星形胶质细胞在福尔马林诱导的大鼠炎性持续性痛觉过敏中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分星形胶质细胞和A转运系统在福尔马林诱导的大鼠炎性持续性痛觉过敏中的作用
     目的:评价星形胶质细胞和A转运系统在福尔马林诱导的大鼠炎性持续性痛觉过敏中的作用。
     方法:建立炎性持续性痛动物模型,即大鼠足底注射福尔马林(5%,50μ1)。行为学检测,实验当天,使大鼠适应实验环境15-20分钟,行右后爪足底皮下注射(s.c.)5%的福尔马林50μ1,接着立即将大鼠放回笼子中,通过计量福尔马林注射后1小时内大鼠每5分钟舔咬注射后爪的持续时间和缩腿反射的次数来衡量自发性伤害性行为变化。形态学检测,应用免疫组织化学抗生物素蛋白-生物素-过氧化物酶(ABC)法,DAB显色来检测腰段脊髓背角星形胶质细胞标记物(GFAP)的表达,待所有的行为学检测结束后(即福尔马林注射1小时后),处死所有的大鼠,ABC法进行GFAP染色。
     结果:大鼠足底注射福尔马林(5%,50μ1),即刻引起典型的双时相伤害感受性行为,包括:大鼠舔/咬被注射爪、缩腿反射,及脊髓背角神经胶质酸性蛋白(GFAP,是星形胶质细胞被活化后的一个标志性蛋白)的表达增高,而这些效应可以被鞘内注射A转运系统的竞争性抑制剂(MeAIB,0.1,0.3,0.5,0.7mmol)所抑制,并且呈剂量依赖关系,而鞘内注射PBS的对照组对福尔马林诱导的伤害性行为和腰段脊髓背角GFAP的增高性表达无影响。
     结论:星形胶质细胞和A转运系统参与福尔马林诱导的大鼠炎性持续性痛的形成,抑制A转运系统能够抑制福尔马林诱导的脊髓中枢敏化和痛觉过敏。
     第二部分内源性大麻素通过调控星形胶质细胞参与抑制福尔马林诱导的大鼠炎性持续性痛觉过敏
     目的:通过阻断内源性大麻素受体,观察内源性大麻素和星形胶质细胞在福尔马林诱导的炎性持续性痛觉过敏中的作用。
     方法:通过大鼠足底注射福尔马林(5%,50μ1),建立炎性持续性痛动物模型,观察大麻素受体亚型(CB1和CB2)在脊髓背角的分布情况,进一步观察这两个受体亚型与神经细胞(星形胶质细胞、小胶质细胞和神经元)的共存情况,同时观察了MAPK途径与神经细胞共存情况;联合运用大麻素CB1和CB2受体拮抗剂/反向激动剂(AM281和AM630,1mg.kg-1each,腹腔注射,500μ1)混合液,完全阻断内源性大麻素受体亚型(CB1和CB2),观察对福尔马林诱导的急性期自发伤害性行为(舔咬爪和缩腿反射)的影响和慢性期诱发伤害性行为(50%的爪缩阈值,PWT)的影响,形态学观察大麻素受体亚型(CB1和CB2)和神经细胞的共存情况,同时观察MAPK途径与神经细胞共存情况。
     结果:完全阻断CB1和CB2受体后,易化了福尔马林诱导的急性期自发伤害性行为(舔咬爪和缩腿反射)和慢性期诱发伤害性行为(50%的爪缩阈值),与实验对照组(Formalin+12%DMSO)之间比较有统计学差异(p<0.05),并且更易出现镜像痛;形态学显示腰段脊髓背角星形胶质细胞标志物-GFAP的表达较实验对照组更明显;大麻素受体CB1随着时间延长持续性增高表达,并且主要与星形胶质细胞和小胶质细胞共表达,在第3d,有少量CB1受体与神经元共表达;CB2受体在完全空白组不表达,在实验对照组观察的7d内持续表达,在完全阻断CB1和CB2受体后,CB2受体的表达进一步增强,并主要与星形胶质细胞共表达。在实验对照组和实验组均观察到MAPK途径中的pJNK和p-p38表达,pJNK主要与星形胶质细胞共表达,而p-p38主要与小胶质细胞共表达。
     结论:研究结果显示,内源性大麻素通过星形胶质细胞和小胶质细胞上的CB1和CB2受体激活JNK和p-p38信号转导通路参与抑制福尔马林诱导的炎性持续性痛觉过敏,在炎性持续性痛敏情况下,可以通过提高内源性大麻素水平达到镇痛效果。
AMINO ACID TRANSPORT SYSTEM A IS INVOLVED IN INFLAMMATORY NOCICEPTION IN RATS (Part1)
     Objective:The current study investigated the role of amino acid transport system A in central sensitization and hyperalgesia induced by intraplantar injection of formalin in rats.
     Methods:The rat was removed from this chamber and5%formalin (50μ1) was administered subcutaneously (s.c.) into the right hindpaw pad. The rat was immediately replaced in the chamber. Spontaneous nociceptive behaviors were assessed by measuring the duration of licking/biting and the number of flinches every5min in the injected hindpaw over a period of1h after formalin injection by two experimenters, as reported previously. After the completion of behavioral testing (i.e.,1h after formalin injection), all rats were sacrificed for GFAP staining using immunohistochemistry. The sections were used for immunohistochemical staining of GFAP using the avidin-biotin-peroxidase (ABC) method for GFAP staining.
     Results:Formalin (5%,50μ1) injected subcutaneously into the unilateral hindpaw pad induced typical biphase nociceptive behaviors, including licking/biting and flinching of the injected paw and an increase of glial fibrillary acid protein (GFAP, an activated astrocyte marker) expression in spinal dorsal horn, and these effects could be attenuated by intrathecal injection of the competitive inhibitor of amino acid system A transporter, methylaminoisobutyric acid (MeAIB,0.1,0.3,0.5, and0.7mmol). in a dose-dependent manner. Intrathecal injection of vehicle (PBS) had no effect on the formalin-induced nociceptive behaviors and increase of the GFAP.
     Conclusion:These findings suggest that amino acid transport system A is involved in inflammation-induced nociception, and inhibition of this transporter system results in inhibition of the central sensitization and hyperalgesia.
     INVOLVEMENT OF ENDOCANNABINOID IN THE CONTINUOUS INFLAMMATORY PAIN INDUCED BY FORMALIN THROUGH MODULATING ASTROCYTES (Part2)
     Objective:To investigate the roles of endocannabionoid and astrocytes in continuous inflammatory pain induced by formalin through blockade of endocannabionoid receptors (CB).
     Materials and methods:Continuous inflammatory pain model was established through intraplantar injection of formalin (5%,50μ1). The distribution of CB subtypes (CB1, CB2) in glial cells (microglia and astrocyte) and neurons of spinal dorsal horn and the MAPK pathway were observed through immunohistochemistry. CB antagonists (AM281, AM630,1mg/kg in500μ1, intraperitoneal) were administrated to observe the changes of formalin-evoked nociceptive responses at acute stage (licking/biting paws and twitching reflex) and allodynia at chronic stage (50%paw withdrawal threshold, PWT), and the distribution of CB1and CB2in glial cells neurons.
