CD147对高糖培养下RPE细胞生物学行为影响及衣霉素对CD147抑制作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病视网膜病变是糖尿病发展过程中常见的严重并发症,是目前世界范围内致盲和视力受损的主要原因之一,目前对于其发病机制仍不十分清楚,治疗效果亦不佳。CD147是一种分子量为50-60kD高度糖基化的单次跨膜糖蛋白,属于免疫球蛋白超家族成员,在眼组织中尤其是视网膜色素上皮细胞中高表达。目前的研究证实,CD147在多种疾病中发挥重要的作用,和MMPs、VEGF、MCT等多种重要的分子关系密切,因此推测CD147在糖尿病视网膜病变中可能发挥了重要的作用。RNA干扰是指由内源性或外源性短双链RNA诱导的同源mRNA的降解过程,可使基因的表达沉默。通过构建针对目标基因的siRNA或shRNA,导入细胞内使目标基因沉默,是研究基因和蛋白功能的重要工具。衣霉素作为N-糖链抑制剂多用于研究蛋白的糖基化。
     本研究首先通过免疫组织化学的方法检测了CD147在正常人眼球各组织中的表达情况。选取视网膜色素上皮细胞进行体外培养,观察在低糖及高糖培养条件下RPE细胞中CD147的表达、细胞增殖和迁移能力变化以及VEGF、MMP-2、MMP-9变化。构建CD147表达载体pBS/U6/CD147-shRNA,转染到RPE中,检测其对细胞CD147内源性表达的抑制作用,筛选出抑制作用最强的重组质粒,并观察其对细胞增殖、运动性以及对MMP-2、MMP-9和VEGF表达的影响,证实CD147作为VEGF及MMP-9的上游因子在高糖条件下视网膜色素上皮细胞的生物学特性的变化中起到了重要的作用。在培养基中加入衣霉素,使CD147蛋白去糖基化,观察CD147的表达变化、RPE细胞增殖和迁移能力变化以及VEGF、MMP-2、MMP-9变化,提示CD147主要是通过自身的糖基化程度不同来发挥作用,使蛋白去糖基化后可有效抑制其功能。为研究糖尿病视网膜病变的发病机制及治疗提供新的思路。
The influence of CD 147 on retinal pigment epithelium cells under high glucose culture and the inhibition effect of tunicamycin on CD 147
     Background Diabetic retinopathy(DR) is a severe complication of diabetes mellitus, and is the main cause of blindness of diabetes mellitus patients.The research on mechanism of DR and searching effective treatment is hot point.It is not entirely clear about the mechanism of DR. Many studies indicate that VEGF,MMPs and other cytokines play a important role during the DR.CD147 is a member of immunoglobulin superfamily,and it works by protein glycosylation.The expression of CD147 is more higher in malignant tumor and corneal ulcer etc..CD147 can stimulate fibroblast and endothelial cells to secrete matrix metalloproteinases(MMPs), then destroy basement membrane and cause series of pathological reaction. RNA interference(RNAi) means degradation of homologous mRNA induced by endogenous or exogenous short double-stranded RNA(dsRNA) molecule,its effector molecule is 21-23 nucleotide(nt) dsRNA called small interfering RNA(siRNA).The gene knockout effect caused by RNAi technology can inhibit the expression of oncogene,tumor suppression gene and gene mutatin et al.The short hairpin RNA(shRNA) expressed by vector transfected into target cells can be recognized and splitted into siRNA.Use the plasmid vector system which can steadily express shRNA can inhibit gene expression permanently. Tunicamycin is a natural nucleoside antibiotic, can inhibit the production of dolichol of the protein glycosylation pathway, hamper the generation of sugar chain, produce desugar protein, is a effective tool in sugar protein research. In this study, the expression and distribution of CD147 on each tissue of normal eyeball was detected by immunohistochemistry; detect the changes of CD 147 expression of RPE cells cultured by different concentration glucose in vitro; then construct the CD147-shRNA vector and transfect RPE cells and detect the inhibition effect of CD147-shRNA on the expression of CD147,and observe the migration ability of RPE cell and the effect on the secretion of MMP-2,MMP-9 and VEGF.Add tunicamycin on RPE cells,detect the deglycosylation effect on effect, and the changeof proliferation,migration and secretion ability of RPE cells.
