刺松藻(Codium fragile (Suringar) Hariot)多糖的提取分离、结构表征及其抗凝活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以刺松藻(Codium fragile (Suringar) Hariot)为原料,经85%乙醇脱脂后采用室温水、90℃热水和70℃2%Na2CO3水溶液提取,分别得到了3种粗多糖CFC、CFH和CFA,其得率分别为7.0%,8.1%和0.9%。运用高效凝胶渗透色谱(HPGPC)、高效离子色谱(HPIC)及傅里叶变换红外光谱(FTIR)等方法对其分子量、单糖组成和结构特征进行了分析。结果表明,CFC、CFH和CFA均含有不同含量的半乳糖(Gal)、阿拉伯糖(Arb)、葡萄糖(Glc)、甘露糖(Man)和木糖(Xyl),其摩尔比分别为3.65:2.71:1.00:0.85:0.55和1.10:1.01:1.00: 0.92:0.21及0.51:0.34:1.00:0.61:0.05。CFC硫酸化程度最高,CFH次之,CFA硫酸化程度最低,其硫酸基含量分别为23.4%,17.5%和9.7%。
     在上述理化性质分析基础上,采用离子交换色谱分离技术,从CFC和CFH中纯化得到了组分CFCP1~P6和CFHP1~P5共11种多糖。对CFCP4和CFCP6进一步采用Sepharose 6B-FF柱层析纯化得到分子量均一的多糖组分。结果表明,CFCP4和CFCP6分子量分别为29 kD和56 kD,硫酸基含量分别为21.0%和32.4%,单糖组成分别以Gal和Ara为主。通过核磁共振波谱(NMR)和脱硫前后甲基化分析表明,CFCP4是硫酸半乳聚糖,以β1,3连接为主链(60%),β1,6链接为支链(40%);链内硫酸基位于C4位,分支末端硫酸基位于C6位;分支末端C3和C4位-OH与丙酮酸环化形成五元环。CFCP6是硫酸阿拉伯聚糖,以β1,3连接为主链,30%的阿拉伯糖在C2-OH处有分支,硫酸基位于阿拉伯糖的C4位和C2位,分子中含有少量半乳糖。
     为了确定其细微结构,纯化的CFCP4和CFCP6分别经氢型强阳离子交换树脂和自由基降解获得寡糖混合物,再经BioGel-P4柱分离法,从中获得了14种寡糖,并通过电喷雾碰撞诱导串联质谱法(ESI-CID-MS/MS)对CFCP4中8种硫酸半乳寡糖和CFCP6中6种硫酸阿拉伯寡糖进行了序列分析,确定其结构序列分别是:Galp6Sβ1→6Galp、Galpβ1→6Galpβ1→3Galp4S、Galp6Sβ1→6Galpβ1→6Galpβ1→6Galp、Galp6Sβ1→3Galpβ1→3 Galpβ1→3Galpβ1→6Galp Galp6Sβ1→6Galp4Sβ1→6Galp、Galp6Sβ1→6Galpβ1→6Galp4Sβ1→6Galp Galp6Sβ1→6Galpβ1→6Galpβ1→6Galpβ1→6Galp4S、3,4PyrGalp6Sβ1→6Galp以及Arbpβ1→3Arbp4S、Arbp4Sβ1→3Arbpβ1→3Arbp、Arbp4Sβ1→3Arbp4S、Arbp4Sβ1→3Arbp2Sβ1→3)Arbp、Arbp4Sβ1→3Arbp2Sβ1→3Arbpβ1→3Arbp、Arbp4Sβ1→3Arbpβ1→3Arbp2Sβ1→3Arbpβ1→2Arbp。这些寡糖结构进一步证明CFCP4是β1,6-链接为支链的硫酸半乳聚糖,CFCP6是β1,3-链接为主链的硫酸化阿拉伯聚糖。这些结构特殊的寡糖不仅丰富了海洋寡糖库数据,也为进一步从事糖生物芯片研究,探讨其与蛋白之间的相互作用提供了基础。
     在上述结构研究基础上,以APTT、TT、PT为评价指标,对三种粗多糖CFC、CFH和CFA以及三种纯化多糖CFCP1、CFCP4和CFCP6的抗凝血活性进行了评价。通过与肝素对照的结果揭示,CFC及其纯化组分CFCP1抗凝活性较强,而CFCP6的抗凝活性较弱,说明刺松藻多糖的抗凝活性除了与结构有关外,还与分子量有关,分子量越高,抗凝活性越强。CFCP1主要通过抑制内源性凝血途径和共同凝血途径起作用,而对外源性凝血途径影响较弱。该结果为开发海洋抗凝血药物提供了基础。
In this paper, the green alga Codium fragile (Suringar) Hariot, was used as starting material, the alga was firstly delipided with 85% ethanol, then extracted with room temperature water,90℃hot water and 2% sidium bicarbonate water solution at 70℃, three types of crude polysaccharides, which named as CFC, CFH and CFA, were acquired. The yields of CFC, CFH and CFA were 7.0%,8.1% and 0.9%, respectively. Their relative molecular weight (Mw), monosaccharide composition and structural features were determined with high performance gel permeation chromatography (HPGPC), high performance ion chromatography (HPIC) and Fourier transform infrared spectroscopy (FTIR), respectively. The results showed that CFC, CFH and CFA were composed of different contents of Gal, Ara, Glc, Man and Xyl, with the molar ratio of 3.65:2.71:1.00:0.85:0.55,1.10:1.01:1.00:0.92:0.21 and 0:51:0.34:1.00:0.61:0.05. Their sulfate contents were different, CFC have the highest sulfate content, then was CFH and CFA, of which were 23.4%,17.5% and 9.7%, respectively.