     Results:Blockade of CB1and CB2facilitated the spontaneous pain at acute stage (licking/biting paws and twitching reflex) and allodynia at chronic stage (50%paw withdrawal threshold. PWT) evoked by formalin stimulation, which was significant different from that of formalin injection alone (p<0.05). Blockade of CB1and CB2promoted the incurrence of mirror pain in formalin test. Morphological results showed that blockade of CB receptor significantly increased the expression of astrocytes in lumbar dorsal horn than formalin injection alone, that the expression of CB1continuously increased following the time elapsed and was colocalized with astrocytes while the CB2expression was not observed in blank control group but was continuously induced by formalin injection within7days and was further increased after blockade of CB1and CB2. The pJNK expression in astrocyte induced by formalin was not affected by blockade of CB1and CB2.
     Conclusion:The results indicated that endocannabinoid is involved in the formalin induced-continuous inflammatory hyperalgesia through JNK pathway by activating astrocytes, suggesting that enhancement of endocannabinoid level can play analgesic effect under continuous inflammatory pain.
引文
[1]Costigan M, Scholz J, Woolf C.J. Neuropathic pain: a maladaptive response of the nervous system to damage [J]. Annu Rev Neurosci.2009;32:1-32.
    [2]Scholz J, Woolf C.J. The neuropathic pain triad:neurons, immune cells and glia [J]. Nat Neurosci.2007;10:1361-1368.
    [3]Cao H, Zhang Y.Q. Spinal glial activation contributes to pathological pain states [J]. Neurosci Biobehav Rev.2008;32:972-983.
    [4]Milligan E.D., Watkins L.R. Pathological and protective roles of glia in chronic pain [J]. Nat Rev Neurosci.2009; 10:23-36.
    [5]Gao Y.J., Ji R.R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain [J]. Pharmacol Ther.2010;126:56-68.
    [6]Garrison C.J., Dougherty P.M., Kajander K.C., Carlton S.M. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury [J]. Brain Res.1991;565:1-7.
    [7]Coyle D.E., Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior [J]. Glia.1998;23:75-83.
    [8]Garrison C.J., Dougherty P.M., Carlton S.M. GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801[J]. ExpNeurol.1994;129:237-243.
    [9]Nakagawa T, Wakamatsu K, Zhang N, Maeda S, Minami M, Satoh M, et al. Intrathecal administration of ATP produces longlasting allodynia in rats:differential mechanisms in the phase of the induction and maintenance. Neuroscience [J].2007; 147:445-455.
    [10]Sweitzer S.M., Schubert P, DeLeo J.A. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain [J]. J Pharmacol Exp Ther. 2001;297:1210-1217.
    [11]Colburn R.W., DeLeo J.A., Rickman A.J., Yeager M.P., Kwon P, Hickey W.F. Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat [J]. J Neuroimmunol.1997;79:163-175.
    [12]Zhang J, De Koninck Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury [J]. J Neurochem.2006;97:772-783.
    [13]Hald A, Nedergaard S, Hansen R.R., Ding M, Heegaard A.M. Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain [J]. Eur J Pain. 2009;13:138-145.
    [14]Zhuang Z.Y., Gerner P, Woolf C.J., Ji R.R. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model [J]. Pain.2005;114:149-159.
    [15]Zhuang Z.Y., Wen Y.R., Zhang D.R., Borsello T, Bonny C, Strichartz G.R, et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation:respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance [J]. J Neurosci.2006;26:3551-3560.
    [16]Raghavendra V, Tanga F, DeLeo J.A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy [J]. J Pharmacol Exp Ther.2003; 306:624-630.
    [17]Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter M.W., et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury [J]. Nature.2003; 424:778-783.
    [18]Clark A.K., Yip P.K., Grist J, Gentry C, Staniland A.A., Marchand F, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain [J]. Proc Natl Acad Sci U S A.2007;104:10655-10660.
    [19]Tawfik V.L., Nutile-McMenemy N, Lacroix-Fralish M.L., Deleo J.A. Efficacy of propentofylline, a glial modulating agent, on existingmechanical allodynia following peripheral nerve injury [J]. Brain Behav Immun.2007;21:238-246.
    [20]Tanaka T, Minami M, Nakagawa T, Satoh M. Enhanced production of monocyte chemoattractant protein-1 in the dorsal root ganglia in a rat model of neuropathic pain: possible involvement in the development of neuropathic pain [J]. Neurosci Res.2004;48: 463-469.
    [21]Zhuang Z.Y., Kawasaki Y, Tan P.H., Wen Y.R., Huang J, Ji R.R. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine [J]. Brain Behav Immun.2007;21:642-651.
    [22]Abbadie C, Lindia J.A., Cumiskey A.M., Peterson L.B., Mudgett J.S., Bayne E.K., et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2 [J]. Proc Natl Acad Sci U S A.2003; 100:7947-7952.
    [23]Tanga F.Y., Nutile-McMenemy N, DeLeo J.A. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy [J]. Proc Natl Acad Sci U S A.2005;102:5856-5861.
    [24]Nasu-Tada K, Koizumi S, Tsuda M, Kunifusa E, Inoue K. Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X4, a key molecule for mechanical allodynia [J]. Glia.2006;53:769-775.
    [25]Nesic O, Guest J.D., Zivadinovic D, Narayana P.A., Herrera J.J., Grill R.J., et al. Aquaporins in spinal cord injury:the janus face of aquaporin 4 [J]. Neuroscience.2010; 168:1019-1035.
    [26]Miyoshi K, Obata K, Kondo T, Okamura H, Noguchi K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury [J]. J Neurosci.2008;28:12775-12787.
    [27]Kawasaki Y, Zhang L, Cheng J.K., Ji R.R. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-a in regulating synaptic and neuronal activity in the superficial spinal cord [J]. J Neurosci. 2008;28:5189-5194.
    [28]Zhang R.X., Li A, Liu B, Wang L, Ren K, Zhang H, et al. IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats [J]. Pain.2008; 135:232-239.
    [29]Kawasaki Y, Xu Z.Z., Wang X, Park J.Y., Zhuang Z.Y., Tan P.H., et al. Distinct roles of matrix metalloproteases in the early-and latephase development of neuropathic pain [J]. Nat Med.2008; 14:331-336.
    [30]Beattie E.C., Stellwagen D, Morishita W, Bresnahan J.C., Ha B.K., Von Zastrow M, et al. Control of synaptic strength by glial TNFa[J].Science.2002;295:2282-2285.
    [31]Gao Y.J., Zhang L, Samad O.A., Suter M.R., Yasuhiko K, Xu Z.Z., et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain [J]. J Neurosci.2009;29:4096-4108.
    [32]Tao Y.X., Gu J, Stephens R.L. Jr. Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states [J]. Mol Pain.2005;1:30.