     Methods
     1 Detect the expression and distribution of CD147 on each tissue of normal human eyeball by immunohistochemistry.
     2 Detect the changes of CD147 expression of RPE cells cultured by different concentration glucose in vitro and the influence of CD 147 on biological behavior of RPE cells.
     Detect the changes of expression of CD147 under different concentration glucose culture by immunofluorescent staining, study the migration ability by wound-healing assays,detect the expression of CD147,MMP-2,MMP-9 and VEGF by Western blot.
     3 Construction and identification of CD147-shRNA and the inhibition effect of CD147-shRNA on the expression of CD 147 of RPE cells.
     According to the CD147 mRNA sequence in Genebank,use the siRNA design software of Promega to find the right target sequence,BLAST to confirm no homologous with known human gene.Three pairs of oligonucleotide strand were synthesized.Cloned the sequence to pBS/U6 vector.Rename the recombinant plasmid pBS/U6/CD147-shRNA1、pBS/U6/CD147-shRN2、pBS/U6/CD147-shRNA3,and restriction enzyme digestion and sequencing to confirm the correctness.Transfect the plasmid into RPE cells to detect the expression of CD147 by Western blot, and the expression of MMP-2,MMP-9 and VEGF.Also the migration ability was detected by wound-healing.
     4 The inhibition effect of tunicamycin on CD 147 of RPE cells
     Add lOug/ml tunicamycin to RPE cells cultured by high and low glucose,detect the expression of CD147 by immunofluorescent staining;detect the degree of CD147 protein glycosylation and the secretion of MMP-2,MMP-9 and VEGF.Study the migration ability by wound-healing.Detect the influence of tunicamycin on cell cycle of RPE cell by flow cytometry.
     Results
     1 CD147 was expressed on human cornea epithelial cell, iris epithelial cell, lens epithelial cell and fibre suface, sclera vascular endothelial cell, choroid membranes pigment epithelial cell and small vascular endothelial cell, optic nerve fibre and all layers of retina.
     2 The expression of CD 147 of RPE cell was increased under the high concentration glucose culture,and the migration ability was strengthened, more MMP-2,MMP-9 and VEGF was secreted.
     3 CD147-shRNAs recombinant plasmid is completely correct comfirmed by restriction enzyme digestion and sequencing.All the plasmids have gene silencing effect and the pBS/U6/CD147-shRNA3 is most significant.The result of Westernblot indicates that CD 147 expression was significantly decreased after RPE cells was transfected by pBS/U6/CD147-shRNA3, and the migration ability was declined, and the secretion of MMP-2,MMP-9 and VEGF was significantly decreased.
     4 CD147 was deglycosylated by tunicamycin, CD147 on the cell membrane was decreased showed by immunofluorescence.And the results of Western blot showed glycosylated CD147 significantly declined, and also the MMP-2,MMP-9 and VEGF. RPE cell migrated slowly.
     Conclusions
     1 CD 147 was expressed on human cornea epithelial cell and endothelial cells, lens epithelial cell and suface fibre cell, iris surface pigment cell, choroid membranes pigment epithelial cell, optic nerve fibre and all layers of retina and vascular endothelial cell of all tissues, and located mainly in cell membrane and cytoplasm.So in eyeball CD147 located mainly in pigment epithelium,epithelial cell and vascular endothelial cell.
     2 Under high glucose culture,migration ability of RPE cell was strengthened, express more CD147, and the expression of MMP-2,MMP-9 and VEGF was increased, there is a positive correlation between them. pBS/U6/CD147-shRNA3 can inhibit the migration of RPE cell and the secretion of MMP-2,MMP-9 and VEGF.It indicates that high glucose circumstance can upgrade the expression of MMP-2,MMP-9 and VEGF, and promote the migration of RPE cell.
     3 Tunicamycin works on the N terminal of CD147 protein, makes CD147 deglycosylation, and them inhibit its biological activity, result in a weakness of proliferation,migration and secretion of RPE cells.It indicates that as a membrane protein CD147 works by the degree of glycosylation.
引文
[1]Ochrietor JD, Moroz TP, Clamp MF, et al.Inactivation of the basigin gene impairs normal retinal development and maturation[J].Vision Res,2002,42(4):447.
    [2]Malone JI, Morrison AD, Pavan P. Prevalence and significance of retinopathy in subjects with diabetes of less than 5 years duration screened for the diabetes control and complications trial[J]. Diabetes Care,2001,24:522-526.