     Based on the physicochemical analysis of CFC and CFH, six kinds of polysaccharides (CFCP1~P6) and five kinds of polysaccharides (CFHP1~P5) were respectively separated from CFC and CFH by using Q-Sepharose FF anion-exchange chromatography. Two kinds of molecular uniform pure fractions CFCP4 and CFCP6 were further acquired from CFC with Sepharose 6B Fast Flow gel permeation chromatography. The Mw of CFCP4 and CFCP6 were 29 and 56 kD, separately; the sulfate content were 21.0% and 32.4%, respectively. CFCP4 and CFCP6 was mainly composed by galactose and arabinose, separately. Based on the NMR and methylation analysis to CFCP4 and CFCP6 and their desulfated, counterpart, CFCP4 and CFCP6 were determined as sulfated galactan and sulfated arabinan. The backbone of CFCP4 wasβ(1→3)-linked galactose (60%), and the branched chain wasβ(1→6)-linked galactose residues (40%). The sulfate groups were located at C4-OH and C6-OH, and pyruvic acid was linked at C3-OH and C4-OH of terminal galactose residues. The backbone of the CFCP6 was consists ofβ(1→3)-arabinose residues, and the branch points were found at C2-OH (30%), and the sulfate located at C4-OH and C2-OH.
     To determine their fine structures, the purified polysaccharide CFCP4 and CFCP6 were degraded with the methods of hydrogen form strong-cation exchange resin and free radical degradation, the oligosaccharides mixture was separated on BioGel-P4 column,14 kinds of oliogosaccharides were acquired. The sequence and structure of eight galactooligosaccharides and six arabinooligosaccharides were identified with electrospray ionization tandem mass spectrometry (ESI-CID-MS/MS). Their structures were as following:Galp6Sβ1→6Galp, Galpβ1→6Galpβ1→3Galp4S, Galp6Sβ1→6Galpβ1→6Galpβ1→6Galp, Galp6Sβ1→3Galpβ1→3 Galpβ1→3Galpβ1→6 Galp, Galp6Sβ1→6Galp4Sβ1→6Galp, Galp6Sβ1→6Galpβ1→6Galp4Sβ1→6 Galp,Galp6Sβ1→6Galpβ1→6Galpβ1→6Galpβ1→6Galp4S,3,4PyrGalp6Sβ1→6Galp; and Arbpβ1→3Arbp4S, Arbp4Sβ1→3Arbpβ1→3Arbp, Arbp4Sβ1→3Arbp4S, Arbp4Sβ1→3Arbp2Sβ1→3)Arbp,Arbp4Sβ1→3Arbp2Sβ1→3Arbpβ1→3Arbp,and Arbp4Sβ1→3Arbpβ1→3Arbp2Sβ1→3Arbpβ1→2Arbp.All these unique oligosaccharides offered useful message for construction of marine carbohydrate library. More importantly, they provide the foundation for the preparation of the oligosaccharide-chip and the investigation on the oligosaccharide-protein Interaction.