    [33]Liaw W.J., Stephens R.L.Jr, Binns B.C., Chu Y, Sepkuty J.P., Johns R.A., et al. Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord [J]. Pain.2005;115:60-70.
    [34]Sung B, Lim G, Mao J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats [J]. J Neurosci.2003;23:2899-2910.
    [35]Tawfik V.L., Regan M.R., Haenggeli C, Lacroix-Fralish M.L., Nutile-McMenemy N, Perez N, et al. Propentofylline-induced astrocyte modulation leads to alterations in glial glutamate promoter activation following spinal nerve transaction [J]. Neuroscience. 2008;152:1086-1092.
    [36]Maeda S, Kawamoto A, Yatani Y, Shirakawa H, Nakagawa T, Kaneko S. Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats [J]. Mol Pain.2008;4:65.
    [37]Hu Y, Li W, Lu L, Cai J, Xian X, Zhang M, et al. An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats [J]. Pain.2010;148:284-301.
    [38]Mao Q.X., Yang T.D. Amitriptyline upregulates EAAT1 and EAAT2 in neuropathic pain rats [J]. Brain Res Bull.2010;81:424-427.
    [39]Dohi T, Morita K, Kitayama T, Motoyama N, Morioka N. Glycine transporter inhibitors as a novel drug discovery strategy for neuropathic pain [J]. Pharmacol Ther.2009; 123:54-79.
    [40]Meister, A.,1974. Glutamine synthetase of mammals. In:Boyer, P.D. (Ed.), The Enzymes, Vol.10. Academic Press, New York, pp.699-754.
    [41]Hertz, L, Hertz L, Sastry, B.R., Sastry B.R. Inhibition of gamma-aminobutyric acid uptake into astrocytes by pentobarbital[J]. Can J Physiol Pharmacol.1978 Dec;56(6):1083-7.
    [42]Bacci A, Sancini G, Verderio C, Armano S, Pravettoni E, Fesce R, Franceschetti S and Matteoli M. Block of Glutamate-Glutamine Cycle Between Astrocytes and Neurons Inhibits Epileptiform Activity in Hippocampus[J]. J Neurophysiol.88:2302-2310,2002.
    [43]Waagepetersen H.S., Qu H, Sonnewald U, Shimamoto K and Schousboe A. Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons[J]. Neurochem Int.47:92-102,2005.
    [44]Yang J and Shen J. In vivo evidence for reduced cortical glutamate-glutamine cycling in rats treated with the antidepressant/antipanic drug phenelzine[J]. Neurosci.135:927-937,2005.
    [45]Fonseca L.L., Monteiro M.A., Alves P.M., Carrondo M.J. and Santos H. Cultures of rat astrocytes challenged with a steady supply of glutamate:new model to study flux distribution in the glutamate-glutamine cycle[J]. Glia.51:286-296,2005.
    [46]Keyser D.O and Pellmar T.C. Regional differences in glial cell modulation of synaptic transmission[J]. Hippocampus.7:73-77,1997.
    [47]Seiler, N.,1993. Is ammonia a pathogenetic factor in Alzheimer's disease? [J]. Neurochem. Res.18,235-245.
    [48]Le Prince, G., Delaere, P., Fages, C., Lefrancois, T., Touret, M., Salanon, M., Tardy, M., 1995. Glutamine synthetase (GS) expression is reduced in senile dementia od the Alzheimer type [J]. Neurochem. Res.20,859-862.
    [49]Robinson, S.R.,2000. Neuronal expression of glutamine synthetase in Alzheimer's disease indicates a profound impairment of metabolic interactions with astrocytes[J]. Neurochem. Int. 36,471-482.
    [50]Rosier, F., Lambert, D., Mertens-Strijthagen, J.,1996. Effect of glucose on rat glutamine synthetase in cultured astrocytes[J]. Biochem. J.315,607-612.
    [51]Petito, C.K., Chung, M.H., Morgello, S., Felix, J.C., Lesser, M.L.,1989. Postischemic increases in astrocyte glutamine synthetase and intermediate filament proteins. In:Ginsberg, M.D., Dietrich, W.D. (Eds.), Cerebrovascular Diseases. Raven Press, New York, pp 159-164.
    [52]Petito, C.K., Chung, M.H., Verkhovsky, L.M., Cooper, A.J.L.,1992. Brain glutamine synthetase increases following cerebral ischemia in the rat [J]. Brain Res.569,275-280.
    [53]Kelleher, J.A., Gregory, G.A., Chan, P.H.,1994. Effect of fructose-1,6-bisphosphate on glutamate uptake and glutamine synthetase activity in hypoxic astrocyte cultures[J]. Neurochem. Res.19,209-215.
    [54]Zamora, A.J., Cavanagh, J.B., Kyu, M.H.,1973. Ultrastructural responses of the astrocytes to portocaval anastomosis in the rat [J]. J. Neurol. Sci.18,25-45.
    [55]Yamamoto, T., Iwasaki, Y., Sato, Y., Yamamoto, H., Konno, H.,1989. Astrocytic pathology of methionine sulfoximine-induced encephalopathy[J]. Acta Neuropathol.77,357-368.
    [56]Dubner R, Basbaum AI (1994) Spinal dorsal horn plasticity following tissue or nerve injury. In:Textbook of pain, Ed 3 (Wall PD, Melzack R, eds), pp 225-241. New York:Churchill Livingstone.
    [57]Woolf CJ, SalterMW (2006) Plasticity and pain:role of the dorsal horn. In:Wall and Melzack's textbook of pain, Chap 5, Ed 5 (McMahon S, Koltzenburg M, eds), pp 91-105. London:Elsevier.
    [58]Chen Y.C., Jing W, Yu F.X., Sun Z, James W. H., Jonathan O. D., Barry J. S. Astroglial Glutamate-Glutamine Shuttle Is Involved in Central Sensitization of Nociceptive Neurons in Rat Medullary Dorsal Horn[J]. J. Neurosci., August 22,2007,27(34):9068-9076
    [59]Shen H, Xie Y, Han H, Xia Y, Zhang Y, Wang C, Wang J. Formalin-induced astrocyte glutamate-glutamine cycle involved in rat spinal cord central sensitization[J]. NEURAL REGENERATION RESEARCH 2009; 4:918-922.
    [60]耿彬,夏亚一等.星形胶质细胞内谷氨酸-谷氨酰胺循环在大鼠神经病理痛形成中的作用[J].中华麻醉学杂志 2010;30:1034-1037.
    [61]Tsou K, Brown S, Sanudo-Pena M.C., Mackie K, Walker J.M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system[J]. Neuroscience 1998; 83:393-411.
    [62]Herzberg U, Eliav E, Bennett G.J, Kopin I.J. The analgesic effects of R(+)-WIN 55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain[J]. Neurosci Lett 1997; 221:157-160.
    [63]Fox A, Kesingland A, Gentry C, McNair K, Patel S, Urban L, James Ⅰ. The role of central and peripheral Cannabinoidl receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain[J]. Pain 2001; 92:91-100.
    [64]Bridges D, Ahmad K, Rice A.S. The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain [J]. Br J Pharmacol 2001; 133:586-594.