    [3]Kempen JH,O'Colmain BJ,LeskeMC, et al. The prevalence of diabetic retinopathy among adults in the United States[J]. Arch Ophthalmo 1,2004, 122(4):552-563.
    [4]黄红.增殖性糖尿病视网膜病变的治疗[J].临床眼科杂志,2002,10(2):146-147.
    [5]张雪莲,杨金奎.糖尿病视网膜病变的若干生物化学和分子生物学机制[J].微循环学,2004,14(12):56-58.
    [6]Cheung AK,Fung MK,Lo AC,et al.Aldose reductase deficiency prevents diabetes-induced blood retinal barrier breakdown,apoptosis,and glial reactivevation in the retina of db/db mice[J].Diabetes,2005,54(11):3119-3125.
    [7]Funatsu H,Yamashita H,Nakanishi Y, et al. Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy[J]. Br J Ophthalmol,2002,86(3):311-315.
    [8]CuiL, LuH. Alteration of intraocular pigment epithelium derived factor and vascular endothelial growth factor in patients with diabetic retinopathy[J]. Int J Ophthalmol,2007;7(1):23-26.
    [9]ElRemessyAB, Behzadian MA, Abou-Mohamed G, et a.l Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor[J].Am J Pathol,2003, 162(6): 1995-2004.
    [10]Harhaj NS, Felinski EA,Wolpert EB, et al. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability[J]. Invest Ophthalmol Vis Sci,2006,47(11):5106-5115.
    [11]Lebherz C,Maguire AM, Auricchio A, et al. Nonhuman primate models for diabetic ocular neovascularization using AAV2-mediated overexpression of vascular endothelial growth factor[J]. Diabetes,2005,54 (4):1141-1149
    [12]Adamis AP, Altaweel M, Bressler NM, et al. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals[J].Ophthalmology,2006,113(1):23-28.
    [13]Cunningham ET Jr,AdamisAP,AltaweelM, et al. A phase Ⅱ randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema[J]. Ophthalmology,2005,112(10):1747-1757.
    [14]胡春玲,陈维,惠延年.早期糖尿病大鼠视网膜中MMP-3和VEGF表达的意义[J].国际眼科杂志,2004,4(4):615-617.
    [15]HernandezC, SeguraRM, FonollosaA, et al. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. DiabetMed,2005;22:719-722.
    [16]Demircan N, Safran BG, Soylu M, et al. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy[J].Eye,2006,20(12):1366-1369.
    [17]KuangH, ZouW,LiuD, et al. The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy[J].Chin Med J(Engl),2003,116(3): 478-480.
    [18]SpoerriPE,AfzalA, liCalziS, et al. Effects of VEGFR-1,VEGFR-2, and IGF-IR hammerhead ribozymes on glucose-mediated tight junction expression in cultured human retinal endothelial cells[J].Mol Vision,2006,12:32-42.
    [19]刘辉,苏冠芳.色素上皮衍生因子及其治疗视网膜新生血管性疾病的研究进展[J].中华眼科杂志,2007,43(11):1043-1047.
    [20]Zhang SX, Wang JJ, Gao G, et al. Pigment epithelium-derived factor downregulates vascular endothelial growth factor(VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy[J]. J Mol Endocrinol,2006, 37(1):1-12.
    [21]Yamagishi S,Matsui T, Nakamura K, et al.Pigment epithelium-derived factor(PEDF) prevents diabetes-or advanced glycation end products (AGE)-elicited retinal leukostasis[J].Micro vasc Res,2006,72(1-2):86-90.
    [22]YokoiM, Yamagishi S, Saito A, et al. Positive association of pigment epithelium-derived factor with total antioxidant capacity in the vitreous fluid of patients with proliferative diabetic retinopathy [J]. Br J Ophthalmol,2007, 91(7):885-887.
    [23]OlmosP, BastiasMJ, Vollrath V, et al. C(-106)T polymorphism f the aldose reductase gene and the progression ofdiabetic retinopathy[J].Diabetes Res Clin Pract,2006;74(2):175-182.
    [24]Ramprasad S, Radha V, Mathias RA, et al. RAGE gene promoter polymorphisms and diabetic retinopathy in a clinic-based population from South India. Eye2007;21(3):395-401.