     Based on the structure analysis, the anticoagulant activities of three crude polysaccharides (CFC, CFH and CFA) and three purified polysaccharides (CFCP1, CFCP4 and CFCP6) were evaluated by assays of the activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT). The results showed that CFC and CFCP1 showed high anticoagulant activities with heparin as positive control, CFCP6, which have similar physicochemical properties to CFCP1, showed lower anticoagulant activities. Apart from the structural features, the major differences of anticoagulant activities between these polysaccharides were associated with relative molecular weight, the higher Mw showed the stronger anticoagulant. The mechanism of anticoagulant of CFCP1 was due to intrinsic and common pathway, but not extrinsic pathway. The results provided theoretical foundation to marine drugs development.
引文
[1]纪明侯.海藻化学.北京:科学出版社,1997,356~366.
    [2]Mackie, I.M., E.Percival. Polysaccrides from the green seaweed Caulerpa filiformis. Part Ⅰ.The constitution of xylan from the green seaweed Caulerpa filiformis. J.Chem.Soc.1964,3338~3345
    [3]Iriki,Y, T.Suzuki, K. Nisizawa. Xylan of siphonaceous green algae, Nature.1960,187:82~83
    [4]Iriki,Y, T.Miwa.Chemical nature of the cell wall of the green algae, Codium, Acetabularia and Halicoryne.Nature,1960,185(4707):178~179
    [5]Mackie,LM, E.Percival. polysaccharides from the green seaweed Caulerpa filiformis. Part Ⅱ. A glucan of amylopetin type. J.Chem Soc.1960:2381~2384
    [6]Love, J., I. M. Mackie, E. Percival. Starch-type polysaccharides isolated from the green seaweeds Enteromorpha, Ulva, Cladophora, Codium and Chaetomorpha. J. Chem. Soc.1963,4177~4182
    [7]Ghosh P, Adhikari U, Ghosal P K, Pujol C A, Carlucci M J, Damonte E B, Ray B. In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry,2004,65(23):3151-3157.
    [8]Ramana K S, Rao E V. Structural features of the sulphated polysaccharide from a green seaweed, Cladophora socialis. Phytochemistry,1991,30(4):1183~1186.
    [9]Siddhanta A K, Shanmugam M, Mody K H, Goswami A M, Ramavat B K. Sulphated polysaccharide of Codium dwarkense Boergs from the west coast of India:chemical composition and blood anticoagulant activity. International Journal of Biological Macromolecules,1999, 26(2-3):151~154.
    [10]Rao E V, Ramana K S. Structural studies of a polysaccharide isolated from the green seaweed Chaetomorpha anteninna. Carbohydrate Research,1991,217:163~170.
    [11]Rao K V, Sri Ramana K. Structural features of the sulphated polysaccharide from a green seaweed, Spongomorpha mdica Phytochemistry,1991,30(4):1183~1186.
    [12]Lahaye M, Cimadevilla E A C, Kuhlenkamp R, Quemener B,Lognone V, Patrick D. Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). Journal of Applied Phycology,1999,11(1):1~7.
    [13]Lahaye M, Inizan F, Vigouroux J. NMR analysis of the chemical structure of ulvan and of ulvan-boron complex formation. Carbohydrate polymers,1998,36(2-3):239~249.