    [65]Bisogno T, Ortar G, Petrosino S, Morera E, Palazzo E, Nalli M, Maione S, Di Marzo V. Development of a potent inhibitor of 2-arachidonoylglycerol hydrolysis with antinociceptive activity in vivo[J]. Biochim Biophys Acta 2009; 1791:53-60.
    [66]Costa B, Colleoni M, Conti S, Parolaro D, Franke C, Trovato A.E., Giagnoni G. Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw[J]. Naunyn Schmiedebergs Arch Pharmacol 2004; 369:294-299.
    [67]Quartilho A, Mata H.P., Ibrahim M.M., Vanderah T.W., Porreca F, Makriyannis A, Malan T.P., Jr. Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors[J]. Anesthesiology 2003; 99:955-960.
    [68]Di Marzo V.'Endocannabinoids'and other fatty acid derivatives with cannabimimetic properties:biochemistry and possible physiopathological relevance[J]. Biochim. Biophys. Acta 1998;1392:153-175.
    [69]Piomelli D. The endocannabinoid system:a drug discovery perspective [J]. Curr. Opin. Investig. Drugs 2005;6:672-679.
    [70]Di M.V., De P.L. Plant, synthetic, and endogenous cannabinoids in medicine[J]. Annu. Rev. Med 2006;57:553-574.
    [71]Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy[J]. Pharmacol. Rev 2006;58:389-462.
    [72]Wang J, Ueda N. Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat[J].2009 in press, PMID:19126434.
    [73]Devane W.A., Dysarz F.A., Johnson M.R., Melvin L.S., Howlett A.C. Determination and characterization of a cannabinoid receptor in rat brain[J]. Mol. Pharmacol 1988;34:605-613.
    [74]Matsuda L.A., Lolait S.J., Brownstein M.J., Young A.C., Bonner T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA[J]. Nature 1990;346:561-564. [PubMed:2165569]
    [75]Munro S, Thomas K.L., Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids[J]. Nature 1993;365:61-65.
    [76]Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations[J]. Eur. J. Biochem 1995;232:54-61.
    [77]Howlett A.C. Cannabinoid receptor signaling. Handb. Exp. Pharmacol 2005; 168:53-79. [PubMed:16596771]
    [78]Felder C.C., Joyce K.E., Briley E.M., Mansouri J, Mackie K, Blond O, Lai Y, Ma A.L. Mitchell R.L. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors[J]. Mol. Pharmacol 1995;48:443-450.
    [79]Howlett A.C., Breivogel C.S., Childers S.R., Deadwyler S.A., Hampson R.E., Porrino L.J. Cannabinoid physiology and pharmacology: 30 years of progress[J]. Neuropharmacology 2004; 47:345-358.
    [80]Bouaboula M, Poinot-Chazel C, Bourrie B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas P. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1[J]. Biochem. J 1995;312:637-641.
    [81]Bouaboula M, Poinot C.C., Marchand J, Canat X, Bourrie B, Rinaldi C.M., Calandra B, Le F. G., Casellas P. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor[J]. Eur. J. Biochem 1996;237:704-711.
    [82][82] Barann M, Molderings G, Bruss M, Bonisch H, Urban B.W., Gothert M. Direct inhibition by cannabinoids of human 5-HT3A receptors:probable involvement of an allosteric modulatory site[J]. Br. J. Pharmacol 2002;137:589-596.
    [83]Howlett A.C., Mukhopadhyay S. Cellular signal transduction by AEA and 2 arachidonoylglycerol [J]. Chem. Phys. Lipids 2000; 108:53-70.
    [84][84] Pertwee R.G. Pharmacology of cannabinoid CB1 and CB2 receptors[J]. Pharmacol. Ther 1997;74:129-180.
    [85]Nicholson R.A., Liao C, Zheng J, David L.S., Coyne L, Errington A.C., Singh G, Lees G. Sodium channel inhibition by AEA and synthetic cannabimimetics in brain[J]. Brain Res 2003; 978:194-204.
    [86]Bouaboula M, Bianchini L, McKenzie F.R., Pouyssegur J, Casellas P. Cannabinoid receptor CB1 activates the Nap/Hb exchanger NHE-1 isoform via Gi-mediated mitogen activated protein kinase signaling transduction pathways[J]. FEBS Lett 1999;449:61-65.
    [87]Herkenham, M. Localization of cannabinoid receptors in brain and periphery. In:Pertwee, RG., editor. Cannabinoid receptors. London:Academic Press; 1995. p.145-166.
    [88]Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thone-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst A.C., Pasquali R, Lutz B, Stalla G.K., Pagotto U. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis[J]. J. Clin. Invest 2003; 112:423-431.
    [89]Pertwee R.G., Ross R.A. Cannabinoid receptors and their ligands.. Prostaglandins Leukot. Essent[J]. Fatty Acids 2002;66:101-121.
    [90]Osei H.D., DePetrillo M, Pacher P, Liu J, Radaeva S, Batkai S, Harvey W.J., Mackie K, Offertaler L, Wang L, Kunos G. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity[J]. J. Clin.Invest 2005;115:1298-1305.
    [91]Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin C.E., Brenner G.J., Rubino T, Michalski C.W., Marsicano G, Monory K, Mackie K, Marian C, Batkai S, Parolaro D, Fischer M.J., Reeh P, Kunos G, Guindon and Hohmann Page 16 Kress M, Lutz B, Woolf CJ, Kuner R. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors[J]. Nat.Neurosci 2007; 10:870-879.
    [92]Farquhar S.W., Egertova M, Bradbury E.J., McMahon S.B., Rice A.S., Elphick M.R. Cannabinoid CB(1) receptor expression in rat spinal cord[J]. Mol. Cell. Neurosci 2000; 15:510-521.
    [93]Hohmann A.G., Herkenham M. Cannabinoid receptors undergo axonal flow in sensory nerves[J].Neuroscience 1999;92:1171-1175.
    [94]Hohmann A.G., Herkenham M. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study[J]. Neuroscience 1999;90:923-931.
    [95]Lever I.J., Rice A.S. Cannabinoids and pain. Handb. Exp. Pharmacol 2007;177:265-306.
    [96]Pertwee R.G. Cannabinoid pharmacology: the first 66 years[J]. Br. J. Pharmacol 2006;147:S163-S171.
    [97]Griffin G, Fernando S.R., Ross R.A., McKay N.G., Ashford M.L., Shire D, Huffman J.W., Yu S, Lainton J.A., Pertwee R.G. Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals[J]. Eur. J. Pharmacol 1997;339:53-61.
    [98]Jhaveri M.D., Sagar D.R., Elmes S.J., Kendall D.A., Chapman V. Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain[J]. Mol. Neurobiol 2007;36:26-35.
    [99]Van S, Duncan M, Kingsley P.J, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison J.S., Marnett L.J., Di Marzo V, Pittman Q.J., Patel K.D., Sharkey K.A. Identification and functional characterization of brainstem cannabinoid CB2 receptors[J]. Science 2005;310:329-332.