    [25]Ta vernaMJ, ElgrablyF, SelmiH, et al. The T-786C and C774T endothelial nitricoxide synthase gene polymorphisms independently affect the onset pattern of severe diabetic retinopathy. Nitric Oxide 2005; 13(1):88-92.
    [26]成罗金,沈默宇,王劲松,等.血管紧张素转换酶基因多态性与2型糖尿病视网膜病变的相关性研究.中国综合临床2005;21(7):608-610.
    [27]ErreraFI, CananiLH, SilvaME, etal. Functional vascular endothelial growth factor-634G>C SNP is associated with proliferative diabetic retinopathy:a case-control study in a Brazilian population of European ancestry. Diabetic Care2007;30(2):275-279.
    [28]Liu L, Yu Q, WangH, et al. Association of intercellular adhesion molecule 1 polymorphisms with retinopathy in Chinese patients with type 2 diabetes[J]. Diabet Med,2006;23(6):643-648。[29][29]Rietveld I, IkramMK, Vingerling JR, et al. An igf-1 gene polymorphism modifies the risk of diabetic retinopathy[J]. Diabetes,2006; 55(8):2387-2391.
    [29]刘东宁,刘哲丽.增殖性糖尿病视网膜病变基质金属蛋白酶的表达[J].国 际眼科杂志,2007;7(3):682-684.
    [30]DescampsFJ, MartensE, Kangave D, et al. The activated form of gelatinase B/matrix metalloproteinase-9 is associated with diabetic vitreous hemorrhage. Exp EyeRes,2006;83(2):401-407.
    [31]彭惠,洪苏玲,陶永贤,等.基质金属蛋白酶MMP-2mRNA在糖尿病苍鼠视网膜中的表达.第四军医大学学报(J FourthMilMedUniv)2006;27(17):1570-1572.
    [32]Nagineni CN,Samuel W,Nagineni S,et al.Transforming growth factor-beta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells:involvement of mitogen-activated protein kinases[J].J Cell Physiol,2003,197(3):453-462.
    [33]Miyahala S,Kiryu J,YamashiroK, et al.Simvastatin inhibits leukocyte accumulation and vascular permeability in the retinas of rats with streptozotocin-induced diabetes[J]. Am J. Patho,l 2004,164:1697-1706.
    [34]Tamura H,Miyamoto K, Kiryu J, et al.Intravitreal injection of corticosteroid attenuates leukostasis and vascu lar leakage in experimental diabetic retina[J]. Invest Ophthalmol Vis Sci,2005,46:1440-1444.
    [35]Leahy K,Ornberg R,Wang Y, et al.Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo[J].Cancer Res,2002,62:625-631.
    [36]Nguyen QD,Tatlipinar S,Shah SM,et al.Vascular endothelial growth factor is a critical stimulus for diabetic macular edema[J].Am J Ophthalmol,2006,142(6):961-969.
    [37]Moradian S,Ahmadieh H,Malihi M,et al.Intravitreal bevacizumabin active progressive proliferative diabetic retinopathy[J].Graefes Arch Clin Exp Ophthalmol,2008,246(12):1699-1705.
    [38]Pan American Collaborative Retina Group(PACORES).Twelve-month safety of intravitreal injections of bevacizumab(Avastin(R)):results of the Pan-American Collaborative Retina Study Group(PACORES)(R).Graefes Arch Clin Exp Ophthalmol,2008,246(1);81-87.
    [39]PKC-DRS Study Group.The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy:initial results of the Protein Kinase C beta inhibitor Diabetic Retinopathy Study(PKC-DRS)multicenter randomized clinical trial(R).Diabetes,2005, 54(7):2188-2197.
    [40]PKC-DRS2 Group.Effect of ruboxistaurin on visual loss in patients with diabetic retinopathy(R).Ophthalmology,2006,113(12):2221-2230.
    [41]Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans[J]. Plant Cell,1990,2(4):279-289.
    [42]Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes[J]. Antonie Van Leeuwenhoek,1994,65(3):205-209.
    [43]Guo S, Kemphues KJ. Par-l,a gene required for establishing polarity in C. elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell,1995,81(4):611-620.
    [44]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998,391(6669):806-811.
    [45]Gil J, Esteban M. Introduction of apoptosis by the dsRNA-dependent protein kinase(PKR):mechanism of action[J]. Apoptosis,2000,5(2):107-114.