    [14]Lee J B, Yamagaki T, Maeda M, Nakanishi H. Rhamnan sulfate from cell walls of Monostroma Latissimum. Phytochemistry,1998,48(6):921~925.
    [15]Harada N, Maeda M. Chemical structure of antithrombin-active Rhamnan sulfate from Monostrom nitidum. Bioscience Biotechnology Biochemistry,1998,62(9):1647~1652.
    [16]Ray B. Polysaccharides from Enteromorpha compressa:Isolation, purification and structural features. Carbohydrate Polymers,2006,66(3):408~416.
    [17]Matsubara K. Anticoagulant properties of a sulfated galactan preparation from amarine green alga, Codium cylindricum. International Journal of Biological Macromolecules,2001,28 (5):395 ~399
    [18]Shanmugam M, Mody K H. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Current Science,2000,79(12):1672~1683.
    [19]Hayakawa Y, Hayashi T, Lee J,Srisompo P,Maeda M,Ozawa T,Sakuragawa N. Inhibition of thrombin by sulfated polysaccharides isolated from green algae. Biochimica and biophysica acta, 2000,1543(1):86~94
    [20]Shanmugam M, Mody K H, Ramavat B K. Screening of Codiacean algae.(Chlorophyta) of the Indian coasts for blood anticoagulant activity. Indian Journal of Marine Sciences,2002,31(1): 33~38.
    [21]Kweon M H, Park M K, Ra K S. Screening of anticoagulant polysaccharides from edible plants. Agricultural Chemistry and Biotechnology,1996,39(2):159~164.
    [22]Matsubara K, Matsuura Y, Bacic A, Liao M, Hori K, Miyazawa K. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. International Journal of Biological Macromolecules,2001,28(5):395~399.
    [23]Matsubara K, Matsuura Y, Hori K, Miyazawa K. An anticoagulant proteoglycan from the marine green alga, Codium pugniformis. Journal of Applied Phycology,2000,12(1):9~14.
    [24]Shanmugam M, Mody K H, Siddhanta A K. Blood anticoagulant sulphated polysaccharides of the marine green algae Codium dwarkense (Boergs.) and C. tomentosum (Huds.)Stackh. Indian Journal of Experimental Biology,2001,39(4):365~370.
    [25]Athukorala Y, Lee K W, Kim S K, Jeon Y J. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresource Technology,2007,98(8):1711~1716.
    [26]Ghosh P, Adhikari U, Ghosal P K, Pujol C A, Carlucci M J, Damonte E B, Ray B. In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry,2004,65(23):3151~3157.
    [27]Nika K, Mulloy B, Carpenter B, Gibbs R. Specific recognition of immune cytokines by sulphated polysaccharides from marine algae. European Journal of Phycology.2003,38 (3):257~264.
    [28]李妍,田晓华,丛建波,等.海藻多糖抑制白细胞呼吸暴发作用的研究[J].生物化学与生物物理进展,1999,26(2):162~164.
    [29]Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol,1997,29(4):497~511.
    [30]Lee, Jung-Bum, Hayashi, Kyoko, Maeda, Masaakira, Hayashi, Toshimitsu. Antiherpetic activities of sulfated polysaccharides from green algae. Planta Medica,2004,70(9):813~817.
    [31]Nakazawa, Shozo, Abe, Fuminori, Kuroda, Hiroyuki, et al. Antitumor effect of water extracts from marine algae. Ⅲ. Codium pugniformis Okamura. Chemotherapy (Tokyo),1976, 24(2):448~50.
    [32]Kiminori M, Masaharu M, H iroaki M, et al. Antiangiogenic properties of a sulfated galactan isolated from a marine green alga, Codium cylindricum. Journal of applied phyeology,2003, (15):87~90.
    [33]张惟杰主编.糖复合物生化研究技术.第二版.杭州:浙江大学出版社,1999.128~129.
    [34]周鹏,谢明勇,傅博强,等.多糖的结构研究.南昌大学学报(理科版),2001,25(2):197~204.