    [100]Buckley N.E., McCoy K.L., Mezey E, Bonner T, Zimmer A, Felder C.C., Glass M, Zimmer A. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor[J]. Eur. J. Pharmacol 2000;396:141-149.
    [101]Jarai Z, Wagner J.A., Varga K, Lake K.D., Compton D.R., Martin B.R., Zimmer A.M., Bonner T.I., Buckley N.E., Mezey E, Razdan R.K., Zimmer A, Kunos G. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors[J]. Proc.Natl. Acad. Sci. USA 1999;96:14136-14141.
    [102]Begg M, Pacher P, Batkai S, Osei H.D., Offertaler L, Mo F.M., Liu J, Kunos G. Evidence for novel cannabinoid receptors[J]. Pharmacol. Ther 2005;106:133-145.
    [103]Kreitzer F.R., Stella N. The therapeutic potential of novel cannabinoid receptors. Pharmacol[J]. Ther 2009;122:83-96.
    [104]Johns D.G., Behm D.J., Walker D.J., Ao Z, Shapland E.M., Daniels D.A., Riddick M, Dowell S, Staton P.C., Green P, Shabon U, Bao W, Aiyar N, Yue T.L., Brown A.J., Morrison A.D., Douglas S.A. The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects[J]. Br. J. Pharmacol 2007; 152:825-831.
    [105]Eggerickx D, Denef J.F., Labbe O, Hayashi Y, Refetoff S, Vassart G, Parmentier M, Libert F. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase[J]. Biochem. J 1995;309(Pt 3):837-843.
    [106]Mechoulam R, Ben S.S., Hanus L, Ligumsky M, Kaminski N.E., Schatz A.R., Gopher A, Almog S, Martin B.R., Compton D.R., Pertwee R.G., Griffin G, Bayewitch M, Barg J, Vogel Z. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors[J]. Biochem. Pharmacol 1995;50:83-90.
    [107]Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K.2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain[J]. Biochem. Biophys. Res. Commun 1995;215:89-97.
    [108]Hanus L, Abu L.S., Fride E, Breuer A, Vogel Z, Shalev D.E., Kustanovich I, Mechoulam R. 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor[J]. Proc. Natl. Acad. Sci. USA 2001;98:3662-3665.
    [109]Porter A.C., Sauer J.M., Knierman M.D., Becker G.W., Berna M.J., Bao J, Nomikos G.G., Carter P, Bymaster F.P., Leese A.B., Felder C.C. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor[J]. J. Pharmacol. Exp. Ther 2002;301:1020-1024.
    [110]Huang S.M., Bisogno T, Trevisani M, Al H.A., De P.L., Fezza F, Tognetto M, Petros T.J., Krey J.F., Chu C.J., Miller J.D., Davies S.N., Geppetti P, Walker J.M., Di M.V. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors[J]. Proc. Natl. Acad. Sci. USA 2002;99:8400-8405.
    [111]Ross H.R., Gilmore A.J., Connor M. Inhibition of human recombinant T-type calcium channels by the endocannabinoid N-arachidonoyl dopamine[J]. Br. J. Pharmacol.2009.
    [112]Bradshaw H.B., Walker J.M. The expanding field of cannabimimetic and related lipid mediators[J]. Br. J. Pharmacol 2005;144:459-465.
    [113]De P.L., Cascio M.G., Di M.V. The endocannabinoid system:a general view and latest additions[J]. Br. J. Pharmacol 2004;141:765-774.
    [114]Howlett A.C. The cannabinoid receptors[J]. Prostaglandins Other Lipid Mediat 2002;68-69:619-631.
    [115]Reggio P.H. Pharmacophores for ligands recognition and activation/inactivation of the cannabinoid receptors[J]. Curr. Pharm. Des 2003;9:1607-1633.
    [116]Di M.V. Endocannabinoids:synthesis and degradation[J]. Rev. Physiol. Biochem. Pharmacol 2006;160:1-24.
    [117]Di M.V. Targeting the endocannabinoid system:to enhance or reduce? [J]. Nat. Rev. Drug Discov 2008;7:438-455.
    [118]Jin X.H., Uyama T, Wang J, Okamoto Y, Tonai T, Ueda N. cDNA cloning and characterization of human and mouse Ca(2+)-independent phosphatidylethanolamine N-acyltransferases[J]. Biochim. Biophys. Acta 2009; 1791:32-38.
    [119]Basavarajappa B.S. Critical enzymes involved in endocannabinoid metabolism[J]. Protein Pept. Lett 2007; 14:237-246.
    [120]Cocco L, Faenza Ⅰ, Fiume R, Maria B.A., Gilmour R.S., Manzoli F.A. Phosphoinositide-specific phospholipase C (PI-PLC) betal and nuclear lipid-dependent signaling[J]. Biochim. Biophys. Acta 2006; 1761:509-521.
    [121]Piomelli D. The molecular logic of endocannabinoid signalling[J]. Nat. Rev. Neurosci 2003; 4:873-884.
    [122]Di M.V., Bisogno T, De P.L. Anandamide:some like it hot[J]. Trends Pharmacol. Sci 2001; 22:346-349.
    [123]Palmer S.L., Thakur GA, Makriyannis A. Cannabinergic ligands[J]. Chem. Phys. Lipids 2002; 121:3-19.
    [124]Stella N, Schweitzer P, Piomelli D.A. second endogenous cannabinoid that modulates long-term potentiation [J]. Nature 1997; 388:773-778.
    [125]Hohmann A.G., Suplita R.L., Bolton N.M., Neely M.H., Fegley D, Mangieri R, Krey J.F., Walker J.M., Holmes P.V., Crystal J.D., Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D. An endocannabinoid mechanism for stress-induced analgesia [J]. Nature 2005; 435:1108-1112.
    [126]Suplita R.L., Gutierrez T, Fegley D, Piomelli D, Hohmann A.G. Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia[J]. Neuropharmacology 2006;50:372-379.
    [127]Akopian A.N., Ruparel N.B., Jeske N.A., Patwardhan A, Hargreaves K.M. Role of ionotropic cannabinoid receptors in peripheral antinociception and antihyperalgesia[J]. Trends Pharmacol. Sci 2009;30:79-84.
    [128]Di M.V, Blumberg P.M., Szallasi A. Endovanilloid signaling in pain[J]. Curr. Opin. Neurobiol 2002; 12:372-379.
    [129]Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy Ⅰ. Cannabinoid 1 receptors are expressed in nocceptive primary sensory neurons[J]. Neuroscience 2000; 100:685-688.
    [130]Cristino L, De P.L., Pryce G, Baker D, Guglielmotti V, Di M.V. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain[J]. Neuroscience 2006;139:1405-1415.
    [131]Herkenham M, Lynn A.B., Johnson M.R., Melvin L.S., Costa B.R., Rice K.C. Characterization and localization of cannabinoid receptors in rat brain:a quantitative in vitro autoradiographic study[J]. J. Neurosci 1991; 11:563-583.