    [46]Tuschl T, Zamore PD, Lehmann R, et al.Targeted mRNA degradation by double-stranded RNA in vitro[J]. Genes Dev,1999,13(24):3191-3197.
    [47]Zamor PD, Tuschl T, Sharp PA, et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell,2000, 101(1):25-33.
    [48]Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature, 2001,409(68):363-366.
    [49]Hannon GJ. RNA interference[J]. Nature,2002,418(6894):244-251.
    [50]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001, 411(6836):494-498.
    [51]Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science,2002,296(5567):550-553.
    [52]Kasschau KD, Carrington JC. A counterdefensive strategy of plant viruses:suppression of posttranscriptional gene silencing[J]. Cell,1998,95(4):461-470.
    [53]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998,391(6669):806-811
    [54]Rand TA, Petersen S, Du F, et al. Argonaute 2 cleaves the anti-guide strand of siRNA during RISC activation[J]. Cell,2005,123(4):621-629.
    [55]Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA[J]. Nature,2004,431(7006):343-349.
    [56]Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway[J]. Cell,2001,107(3):309-321.
    [57]Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi[J]. FEBS Lett,2005,579(26):5974-5981.
    [58]Gwizdek C, Ossareh-Nazari B, Brownawell AM, et al. Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3[J]. J Biol Chem,2004,279(2):884-891.
    [59]Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs[J]. RNA, 2004,10(2):185-191.
    [60]Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells [J]. Genes Dev, 2002,16(8):948-958.
    [61]Sontheimer EJ, Carthew RW. Silence from within:endogenous siRNAs and miRNAs[J]. Cell,2005,122(1):9-12.
    [62]Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins:the novel PAZ domain and redefinition of the Piwi domain[J]. Trends Biochem Sci,2000,25(10):481-482.
    [63]Ma JB, Yuan YR, Meister G, et al. Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein[J]. Nature, 2005,434(7033):666-670.
    [64]Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway[J]. Cell,2001,107(3):309-321.
    [65]BrummelkampTR,BernardsR,AgamiR.A system for stable experssion of short interfering RNAs in mammalian cells[J].Science,2002,296(5567):550-553.
    [66]Parrish S,Fleenor J,Xu S,et al. Functional anatomy of adsRNA trigger: differential requirement for the two triggerstrands in RNA interference[J].Mol Cell,2000,6 (5):1077-1087.
    [67]Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNA for mediating efficient RNAi in Drosophila melanogaster embryo lysate[J]. EMBO J,2001,20(23):6877-6888.
    [68]Walchli S, Sioud M. Vector-based delivery of siRNAs:in vitro and in vivo challenges[J]. Front Biosci,2008,13:3488-3493.
    [69]He XW, Yu X, Liu T, et al. Vector-based RNA interference against vascular endothelial growth factor-C inhibits tumor lymphangiogenesis and growth of colorectal cancer in vivo in mice[J]. Chin Med J(Engl),2008,121(5):439-444.
    [70]Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products[J]. RNA,2002,8(11):1454-1460.
    [71]Zhang C, Tang N, Liu X, et al. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene[J].J Control Release,2006,112(2): 229-239.
    [72]de Jonge J, Holtrop M, Wilschut J, et al. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs[J]. Gene Ther,2006,13(5):400-411.
    [73]Inoue A, Takahashi KA, Mazda O, et al. Electro-transfer of small interfering RNA ameliorated arthritis in rats[J]. Biochem Biophys Res Commun,2005,336 (3):903-908.
    [74]Keating CD, Kriek N, Daniels M, et al. Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi[J]. Curr Biol,2003,13(19):1715-1720.
    [75]Bertrand JR, Pottier M,Vekris A,et al.Comparison of antisense oligonucleotides and siRNAs in cell culture and invivo[J]. Biochem Biophys Res Commun,2002,296 (4):1000-1004.
    [76]Fraser AG, Kmath RS, Zipperlen P, et al. Functional genomic analysis of C.elegans chromosome I by systematic RNA interference[J]. Nature, 2000,408(6810):325-330.
    [77]Clemens JC, Worby CA, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways[J]. Proc Natl Acad Sci USA,2000,97(12):6499-6503.
    [78]Crans-Vargas HN,Landaw EM,Bhatia S,et al. Expression of cyclic adenosine monophosphate response-element binding protein in acute leukemia[J].Blood,2002,99(7):2617-2619.
