects of erythromycin and newquinolone antibacterial agents on diffuse panbronchiolitis[J]. Nihon Kyobu Shikkan Gakkai Zasshi,1990,28(10):1305-1313.
    [6]Shapira L, Barak V, Soskolne WA, et al. Effects of tetracycliens on the pathologic activity of endotoxin:in vitro and in vivo studies[J].Adv Dent Res,1998,12(2):119-122.
    [7]Khan AA, Slifer TR. Araujo FG, et al. Protection against lipopolysaccharide-induced death by fluoroquinolones[J]. Antimicrob Agents Chemother,2000,44(11):3169-3173.
    [8]Scaglione F, Rossoni G. Comparative anti-inflammatory effects of roxithromycin, azithromycin and clarithromycin[J]. J Antimicrob Chemother,1998,41(Suppl B):47-50.
    [9]Thatte U, Dahanukar S. Apoptosis:clinical relevance and pharmacological manipulation[J]. Drugs,1997,54(4):511-532.
    [10]Haslett C. Granulocyte apoptosis and inflammatory disease[J]. Br Med Bull,1997,53(3): 669-683.
    [11]Uchimura E. Kodaira T, Kurosaka K, et al. Interaction of phagocytes with apoptotic cells leads to production of pro-inflammatory cytokines[J]. Biochem Biophys Res Commun,1997, 239(3):799-803.
    [12]Zhao DM, Xue HH, Chida K. et al. Efect of erythromyein on ATP-indueed intraeellular calcium response in A549 cells[J]. Am J Physiol Lung Cell Mol Physiol,2000,278(4): L726-736.
    [13]Viktorov AV, Yurkiv VA. Effect of ivermectin on function of liver macrophages[J]. Bull Exp Biol,2003,136(6):569-571.
    [14]Kanno N, Glaser S, Chowdhury YU, et al. Gatin inhibits cholangiocarcinoma growth through increased apoptosis by activation of Ca2+-dependent protein kinase C-alpha[J]. J Hepatol, 2001,34(2):284-291.
    [15]Mitsuyama T. Tanaka T, Hidaka K, et al. Inhibition by erythromycin of superoxide anion production by human polymorphonuelear leukocytes through the action of cyclic AMP-dependent protein kinase[J]. Respiration,1995,62(5):269-273.
    [16]Kohri K, Tamaoki J, Kondo M, et al. Macrolide antibiotics inhibit nitric oxide generation by rat pulmonary alveolar macrophages[J]. Eur Respir J,2000,15(1):62-67.
    [17]Cao XY, Dong M, Shen JZ, et al. Tilmicosin and tylosin have anti-inflammatory properties via modulation of COX-2 and iNOS gene expression and production of cytokines in LPS-induced macrophages and monocytes[J]. Int J Antimicrob Agents,2006,27(5):431-438.
    [18]Zhang XM. Song Y, Xiong HZ, et al. Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages [J]. Int Immunopharmacol,2009,9(3):354-359.
    [19]Ianaro A. Ialenti A, Maffia P, et al. Anti-inflammatory activity of macrolide antibiotics[J]. J Pharmacol Exp Ther,2000,292(1):156-163.
    [20]Gosain A. Gamelli RL. A Primer in Cytokines[J]. J Burn Care Rehabil,2005.26(1):7-12.
    [21]杨汉春.动物免疫学(第二版)[M].北京:中国农业大学出版社,2003:97-98.
    [22]Peskta S, Krause CD, Sakrar D, et al. Interleukin-10 and related eytokinesan dreeePtors[J]. Ammu Rev Imno,2004,22:929-979.
    [23]Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin[J]. Science,1985,229(4716):869-871.
    [24]Beutler B, Krochin N, Milsark IW, et al. Control of cachectin (tumor necrosis factor) synthesis:mechanisms of endotoxin resistance[J]. Science,1986.232(4753):977-980.
    [25]Oishi K, Sonoda F, Kobayashi S. et al. Role of interleukin-8 (IL-8) and an inhibitory effect of erythromycin on IL-8 release in the airways of patients with chronic airway diseases[J]. Infect Immun,1994,62(10):4145-4152.