    [132]Hohmann A.G. Spinal and peripheral mechanisms of cannabinoid antinociception: behavioural, neurophysiological and neuroanatomical perspectives[J]. Chem. Phys. Lipids 2002; 121:173-190.
    [133]Guindon J, Hohmann A.G. Cannabinoid CB2 receptors:a therapeutic target for the treatment of inflammatory and neuropathic pain[J]. Br. J. Pharmacol 2008; 153:319-334.
    [134]Rice A.S., Farquhar-Smith W.P., Nagy I. Endocannabinoids and pain:spinal and peripheral analgesia in inflammation and neuropathy[J]. Prostaglandins Leukot. Essent. Fatty Acids 2002; 66:243-256.
    [135]Walker J.M., Hohmann A.G. Cannabinoid mechanisms of pain suppression[J]. Handb. Exp. Pharmacol 2005; 168:509-554.
    [136]Lichtman A.H., Martin B.R. Spinal and supraspinal components of cannabinoid-induced antinociception[J]. J. Pharmacol. Exp. Ther 1991;258:517-523.
    [137]Hohmann A.G., Tsou K, Walker J.M. Intrathecal cannabinoid administration suppresses noxious stimulus-evoked Fos protein-like immunoreactivity in rat spinal cord:comparison with morphine[J]. Acta. Pharmacol. Sin 1999;20:1132-1136.
    [138]Lichtman A.H., Cook S.A., Martin B.R. Investigation of brain sites mediating cannabinoid induced antinociception in rats:evidence supporting periaqueductal gray involvement[J]. J. Pharmacol. Exp. Ther 1996;276:585-593.
    [139]Martin W.J., Patrick S.L., Coffin P.O., Tsou K, Walker J.M. An examination of the central sites of action of cannabinoid-induced antinociception in the rat[J]. Life Sci 1995;56:2103-2109.
    [140]Martin W.J., Hohmann A.G., Walker J.M. Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: correlation between electrophysiological and antinociceptive effects[J]. J. Neurosci 1996; 16:6601-6611.
    [141]Martin W.J., Tsou K, Walker J.M. Cannabinoid receptor-mediated inhibition of the rat tail-flick reflex after microinjection into the rostral ventromedial medulla[J]. Neurosci. Lett 1998;242:33-36.
    [142]Meng I.D., Manning B.H., Martin W.J., Fields H.L. An analgesia circuit activated by cannabinoids[J]. Nature 1998;395:381-383.
    [143]Marsicano G, Wotjak C.T., Azad S.C., Bisogno T, Rammes G, Cascio M.G., Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B. The endogenous cannabinoid system controls extinction of aversive memories[J]. Nature 2002;418:530-534.
    [144]Martin W.J., Coffin P.O., Attias E, Balinsky M, Tsou K, Walker J.M. Anatomical basis for cannabinoidinduced antinociception as revealed by intracerebral microinjections[J]. Brain Res 1999;822:237-242.
    [145]Hohmann A.G., Martin W.J., Tsou K, Walker J.M. Inhibition of noxious stimulus-evoked activity of spinal cord dorsal horn neurons by the cannabinoid WIN 55,212-212[J]. Life Sci 1995;56:2111-2118.
    [146]Walker J.M., Huang S.M., Strangman N.M., Tsou K, Sanudo-Pena M.C. Pain modulation by release of the endogenous cannabinoid anandamide[J]. Proc. Natl. Acad. Sci. USA 1999;96:12198-12203.
    [147]Suplita R.L., Farthing J.N., Gutierrez T, Hohmann A.G. Inhibition of fatty-acid amide hydrolase enhances cannabinoid stress-induced analgesia: sites of action in the dorsolateral periaqueductal gray and rostral ventromedial medulla[J]. Neuropharmacology 2005;49:1201-1209.
    [148]Hohmann A.G., Suplita R.L. Endocannabinoid mechanisms of pain modulation[J]. A.A.P.S. J 2006;8:E693-E708.
    [149]Petrosino S, Palazzo E, de Novellis V, Bisogno T, Rossi F, Maione S, Di Marzo V. Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats[J]. Neuropharmacology 2007;52:415-422.
    [150]Palazzo E, de Novellis V, Petrosino S, Marabese I, Vita D, Giordano C, Di Marzo V, Mangoni G.S., Rossi F, Maione S. Neuropathic pain and the endocannabinoid system in the dorsal raphe:pharmacological treatment and interactions with the serotonergic system[J]. Eur. J. Neurosci 2006;24:2011-2020.
    [151]de Lago E, Petrosino S, Valenti M, Morera E, Ortega-Gutierrez S, Fernandez-Ruiz J, Di Marzo V. Effect of repeated systemic administration of selective inhibitors of endocannabinoid inactivation on rat brain endocannabinoid levels[J]. Biochem. Pharmacol 2005;70:446-452.
    [152]Smith P.B., Martin B.R. Spinal mechanisms of delta 9-tetrahydrocannabinol-induced analgesia[J]. Brain Res 1992;578:8-12.
    [153]Hohmann A.G., Tsou K, Walker J.M. Cannabinoid modulation of wide dynamic range neurons in the lumbar dorsal horn of the rat by spinally administered WIN55,212-212[J]. Neurosci. Lett 1998;257:119-122.
    [154]Richardson J.D., Aanonsen L, Hargreaves K.M. Hypoactivity of the spinal cannabinoid system results in NMDA-dependent hyperalgesia[J]. J. Neurosci 1998;18:451-457.
    [155]Elmes S.J., Jhaveri M.D., Smart D, Kendall D.A., Chapman V. Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naive rats and in rat models of inflammatory and neuropathic pain[J]. Eur. J. Neurosci 2004;20:2311-2320.
    [156]Farquhar-Smith W.P., Jaggar S.I., Rice A.S. Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB(1) and CB(2)-like receptors[J]. Pain 2002;97:11-21.
    [157]Martin W.J., Loo C.M., Basbaum A.I. Spinal cannabinoids are anti-allodynic in rats with persistent inflammation[J]. Pain 1999;82:199-205.
    [158]Hohmann A.G., Tsou K, Walker J.M. Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat[J]. J. Neurophysiol 1999;81:575-583.
    [159]Hohmann A.G., Herkenham M. Regulation of cannabinoid and mu opioid receptors in rat lumbar spinal cord following neonatal capsaicin treatment[J]. Neurosci. Lett 1998;252:13-16.
    [160]Salio C, Doly S, Fischer J, Franzoni M.F., Conrath M. Neuronal and astrocytic localization of the cannabinoid receptor-1 in the dorsal horn of the rat spinal cord[J]. Neurosci. Lett 2002;329:13-16.
    [161]Garcia-Ovejero D, Arevalo-Martin A, Petrosino S, Docagne F, Hagen C, Bisogno T, Watanabe M, Guaza C, Di Marzo V, Molina-Holgado E. The endocannabinoid system is modulated in response to spinal cord injury in rats[J]. Neurobiol. Dis 2009;33:57-71.