    [79]Plasterk RH. RNA silencing:the genome's immune system[J].Science, 2002,(5571):1263-1265.
    [80]Wilkins C, Dishongh R, Moore SC, et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans[J]. Nature,2005,436(7053):1044-1047.
    [81]McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice [J]. Nature,2002,418 (6893):38-39.
    [82]Novina CD,Murray MF,Dykxhoorn DM,et al.SiRNA-directed inhibition of HIV-1 infection[J].Nat Med,2002,8(7):681-686.
    [83]Anderson J, Banerjea A, Planelles V, et al. Potent suppression of HIV type 1 infection by a short hairpin anti-CXCR4 siRNA[J]. AIDS Res Hum Retroviruses, 2003,19 (8):699-706.
    [84]Song E, Lee SK, Dykxhoorn DM, et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages [J]. J Virol,2003,77(13):7174-7181.
    [85]Yoshinouchi M,Yamada T, Kizaki M,et al.In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA[J]. Mol Ther,2003,8(5):762-768.
    [86]Ryo A,Uemura H,Ishiguro H,et al. Stable suppression of tumorigenicity by Pinl-targeted RNA interference in prostate cancer[J].Clin Cancer Res,2005,11(20): 7523-7531.
    [87]Nieth C,Priebsch A,Stege A,et al.Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi)[J]. FEBS Lett,2003,545(2-3):144-150.
    [88]Brummelkamp TR, Bernards R, Agami R.Stable suppression of tumorigenecity by virus-mediated RNA interference[J].Cancer Cell,2002, 2(3):243-247.
    [89]Wilda M,Fuchs U,Wossmann W,et al.Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference(RNAi)Oncogene,2002,21(37):5 716-5724.
    [90]Biswas C, Zhang Y, Decastro R, et al. The human tumor cell-derived collagenase stimulatory factor (Renamed EMMPRIN) is a member of the immunoglobulin superfamily[J]. Cancer Res,1995,55(2):434-439.
    [91]Guo H, Majmudar G, Jensen TC, et al. Characterization of the gene for human EMMPRIN,a tumor cell surface inducer of matrix metalloproteinases[J]. Gene, 1998,220(1-2):99-108.
    [92]Kaname T, Miyauchi T, Kuwano A, et al. Mapping basigin(BSG), a member of the immunoglobulin superfamily, to 19p13.3 [J]. Cytogenet Cell Genet,1993, 64(3-4):195-197.
    [93]Guo H, Majmudar G, Jensen TC, et al. Characterization of the gene for human EMMPRIN,a tumor cell surface inducer of matrix metalloproteinases[J]. Gene, 1998,220(1-2):99-108.
    [94]Liang L, Major T, Bocan T. Characterization of the promoter of human extracellular matrix metalloproteinase inducer (EMMPRIN) [J]. Gene, 2002,282(1-2):75-86.
    [95]Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD 147/extracellular matrix metalloproteinase inducer interactions[J]. Cancer Res, 2001,61 (5):2276-2281.
    [96]Papoutsi M,Kurz H,Schachtelec C,et al. Induction of the blood brain barrier marker neurothelin/HT7 in endothelial cell by a variety of tumors in chick embryos[J]. Histochem Cell Biol,2000,113(2):105-113.
    [97]Chen X, Kanekura T, Tsuyama S, et al. Ultrastructural localization of basigin in normal human epidermis [J]. Histochem Cell Biol,2001,115 (6):465-470.
    [98]Renno T, Wilson A, Dunkel C, et al. A role for CD 147 in thymic development[J]. J Immunol,2002,168 (10):4946-4950.
    [99]Saxena DK,Oh Oka T,Kadomatsu K,et al.Behaviour of a sperm surface transmembrane glycoprotein basigin during epididymal maturation and its role in fertilization in mice[J].Reproduction,2002,123(3):435-444.
    [100]Ochrietor JD, Moroz TP, Clamp MF, et al. Inactivation of the basigin gene impairs normal retinal development and maturation[J]. Vision Res,2002, 42(4):447-453.
    [101]Schmidt R, Bultmann A, Ungerer M, et al. Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells:implications in acute myocardial infarction[J]. Circulation,2006, 113(3):834-841.
    [102]Reimers N, Zafrakas K, Assmann V, et al. Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells[J]. Clin Cancer Res,2004,10(10):3422-3428.