    [35]董群,方积年.寡糖及多糖甲基化方法的发展及现状,天然产物研究与开发,1995,7(2):60~65.
    [36]王静,王晴,向文胜,色谱法在糖类化合物分析中的应用,分析化学,2001,29(2):222~227
    [37]霍光华,李来生,高荫榆,波谱在多糖结构分析上的应用,生命的化学,2002,22(2):194~196.
    [38]张剑波,田庚元,寡糖分离与结构分析进展,生物化学与生物物理进展,1998,25(2):114~119
    [39]Jackson R. The Analysis of Fluorophore-Labeled Glycans by High-Rest PolyaClγlamide-Gel: Electrophoresis, Anal.Biochem,1994,216(2):243~252
    [40]张真庆,于广利,赵峡,等.一种海洋弧菌(Vibrio sp.WYA)褐藻胶裂合酶降解特性研究.高等学校化学学报,2006,27(1):71~74.
    [41]Ovalle R., Soll C. E., Lim F., et al.. Carbohydr. Res.2001,330 (1):131~139.
    [42]赵峡,付海宁,于广利,等.固相酸解法制备古糖酯寡糖及其电喷雾质谱分析.高等学校化学学报,2008,9(29):1344~1348. 刺松藻(Codium fragile(Suringar)Hariot)多糖的提取分离、结构表征及其抗凝活性研究
    [43]Chai W, Piskarev V, Lawson AM. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal Chem.,2001,73(3):651~657.
    [44]Chai W, Lawson AM, Piskarev V. Branching Pattern and Sequence Analysis of Underivatized Oligosaccharides by Combined MS/MS of Singly and Doubly Charged Molecular Ions in Negative-Ion Electrospray Mass Spectrometry. J Am Soc Mass Spectrom,2002,13,670~679.
    [45]曾呈奎,张德瑞,张峻甫,等.中国海藻志.北京:科学出版社.1962.50~51.
    [46]邵海艳,吉宏武,章超桦,等.刺松藻化学成分测定及其营养评价.食品研究与开发,2007,28(10):160~162.
    [47]Love J, Percival E. Polysaccharides of the green seaweed Codium fragile. Biochemical Jaurnal, 1962,84:29~33.
    [48]Love J, Percival E. The polysaccharides of the green seaweed Codium fragile:Part Ⅱ The warter-soluble sulphated polysaccharides. JChem Soc,1964,3338~3345.
    [49]Ciancia M, Quintana I, Vizcarguenaga MI, et al. Polysaccharides from the green seaweeds Codium fragile and C. vermilara with controversial effects on hemostasis. International Journal of Biological Macromolecules,2007,41:641~649.
    [50]Estevez JM, Fernandez PV, Kasulin L, et al. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology,2009,19(3):212~228.
    [51]Li,XY, Huo,YS, Chen,G.A. survey of medicinal seaweed resources in Liaodong peninsula. Chin. Mar. Drugs,1994,13 (3):50~54.
    [52]Siddhanta AK, Shanmugam M, Mody KH., et al. Sulphated polysaccharides of Codium dwarkense Boergs. from the west coast of India:chemical composition and blood anticoagulant activity. International Journal of Biological Macromolecules,1999,26:151~154.
    [53]Athukorala Y, Lee KW, Kim SK, et al. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresource Technology,2007,98:1711~1716.
    [54]Matsubara K, Matsuura Y, Baccic A, et al. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. International Journal of Biological Macromolecules,2001,28:395~399.
    [55]刘晓惠,张翼伸.海带中褐藻糖胶的分级纯化与结构研究.生物化学与生物物理学报,1992,24(4):297~302.
    [56]盛家荣,曾令辉,翟春,等.多糖的提取、分离及结构研究.广西师院学报(自然科 学版),1999,16(4):49~54.