    [162]Ross R.A., Coutts A.A., McFarlane S.M., Anavi-Goffer S, Irving A.J., Pertwee R.G., MacEwan D.J., Scott R.H. Actions of cannabinoid receptor ligands on rat cultured sensory neurones: implications for antinociception[J]. Neuropharmacology 2001;40:221-232.
    [163]Stander S, Schmelz M, Metze D, Luger T, Rukwied R. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin[J]. J. Dermatol. Sci 2005;38:177-188.
    [164]Walczak J.S., Pichette V, Leblond F, Desbiens K, Beaulieu P. Behavioral, pharmacological and molecular characterization of the saphenous nerve partial ligation:a new model of neuropathic pain[J]. Neuroscience 2005;132:1093-1102.
    [165]Farquhar-Smith, WP.; Rice, ASC. Peripheral mechanisms of inflammatory pain:towards the discovery of novel analgesics. In:Adams, AP.; Cashman, JN., editors. Recent advances in anaesthesia and analgesia[J]. London:Churchill Livingstone; 2000. p.41-60.
    [166]Roosterman D, Goerge T, Schneider S.W., Bunnett N.W., Steinhoff M. Neuronal control of skin function:the skin as a neuroimmunoendocrine organ [J]. Physiol. Rev 2006;86:1309-1379.
    [167]Mitrirattanakul S, Ramakul N, Guerrero A.V., Matsuka Y, Ono T, Iwase H, Mackie K, Faull K.F., Spigelman I. Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain[J]. Pain 2006;126:102-114.
    [168]Bridges D, Rice A.S., Egertova M, Elphick M.R., Winter J, Michael G.J. Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry[J]. Neuroscience 2003;119:803-812.
    [169]Beaulieu P, Bisogno T, Punwar S, Farquhar-Smith WP, Ambrosino G, Di Marzo V, Rice AS. Role of the endogenous cannabinoid system in the formalin test of persistent pain in the rat[J]. Eur. J. Pharmacol 2000;396:85-92.
    [170]Calignano A, La Rana G, Giuffrida A, Piomelli D. Control of pain initiation by endogenous cannabinoids[J]. Nature 1998;394:277-281.
    [171]Holt S, Comelli F, Costa B, Fowler C.J. Inhibitors of fatty acid amide hydrolase reduce carrageenaninduced hind paw inflammation in pentobarbital-treated mice:comparison with indomethacin and possible involvement of cannabinoid receptors[J]. Br. J. Pharmacol 2005; 146:467-476.
    [172]Bisogno T, Ortar G, Petrosino S, Morera E, Palazzo E, Nalli M, Maione S, Di Marzo V, Endocannabinoid Research Group. Development of a potent inhibitor of 2-arachidonoylglycerol hydrolysis with antinociceptive activity in vivo[J]. Biochim. Biophys. Acta 2009; 1791:53-60.
    [173]Khasabova I.A., Khasabov S.G., Harding-Rose C, Coicou L.G., Seybold B.A., Lindberg A.E., Steevens C.D., Simone D.A., Seybold V.S. A decrease in anandamide signaling contributes to the maintenance[J]. Nature 1998;394:277-281.
    [174]Richardson J.D., Aanonsen L, Hargreaves K.M. SR 141716A, a cannabinoid receptor antagonist, produces hyperalgesia in untreated mice[J]. Eur. J. Pharmacol 1997;319:R3-R4.
    [175]Richardson J.D., Kilo S, Hargreaves K.M. Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors[J]. Pain 1998;75:111-119.
    [176]Strangman N.M., Patrick S.L., Hohmann A.G., Tsou K, Walker J.M. Evidence for a role of endogenous cannabinoids in the modulation of acute and tonic pain sensitivity[J]. Brain Res 1998;813:323-328.
    [177]Suplita R.L., Eisenstein S.A., Neely M.H., Moise A.M., Hohmann A.G. Cross-sensitization and crosstolerance between exogenous cannabinoid antinociception and endocannabinoid-mediated stressinduced analgesia[J]. Neuropharmacology 2008;54:161-171. Move so it appears numerically between 184 and 186.
    [178]D'Amour F.E., Smith D.C. A method for determining the loss of pain sensation[J]. J. Pharmacol. Exp. Ther 1941;72:74-79.
    [179]Adams I.B., Compton D.R., Martin B.R. Assessment of anandamide interaction with the cannabinoid brain receptor:SR 141716A antagonism studies in mice and autoradiographic analysis of receptor binding in rat brain[J]. J. Pharmacol. Exp. Ther 1998;284:1209-1217.
    [180]Costa B, Vailati S, Colleoni M. SR 141716A, a cannabinoid receptor antagonist, reverses the behavioural effects of anandamide-treated rats[J]. Behav. Pharmacol 1999; 10:327-331.
    [181]Pertwee R.G. Pharmacological actions of cannabinoids[J]. Handb. Exp. Pharmacol 2005;168:1-51.
    [182]Compton D.R., Martin B.R. The effect of the enzyme inhibitor phenylmethylsulfonyl fluoride on the pharmacological effect of anandamide in the mouse model of cannabimimetic activity[J]. J. Pharmacol. Exp. Ther 1997;283:1138-1143.
    [183]Hasanein P, Shahidi S, Komaki A, Mirazi N. Effects of URB597 as an inhibitor of fatty acid amide hydrolase on modulation of nociception in a rat model of cholestasis[J]. Eur. J. Pharmacol 2008;591:132-135.
    [184]Eick A.J. A change in the response of the mouse in the "hot plate" analgesia-test, owing to a central action of atropine and related compounds[J]. Acta Physiol. Pharmacol. Neerl 1967; 14:499-500.
    [185]Lago E, Fernandez-Ruiz J, Ortega-Gutierrez S, Viso A, Lopez-Rodriguez M.L., Ramos J.A. UCM707, a potent and selective inhibitor of endocannabinoid uptake, potentiates hypokinetic and antinociceptive effects of anandamide [J]. Eur. J. Pharmacol 2002;449:99-103.
    [186]Lago E, Ligresti A, Ortar G, Morera E, Cabranes A, Pryce G, Bifulco M, Baker D, Fernandez R.J., Di M.V. In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake[J]. Eur. J. Pharmacol 2004;484:249-257.
    [187]Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La R.G., Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D. Modulation of anxiety through blockade of anandamide hydro lysis[J]. Nat. Med 2003;9:76-81.
    [188]Hargreaves K, Dubner R, Brown F, Flores C, Joris. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia [J]. Pain 1988;32:77-88.
    [189]Sit S.Y., Conway C, Bertekap R, Xie K, Bourin C, Burris K, Deng H. Novel inhibitors of fatty acid amide hydrolase[J]. Bioorg. Med. Chem. Lett 2007;17:3287-3291.
    [190]Smith F.L., Fujimori K, Lowe J, Welch S.P. Characterization of delta9-tetrahydrocannabinol and anandamide antinociception in nonarthritic and arthritic rats[J]. Pharmacol. Biochem. Behav 1998;60:183-191.
    [191]Coderre T.J., Katz J. Peripheral and central hyperexcitability:differential signs and symptoms in persistent pain[J]. Behav. Brain Sci 1997;20:404-419.