    [26]Takizawa H, Desaki M, Ohtoshi T, et al. Erythromycin supperlesses interleukin-6 expression by human bronchial epithelial cells:a potential mechanism of its anti-inflammatory action[J]. Biochem Biophys Res Commun,1995,210(3):781-786.
    [27]王晓斌,李志超,贾斌,等.罗红霉素对内毒素性急性肺损伤的保护作用[J].第四军医大学学报,2002,23(3):1181-1183.
    [28]Diks SH, Richel DJ. Peppelenbosch MP. LPS signal transduction:the picture is becoming more complex[J]. Curr Top Med Chem,2004,4 (11):1115-1126.
    [29]杨一新,李桂源.LPS所介导的信号转导通路研究进展[J].中南大学学报,2006,31(1):141-145.
    [30]Williams MA, Withington S, Newland AC. et al. Monocyte anergy in septic shock is associated with a predilection to apoptosis and reversed by GM CSF ex vivo[J]. J Infect Dis 1998,178(5):1421-1433.
    [31]Leon-Ponte M, Kirchhof MG, Sun T, et al. Polycationic lipids inhibit the pro-inflammatory response to LPS[J]. Immunol Lett,2005,96(1):73-83.
    [32]Kitchens RL, Thompson PA, Viriyakosol S, et al. Plasma CD 14 decreases monocyte responses to LPS by transferring cell bound LPS to plasma lipoproteins[J]. J Clin Invest 2001. 108 (4):485-493.
    [33]Opal SM, Scannon PJ, Vincent JL, et al. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS binding proteia in patient with severe sepsis and septic shock[J]. J Infect Dis 1999,180(5):1584-1589.
    [34]王晓东.内毒素中和蛋白及其在脓毒症防治中的作用[J].国外医学生理、病理科学与临床分册2001,21(2):144-146.
    [35]Pugin J, Schurer-Maly CC, Leturcq D, et al. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14[J]. Proc Natl Acad Sci USA,1993,90(7):2744-2748.
    [36]Stephan RK, Peter AS, Robert LM1 The role of Toll-like receptors in host defense against microbial infection [J]. Curr Opin Immun,2001,13(1):104-108.
    [37]Hornung V. Rothenfusser S, Britsch S, et al. Quantitative expression of toll like receptor 1- 10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodexynucleotides[J]. J Immunol,2002,168:4531-4537.
    [38]Akira S,Takeda K, Kaisho T. Tool2like receptor :critical proteins linking innate and acquired immunity[J]. Nat Immunol,2001,8:675-680.
    [39]Parviz AN, Hacker H, Mark R. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments [J]. Eur J Immunol,2002, 32(7):1958-1968.
    [40]Medzhitov R. Preston-Hurlburt P. Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptiveimmunity[J]. Nature,1997,388(6640):394-397.
    [41]Underhill DM, Ozinsky A. Toll-like receptors:key mediatorsof microbe detection[J]. Curr Opin Immunol,2002,14(1):103-110.
    [42]Nomura F, Akashi S, Sakao Y, et al. Endotoxin tolerance in mouse peritoneal macrophages correlates with down regulation of surface toll-like receptor 4 expression[J]. J Immunol, 2000,164:3476-3479.
    [43]Lorenz E, Mira JP, Frees KL. et al. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock [J]. ArchIntern Med.2002.162(9):1028-1032.
    [44]Child NJ, Yang IA, Pulletz MC, et al. Polymorphisms in Toll-like receptor 4 and the systemic inflammatory response syndrome [J]. Bioche Soc Trans,2003,31:652-653.
    [45]Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccaride responsiveness on Toll-like receptor 4[J].J Exp Med,1999,189(11):1777-1782.
    [46]Yang H, Young DW. Gusovsky F, et al. Cellular events mediated by lipopolysaccharide-stimulated Toll-like receptor 4. MD-2 is required for activation of mitogen activated protein kinases protein kinases and Elk-1[J]. J Biol Chem,2000,275(27):20861-20866.
    [47]Kawasaki K, Akashi S, Shimazu R, et al. Involvement of TLR4/MD-2 complex in species-specific lipopolysaccharide mimetic signal transduction by Taxol[J]. J Endotoxin Res, 2001,7(3):232-236
    [48]Gangloff M, Gay NJ. MD-2:the Toll'gatekeeper'in endotoxin signalling [J]. Trends Biochem Sci,2004,29(6):294-300.