    [57]初敏,齐锡祥,朱飞,等.多糖研究概述.中药研究与信息,2003,5(4):18~20
    [58]魏远安,方积年.高效凝胶渗透色谱法测定多糖纯度及分子量.药学学报,1989,24(7):532~536
    [59]Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A.,Smith, F. Anal. Biochem.1956,13, 143~148
    [60]Lowry R. F, Ramdall. Protein measurement with the Folin Phenol reaction. J Biol Chemical,1951, 193:265~275
    [61]丛建波,王长振,李妍,等.褐藻硫酸多糖硫酸基含量测定—硫酸钡比浊法研究.解放军药学学报,2003,19(3):181~183
    [62]林颖,黄琳娟,田庚元.一种改良的糖醛酸含量测定方法.中草药,1999,30(11):817~820.
    [63]梁立娜,张萍,蔡亚岐,等.高效阴离子交换-脉冲安培检测同时分析单糖和糖醛酸.分析化学,2006,10(34):1371~1374.
    [64]Quemener B, Lahaye M, Bobin-Dubigeon C. Sugar determination in ulvans by a chemical-enzymatic method coupled to high performance anion exchange chromatography. Journal of Applied Phycology,1997,9:179~184.
    [65]嵇国利,于广利,吴建东,等.爆发期条浒苔多糖的提取分离及其理化性质研究.中国海洋药物,2009,28(3):7~12.
    [66]张惟杰.糖复合物生化研究技术.杭州:浙江大学出版社,1994:10~12
    [67]邵海艳,吉宏武,章超桦,等.刺松藻化学成分测定及其营养评价.食品研究与开发,2007,28(10):160~162.
    [68]Sloneker JH, Orentas DC.. Pyruvic Acid, a unique Component of an Exocellular Bacterial Polysaccharide. Nature,1962,194:478~479.
    [69]Adriana A. Kolender and Maria C. Matulewicz.Desulfation of sulfated galactans with chlorotrimethylsilane.Characterization of β-carrageenan by'H NMR spectroscopy. Carbohydrate Research.2004,339:619~1629.
    [70]Navarro DA, Flores ML, Stortz CA. Microwave-assisted desulfation of sulfated polysaccharides. Carbohydr Pol.2007,69:742~747.
    [71]徐桂芸,常理文.微量寡糖的甲基化分析—用于魔芋葡甘多糖酶解产物的结构测定.分析化学,1996,24(12):1400~1404.
    [72]Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem,1964,55:205~208
    [73]Y. T. Kim, E. H. Kim, C. Cheong, et al. Structural charaterization of β-D-(1→3, 1→6)-linked glucans using NMR spectroscopy. Carbohydr. Res.,2000,328(3):331~341.
    [74]O. A. Bushneva, R. G. Ovodova, A. S. Shashkov. Structural studies on hairy region of pectic polysaccharide from campion Silene vulgaris (Oberna behen). Carbohydr. Polym.,2002,49(4): 471~478
    [75]Linker A, Evans LR, Impallomeni G. The structure of a polysaccharide from infectious strains of Burkholderia cepacia. Carbohydr.Res.,2001,335(1):45~54.
    [76]A. Mort, W. D. Bauer. Application of two new methods for cheavage of polysaccharides into specific oligosaccharide fragments. J. Biol. Chem.,1982,257(4):1870~1875
    [77]S. Mondal, I. Chakraborty, M. Pramanik, et al. Structural studies of water-soluble polysaccharides of an edible mushoom, Termitomyces eurhizus. A reinvestigation. Carbohydr. Res.,2004,339(6): 1135~1140
    [78]Cordeiro LM, Reis RA, Tischer CA, et al. Linear β-mannose-containing polysaccharide, β-xylan, and amylose from the cultured photobiont Trebouxia sp. of the ascolichen Ramalina celastri. FEMSMicrobiol. Lett.,2003,220(1):89~94
    [79]P. W. Needs, R. R. Selvendran. Avoiding oxidative degradationduring sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydr. Res.,1993,245(1): 1~10
    [80]R. Mukerjea, D. Kim, J. F. Robyt. Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydr. Res.,1996,292(1):11~20
    [81]赵峡,付海宁,于广利,等.固相酸降解法制备古糖酯寡糖及其电喷雾质谱分析.高等学校化学学报,2008,29(7):1344~1348.