    [103]Jia 1, Cao J, Wei W, et al.CD147 depletion down-regulates matrix metalloproteinase-11, vascular endothelial growth factor-A expression and the lymphatic metastasis potential of murine hepatocarcinoma Hca-F cells[J]. Int J Biochem Cell Biol, 2007,39(11):2135-2142.
    [104]Li R, Huang L, Guo H, et al. Basign(murine EMMPRIN) stimulates matrix metalloproteinase production by fibroblasts[J]. J Cell Physiol,2001,186(3):371-379.
    [105]Liang L, Major T, Bocan T. Characterization of the promoter of human extracellular matrix metalloproteinase inducer (EMMPRIN) [J]. Gene,2002,282(1-2): 75-86.
    [106]Cho JY, Fox DA, Horejsi V, et al. The functional interactions between CD98, betal-integrins, and CD 147 in the induction of U937 homotypic aggregation[J]. Blood,2001,98(2):374-382.
    [107]KasinrerkW, Tokrasinwit N, Phunpae P. CD147 monoclonal antibodies induce homotypic cell aggregation of monocytic cell in U937 via LFA-1/ICAM-1 pathway [J]. Immunology,1999,96 (2):184-192.
    [108]P Kirk,M C Wilson,C Heddle,et al.CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression[J].The EMBO joumal.2000,19(15):3896-3904.
    [109]Guo H, Li R, Zucker S, et al. EMMPRIN(CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial colagenase to the tumor cell surface[J].Cancer Res,2000,60(4):888-891.
    [110]Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD 147 provide information on the topology and stoichiometry of the complex in situ[J]. J Biol Chem,2002,277(5):3666-3672.
    [111]Kathryn D,Curtin,Ian A,et al.Basigin(EMMPRIN/CD147) interacts with integrin to affect cellular architecture[J].J Cell Sci,2005,118(12):2649-2660.
    [112]Yao J, Xiong S, Klos K, et al. Multiple signaling pathways involved in activation of matrix metalloproteinase-9 (MMP-9) by heregulin-betal in human breast cancer cells[J]. Oncogene,2001,20 (56):8066-8074.
    [113]Jiang JL, Zhou Q, YuMK, et al. The involvement of HAb18G/CD147 in regulation of store-operated calcium entry and metastasis of human hepatoma cells [J]. J Biol Chem,2001,276(50):46870-46877.
    [114]Deora AA, Philp N, Hu J, et al. Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD 147 in kidney and retinal epithelia[J]. Proc Natl Acad Sci USA,2005,102(45):16245-16250.
    [115]Nakai M, Chen L, Nowak RA. Tissue distribution of basigin and monocarboxylate transporter 1 in the adult male mouse:a study using the wild-type andbasigin gene knockout mice[J]. Anat Rec A Discov Mol Cell Evol Biol,2006, 288(5):527-535.
    [116]Kenji Hori,Naomi Katayama,Shu Kachi,et al.Retinal dysfunction in Basigin deficiency[J].Invest Opthalmol Vis Sci,2000,41(10):3128-3133.
    [117]Ochrietor JD,Moroz TP,Clamp MF,et al.Inactivation of the basigin gene impairs normal retinal development and maturation[J].Vision Res.2002;42:447-453.
    [118]Nancy J,Philp,Judith D,et al.Loss of MCT1,MCT3,and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/Basigin-null mouse[J]. Invest Opthalmol Vis Sci,2003,44(3):1305-1311.
    [119]Fadool JM, Linser PJ. Differential glycosylation of the 5A11/HT7 antigen by neural retina and epithelial tissues in the chicken. J Neurochem. 1993;60:1354-1364.
    [120]Eric E. Gabison, Samia Mourah, Emanuelle Steinfels,et al. Differential Expression of Extracellular Matrix Metalloproteinase Inducer (CD 147) in Normal and Ulcerated Corneas.Am.J.Pathol.,Jan 2005; 166:209-219.
    [121]王聪,陈丽娜,朱平等。CD147分子通过VEGF促进类风湿关节炎滑膜组织中的血管新生。细胞与分子免疫学杂志。2007,23(5)
    [122]王黎,金晖,孙子林等。糖基化终末产物对小鼠成骨细胞外基质金属蛋白酶诱导产物及基质金属蛋白酶-2分泌的影响。中华糖尿病杂志。2009,1(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700