    [49]GEWIRTZ A T. NAVAS T A. LYONS S, et al. Cutting edge:bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression[J]. J Immunol,2001,167(4):1882-1885.
    [50]Muzio M, Natoli G, Saccani S, et al. The human toll signaling pathway:divergence of nuclear factorκB and JNK/SAPK activation up stream of tumor necrosis factor recep tor associated factor 6 (TRAF6) [J]. J Exp Med,1998,187 (12):2097-2101.
    [51]ADEREM A, ULEVITCH R J. Toll-like receptors in the induction of the innate immune response[J].Nature,2000,406(6797):782-787.
    [52]MUZIO M, MANTOVANI A. Toll-like receptors[J]. Microbes Infect,2002,2(3):251-255.
    [53]HATADA E N, NIETERS A, WULCZYN F G, et al. The ankyrin repeat domains of the NF-kappaB precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-kappa B DNA binding[J]. Proc Natl Acad Sci USA,1992,89(6):2489-2493.
    [54]MALEK S, HUANG D B, HUXFORD T, et al. X-ray crystal structure of an IκB betax NF-kappaB p65 homodimer complex[J]. J Biol Chem,2003,278(25):23094-230100.
    [55]MAYB M J, MARIENFELD R B, GHOSH S. Characterization of the IκB-kinase NEMO binding domain[J]. J Biol Chem,2001.277(48):45992-46000.
    [56]Widmann C, Gibson S. Jarpe MB, et al. Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human[J]. Physiol Rev,1999,79 (1):143-180.
    [57]KOLCH W. Meaningful relationships:the regulation of the Rmc/Raf/MEK/ERK path-way by protein intemetions[J]. Biochem J,2000,351(Pt2):289-305.
    [58]HAPER S J, LOGRMSO P. Signalling for survival and death in neurones:the role of stress activated kinase, JNK and p38[J]. Cell Signal,2001.13(5):299-310.
    [59]DANG C, DAVIS R J, FLAVELL R A. Signalling by the JNK group of MAP kinases-c-Jun N-terminal kinase[J]. J Clin Immtmol,2001,21(4):253-257.
    [60]Koller K, Schwarz F.2001, Formulation of valnemulin [P]. US:6284792.
    [61]European Pharmacopoeia Commission. European Pharmacopoeia 5.4, The 5th Edition [S]. 4043~4044.
    [62]Poulsen SM, Karlsson M, Johansson LB, et al. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome [J]. Mol Microbiol,2001,41(5):1091~1099.
    [63]Hannan PC, Windsor HM, Ripley PH. In vitro susceptibilities of recent field isolates of Mycoplasma hyopneumoniae and Mycoplasma hyosynoviae to valnemulin (Econor), tiamulin and enrofloxacin and the in vitro development of resistance to certain antimicrobial agents in Mycoplasma hyopneumoniae[J]. Res Vet Sci,1997,63:157-160.
    [69]杨艳玲,徐述明,张影纯.新药沃尼妙林的研究进展[J].中国兽药杂志,2009,43(5):49-51.
    [70]陈兴荣,刘晓莎,方炳虎.新型动物专用抗生素-沃尼妙林的研究进展[J].上海畜牧兽医通讯,2009,2:23-25.
    [71]阮建成,周宝桐.脓毒症过程中的炎症介质与细胞凋亡关系的研究进[J].中国危重病急救医学,2000,12(6):378-380.
    [72]蔡栩栩.败血症性急性肺损伤的研究现状[J].小儿急救医学,2000,7(3):159-160.
    [73]李新甫,汪建新.急性肺损伤动物模型研究进展[J].国外医学呼吸系统分册,2005,25(7):506-509.
    [74]徐金富.肺部感染相关急性肺损伤发病机制研究进展[J].国外医学呼吸系统分册,2004,21(2):72-75.
    [75]Lee WL, Downey G P. Neutrophil activation and acute lung injury[J]. Curr Opin Crit Care, 2001,7:1-7.
    [76]钱桂生.急性肺损伤和急性呼吸窘迫综合征研究现状与展望[J].解放军医学杂志,2003,28(2):97-101.
    [77]Donnelly SC, Haslett C. Cellular mechanisms of acute lung injury:implications for future treatment in the adult respiratory distress syndrome[J]. Thorax,1992,47(4):260-263.