    [82]Eguchi H, Ikeda Y, Koyota S, et al. Oxidative damage due to copper ion and hydrogen peroxide induces GlcNAc-specific cleavage of an Asn-linked oligosaccharide. J Biochem,2002, 131(3):477~484.
    [83]Guangli Yu, Xia Zhao, Bo Yang, et al. Sequence determination of sulfated carrageenan-derived oligosaccharides by high-sensitivity negative-ion electrospray tandem mass spectrometry. Anal.Chem,2006,78:8499~8505.
    [84]Gage DA, Rathke E, Zhang Q, et al. Determination of sequence and linkage of tissue oligosaccharides in caprine beta-mannosidosis by fast atom bombardment, collisionally activated dissociation tandem mass spectrometry. Glycoconj J,1992,9(3):126~131.
    [85]杨波,于广利,郝翠,等.系列l-卡拉胶寡糖制备及其电喷雾串联质谱序列分析,高等学校化学学报,2010,2(31):303~308.
    [86]Shiguo Chen, Jie Xu, Changhu Xue, et al. Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid Ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and NMR spectroscopy, Glycoconj J.
    [87]Bernard Quemener, Jose Juan Ordaz-Ortiz, Luc Saulnier. Structural characterization of underivatized arabino-xylo-oligosaccharides by negative-ion electrospray mass spectrometry. Carbohydrate Research,2006,341:1834~1847.
    [88]Joseph Zaia, Joseph E. McClellan, Catherine E. Costello. Tandem Mass Spectrometric Determination of the 4S/6S Sulfation Sequence in Chondroitin Sulfate Oligosaccharides. Anal. Chem.2001,73,6030~6039.
    [89]Yuntao Zhang, Yutaka Kariya, Abigail H. Conrad, et al. Analysis of Keratan Sulfate Oligosaccharides by Electrospray lonization Tandem Mass Spectrometry. Anal. Chem.2005,77, 902~910.
    [90]Mourano P A S. Pereira M S, Pavao MSG, Mulloy B, Tollefsen D M, Mowinckel M C, et al. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Journal of biological chemistry,1996,271(39):23973~23984.
    [91]Maraganore J M, Chao B, Joseph M L, Jablonski J, Ramachandran K L. Anticoagulant activity of synthetic hirudin peptides. Journal of biological chemistry,1989,264(15):8692~8698.
    [92]Guangli Yu, Nur Sibel Gunay, Robert J. Linhardt, et al. Preparation and anticoagulant activity of the phosphosulfomannan PI-88. European Journal of Medicinal Chemistry,2002,37:783~791.
    [93]Chang-Zheng Lin, Hua-Shi Guan, Hai-Hua Li, et al. The influence of molecular mass of sulfated propylene glycol ester of low-molecular-weight alginate on anticoagulant activities. European Polymer Journal,2007,43:3009~3015
    [94]Huang R H, Du YM, Yang J H, et al. Influence of functional group s on the in vitro anticoagulant activity of chitosan sulfate. Carbohydr Res,2003,338 (6):483~489.
    [95]Farlasw R L, Valente AP, Pereira M S, et al. Structure and anticoagulant activity of sulfated galactans. J B iol Chem,2000,275 (38):29299~29307.
    [96]Linhard T R J, Desaiu R, Liu J, et al. Low molecularweight dermatan sulfate as an antithrombitic agent structure-activity relationship studies. Biochem Pharm acol,1994,47 (7):1241~1252.
    [97]Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides:part Ⅰ. synthesis and structure-activity relationships of new pullulan sulfates. Carbohydr Poly,2002,47 (3):267~276.
    [98]Petitou M, Casu B, Lindahl U.A critical period in the history of heparin:the discovery of the antithrombin binding site. Biochimie,2003,85 (122):83~89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700