    [78]Zimmerman GA. Albertine KH, Carveth HJ, et al. Endothelial activation in ARDS[J]. Chest, 1999,116(1 suppl):18s-22s.
    [79]Strieter RM, Kunkel SL, Standiford TJ, et al. Chemokines in lung injury. Thomas a neff lecture[J]. Chest,1999,116:103S-110S.
    [80]Szarka RJ, Wang N, Smith RH, et al. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation[J]. J Immunol Methods,1997,202:49-57.
    [81]Fujishima S, Aikawa N. Neutrophil-mediated tissue injury and its modulation[J]. Intensive Care Med,1995,21:277-285.
    [82]Bosma K. Fanelli V, Ranieri V M. Acute respiratory distress syndrome:update on the latest developments in basic and clinical research[J]. Curr Opin Anaesthesiol,2005,18:137-45.
    [83]马凯峰.二稀丙基三硫对脂多糖诱导急性肺损伤小鼠血清细胞因子IL-18,IL-10的影响[D].石家庄:河北医科大学,2008.
    [84]Azzi A, Ricciarelli R, Zingg JM. Non-antioxidant molecular functions of alpha-tocopherol (Vitamin E) [J]. FEBS Lett,2002,519(1-3):8-10.
    [85]Rahman I, Mulier B, Gilmour PS, et al. Oxidant-mediated lung epithelial cell tolerance:the role of intracellular glutathione and nuclear factor-kappaB[J]. Biochem Pharmacol,2001, 62(6):787-794.
    [86]张艰,李圣青,李焕章,等.NF-κB在大鼠急性肺损伤模型肺组织中的表达及N-乙酰半光胺酸的影响[J].细胞与分子免疫学杂志,2004,20(6):712-715.
    [87]Reyes YA, Shimoyama T, Akamatsu H, et al. MCI-186 (edaravone), a free radical scavenger, attenuates ischemiare-perfusion injury and activation of phospholipase A(2) in an isolated rat lung model after 18 h of cold preservation[J]. Eur J Cardiothorac Surg,2006,29(3):304-311.
    [88]Dik WA, McAnulty RJ, Versnel MA, et al. Short course dexamethasone treatment following injury inhibits bleomycin induced fibrosis in rats[J]. Thorax,2003,58(9):765-77'1.
    [89]林兆奋,景炳文,杨兴易,等.气道内应用地塞米松对急性肺损伤及急性呼吸窘迫综合征的防治作用[J].中华急诊医学杂志,2004,13(5):306-309.
    [90]马晓春,王辰,方强,等.急性肺损伤/急性呼吸窘迫综合征诊断和治疗指南(2006)[J].中国危重病急救医学.2006,18(12):706-710.
    [91]De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1:molecular mechanisms for gene repression[J]. Endocr Rev,2003,24(4):488-522.
    [92]Slutsky AS, Imai Y. Ventilator-induced lung injury, cytokines, PEEP, and mortality: implications for practice and for clinical trials[J]. Intensive Care Med,2003,29(8): 1218-1221.
    [93]Willson DF, Thomas NJ, Markovitz BP, et al. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury:a randomized controlled trial[J]. JAMA.2005,293(4):470-476.
    [94]Su X, Bai C. Hong Q, et al. Effect of ontinuous hemofiltration on hemodynamics lung inflammation and pulmonary edema in a canine model of acute lung injury[J]. Intensive Care Med,2003,29(11):2034-2042.
    [95]Hirschfeld M, Kurschning CJ, Schwandner R, et al. Cutting edge:inflammatory signaling by borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2[J]. J Immunol,1999, 163(5):2383-2386.
    [96]Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the drosophila Toll protein signal activation of adaptive immunity[J]. Nature,1997,388(6640):394-397.
    [97]Mozer-Lisewska I, Sluzewski W, Kaczmarek M. et al. Tissue localization of Toll-like receptors in biopsy specimens of liver from children infected with hepalitis C virus[J]. Scand J Immunol,2005,62(4):407-412.
    [98]Fitzgerald KA, Rowe DC, Bames BJ. et al. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF[J]. J Exp Med,2003,198(7):1043-1055.
    [99]Gerard C, Bruyns C, Marchant A, Abramowicz D, Vandenabeele P, Delvaux A. et al. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in exper imental endotoxemia[J]. J Exp Med,1993,177:547-550.
    [100]Ertel W, Keel M, Steckholzer U, Trentz O. Interleukin-10 attenuates the release of proinflammatory cytokines but depresses splenocyte functions in murine endotoxemia[J]. Arch Surg,1996.131:51-56.
    [101]Grutz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression[J]. J Leukoc Biol,2005,77:3-15.
    [102]Astiz ME, Rackow EC. Septic shock[J]. Lancet,1998,351:1501.
    [103]Salomao R, Rigate O, Pignatari C, et al. Bloodstream infection:epidemiology, pathophy-siology and therapeutic perspectives[J]. Infection,1999,17(1):5.
    [104]Bochkov VN, Kadl A, Huber J, et al. Protective role of phospholipids oxidation products in endotoxin-induced tissue damage[J]. Nature,2002,419(6902):77-81.
    [105]POSADAS I, TERENCIO M C. GUILLeN I, et al. Coregulation between cyclo oxygenase-2 and inducible nitric oxide synthase expression in the time course of murine inflammation[J]. Naunyn-Schmiedebergs Arch Pharmacol,2000,361(1):98-106.
    [106]INUI Y, AZUMA Y. OHURA K. Differential alteration of functions of rat peritoneal macrophages responsive to endogenous opioid peptide endomorphin-1[J]. International Immunopharmacology,2002,2(8):1133-1142.
    [107]MONGAN LC, JONES T, PATRICK G. Cytokine and free radical responses of alveolar macrophages in vitro to asbestos fibres[J]. Cytokine,2000,12(8):1243-1247.
    [108]STADNYK AW, GILLAN TL, ANDERSON R. Respiratory syncytial virus triggers synthesis of IL-6 in BALB/c mouse alveolar macrophages in the absence of virus replication[J]. Cellular Immunology,1997,176(2):122-126.
    [109]HU C, ZAWISTOWSKI J, LING W, et al. Black rice(Orya sativa L.indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in both chemical and biological models[J]. J Agric Food Chem,2003,51(18):5271-5277.
    [110]茅苏萍,程凯灵,周韵芬.黄芪对单疱病毒性角膜炎患者Th1/Th2细胞因子的调节作用[J].中国中西医结合杂志,2004,24(2):121-123.
    [111]Su H, Bidere N, Zheng L, et al. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science,2005,307(5714):1465-1468.
    [112]HSU LC, PARK JM, ZHONG K, et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4 [J]. Nature,2004,428(6980):341-345.
    [113]Paik YH. Schwabe RF, Bataller R, et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells[J]. Hepatology,2003,37(5): 1043-1055.
    [114]Manigold T, Bocker U, Hanck C, et al. Differential expression of Toll-like receptor 2 and 4 in patients with liver circhosia[J]. Eur J Gastroenterol Hepatol,2003,15(3):275-282
    [115]Lang R, Rutschman RL, Greaves DR, et al. Autocrine Deactivation of Macrophages in Transgenic Mice Constitutively Overexpressing IL-10 Under Control of the Human CD68 Promoter[J]. J Immunol,2002,168:3402-3411.
    [116]Chen TY, Lei MG, Suzuki T, Morrison DC. Lipopolysaccharide receptors and signal transduction pathways in mononuclearphagocytes[J]. Curr Top Microbiol Immunol,1992,181:169-188.
    [117]Dobrovolskaia MA, Vogel SN. Toll receptors. CD14, and macrophage activation and deactivation by LPS[J]. Microbes Infect,2002,4:903-914.
    [118]DeFranco AL, Hambleton J, McMahon M. Weinstein SL. Examination of the role of MAP kinase in the response of macrophages to lipopolysaccharide[J]. Prog Clin Biol Res.1995.392:407-420.
    [119]Karima R, Matsumoto S, Higashi H, Matsushima, K. The molecular pathogenesis of endotoxic shock and organ failure. Mol Med Today,1999,5:123-132.
    [120]Rao KM. Molecular mechanisms regulating iNOS expression in various cell types[J]. Toxicol Environ Health B Crit Rev,2000,3:27-58.
    [121]GUHA M, MACKMAN N. LPS induction of gene expression in human monocytes[J]. Cellular Signalling,2001,13(2):85-94.
    [122]HAMBLETON J, WEINSTEIN SL, LEM L, et al. Acivation of c-jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(7):2774-2778.
    [123]CHEN C C, WANG J K. p38 but not p44/42 mitogen-activated proteins kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages[J]. Molecular Pharmacology,1999,55(3):481-488.
    [124]Albert S. Baldwin Jr. TheNF-κB and I-κB proteins:New discoveries and insights[J]. Ann Rev Immunol,1996.14(14):649-681.
    [125]Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-KB in cell growth regulation[J]. Am J Pathol,2001,159(2):387-397.
    [126]Baeuerle PA, Baltimore D. NF-kappa B:ten years after[J]. Cell,1996,87:13-20.
    [127]Black well TS, Christman JW. The role of nuclear factor-KB in cytokine gene regulation[J]. Am J RespirCell Mol Biol,1997,17(1):3-9.
    [128]Guha M, Mackman N. LPS induction of gene expression in human monocytes[J]. Cell Signal, 2001,13:85-94.
    [129]Caivano M. Role of MAP kinase cascades in inducing arginine transporters and nitric oxide synthetase in RAW 264.7 macrophages[J]. FEBS Lett,1998,429:249-53.
    [130]Meyer CF, Wang X, Chang C. Templeton D, Tan TH. Interaction between c-Rel and the mitogen-activated protein kinase 1 signaling cascade in mediating kappaB enhancer activation[J]. J Biol Chem 1996:271:8971-8976.
    [131]Ware LB, Matthay MA. The acute respiratory distress syndrome[J]. N Engl J Med.2000. 342(18):1334-1349.
    [132]Kitamura Y, Hashimoto S, Mizuta N. et al. Fas/Fasl-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice[J]. Am J Respir Crit Care Med,2001,163(3 Pt 1): 762-769.
    [133]Wu Y, Singer M, Thouron F, et al. Effect of surfactant on pulmonary expression of type IIA PLA(2) in an animal model of acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol,2002, 282(4):L743-L750.
    [134]Von Bismarck P, Klemm K, Garcia WCF, et al. Selective NF-kappaB inhibition, but not dexamethasone, decreases acute lung injury in a newborn piglet airway inflammation model[J]. Pulm Pharmacol Ther,2009,22(4):297-304.
    [135]Lucas R, Verin AD, Black SM, et al. Regulators of endothelial and epithelial barrier integrity and function in acute lung injury[J]. Biochem Pharmacol,2009,77(12):1763-1772.
    [136]Staub NC Sr, Longworth KE, Serikov V, et al. Detergent inhibits 70-90% of responses to intravenous endotoxin in awake sheep[J]. J Appl Physiol,2001,90(5):1788-1797.
    [137]Zhang X, Li H. Feng H, Xiong H, Zhang L, Song Y, Yu L, Deng X. Valnemulin downregulates nitric oxide, prostaglandin E2, and cytokine production via inhibition of NF-kappaB and MAPK activity[J]. Int Immunopharmacol 2009,9:810-816.
    [138]Baboolal HA, Ichinose F, Ullrich R, et al. Reactive oxygen species scavengers attenuate endotoxin-induced impairment of hypoxic pulmonary vasoconstriction in mice[J]. Anesthesiology, 2002,97(5):1227-1233.
    [139]Kinnula V L, Crapo J D. Superoxide dismutases in the lung and human lung diseases[J]. Am J Respir Crit Care Med,2003,167:1600-1619.
    [140]Klebanoff SJ. Myeloperoxidase:friend and foe[J]. J Leukoc Biol,2005.77(5):598-625.
    [141]Ueda J, Starr ME, Takahashi H, et al. Decreased ulmonary extracellular superoxide dismutase during systemic inflammation[J]. Free Radic Biol Med,2008,45(6):897-904.
    [142]Moraes TJ, Zurawska JH, Downey GP. Neutrophil granule contents in the pathogenesis of lung injury[J]. Curr Opin Hematol,2006,13(1):21-27.
    [143]Guo RF, Ward PA. Role of oxidants in lung injury during sepsis[J]. Antioxid Redox Signal, 2007,9(11):1991-2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700