    [192]Coderre T.J., Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury[J]. J. Neurosci 1992;12:3665-3670.
    [193]Puig S, Sorkin L.S. Formalin-evoked activity in identified primary afferent fibers:systemic lidocaine suppresses phase-2 activity[J]. Pain 1996;64:345-355.
    [194]La R.G., Russo R, Campolongo P, Bortolato M, Mangieri R.A., Cuomo V, Iacono A, Raso G.M., Meli R, Piomelli D, Calignano A. Modulation of neuropathic and inflammatory pain by the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide] [J]. J. Pharmacol. Exp. Ther 2006;317:1365-1371.
    [195]Maione S, Morera E, Marabese Ⅰ, Ligresti A, Luongo L, Ortar G, Di Marzo V. Antinociceptive effects of tetrazole inhibitors of endocannabinoid inactivation:cannabinoid and non-cannabinoid receptor-mediated mechanisms[J]. Br. J. Pharmacol 2008; 155:775-782.
    [196]Guindon J, Desroches J, Beaulieu P. The antinociceptive effects of intraplantar injections of 2-arachidonoyl glycerol are mediated by cannabinoid CB2 receptors[J]. Br. J. Pharmacol 2007;150:693-701.
    [197]Maione S, De P.L., Novellis V, Moriello A.S., Petrosino S, Palazzo E, Rossi F.S., Woodward D.F., Di Marzo V. Analgesic actions of N-arachidonoyl-serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors[J]. Br. J. Pharmacol 2007; 150:766-781.
    [198]Ortar G, Cascio M.G., De P.L., Morera E, Rossi F, Schiano-Moriello A, Nalli M, de Novellis V, Woodward D.F., Maione S, Di Marzo V. New N-arachidonoylserotonin analogues with potential "dual" mechanism of action against pain[J]. J. Med. Chem 2007;50:6554-6569.
    [199]Guindon J, LoVerme J, Piomelli D, Beaulieu P. The antinociceptive effects of local injections of propofol in rats are mediated in part by cannabinoid CB1 and CB2 receptors[J]. Anesth. Analg 2007; 104:1563-1569.
    [200]Honore P, Chapman V, Buritova J, Besson J.M. When is the maximal effect of pre-administered systemic morphine on carrageenin evoked spinal c-Fos expression in the rat? [J] Brain Res 1995;705:91-96.
    [201]Jhaveri M.D., Richardson D, Robinson I, Garle M.J., Patel A, Sun Y, Sagar D.R., Bennett A.J., Alexander S.P., Kendall D.A., Barrett D.A., Chapman V. Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain[J]. Neuropharmacology 2008;55:85-93.
    [202]Sagar D.R., Kendall D.A., Chapman V. Inhibition of fatty acid amide hydrolase produces PPAR-alphamediated analgesia in a rat model of inflammatory pain[J]. Br. J. Pharmacol 2008;155:1297-1306.
    [203]Karbarz M.J., Luo L, Chang L, Tham C.S., Palmer J.A., Wilson S.J., Wennerholm M.L., Brown S.M., Scott B.P., Apodaca R.L., Keith J.M., Wu J, Breitenbucher J.G., Chaplan S.R., Webb M. Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-l-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase[J]. Anesth. Analg 2009; 108:316-329.
    [204]Comelli F, Giagnoni G, Bettoni Ⅰ, Colleoni M, Costa B. The inhibition of monoacylglycerol lipase by URB602 showed an anti-inflammatory and anti-nociceptive effect in a murine model of acute inflammation[J]. Br. J. Pharmacol 2007; 152:787-794.
    [205]Magrioti V, Naxakis G, Hadjipavlou-Litina D, Makriyannis A, Kokotos G. A novel monoacylglycerol lipase inhibitor with analgesic and anti-inflammatory activity[J]. Bioorg. Med. Chem. Lett 2008; 18:5424-5427.
    [206]ladarola M.J., Brady L.S., Draisci G, Dubner R. Enhancement of dynorphin gene expression in spinal cord following experimental inflammation:stimulus specificity, behavioral parameters and opioid receptor binding[J]. Pain 1988;35:313-326.
    [207]Walker K.M., Urban L, Medhurst S.J., Patel S, Panesar M, Fox A.J., Mclntyre P. The VR1 antagonist capsazepine reverses mechanical hyperalgesiain models of inflammatory and neuropathic pain[J]. J. Pharmacol. Exp. Ther 2003;304:56-62.
    [208]Jayamanne A, Greenwood R, Mitchell V.A., Asian S, Piomelli D, Vaughan C.W. Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models[J]. Br. J. Pharmacol 2006;147:281-288.
    [209]Farquhar-Smith W.P., Rice A.S. A novel neuroimmune mechanism in cannabinoid-mediated attenuation of nerve growth factor-induced hyperalgesia[J]. Anesthesiology 2003;99:1391-1401.
    [210]Bennett G.J,. Xie Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man[J]. Pain 1988;33:87-107.
    [211]Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury[J]. Pain 1990;43:205-218.
    [212]Kim S.H., Chung J.M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat[J]. Pain 1992;50:355-363.
    [213]Guindon J, Walczak J.S., Beaulieu P. Recent advances in the pharmacological management of pain[J]. Drugs 2007;67:2121-2133.
    [214]Costa B, Siniscalco D, Trovato A.E., Comelli F, Sotgiu M.L., Colleoni M, Maione S, Rossi F, Giagnoni G. AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain[J]. Br. J. Pharmacol 2006;148:1022-1032.
    [215]Russo R, LoVerme J, La Rana G, Compton T.R., Parrott J, Duranti A, Tontini A, Mor M, Tarzia G, Calignano A, Piomelli D. The fatty acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice[J]. J. Pharmacol. Exp. Ther 2007;322:236-242.
    [216]Guindon J, Beaulieu P. Antihyperalgesic effects of local injections of anandamide, ibuprofen, rofecoxib and their combinations in a model of neuropathic pain[J]. Neuropharmacology 2006;50:814-823.
    [217]Helyes Z, Nemeth J, Than M, Bolcskei K, Pinter E, Szolcsanyi J. Inhibitory effect of anandamide on resiniferatoxin-induced sensory neuropeptide release in vivo and neuropathic hyperalgesia in the rat[J]. Life Sci 2003;73:2345-2353.
    [218]Desroches J, Guindon J, Lambert C, Beaulieu P. Modulation of the anti-nociceptive effects of 2-arachidonoyl glycerol by peripherally administered FAAH and MGL inhibitors in a neuropathic pain model[J]. Br. J. Pharmacol 2008;155:913-924.
    [219]Jhaveri M.D., Richardson D, Kendall D.A., Barrett D.A., Chapman V. Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain[J]. J. Neurosci 2006;26:13318-13327.
    [220]Timmons A, Seierstad M, Apodaca R, Epperson M, Pippel D, Brown S, Chang L, Scott B, Webb M, Chaplan SR, Breitenbucher JG. Novel ketooxazole based inhibitors of fatty acid amide hydrolase (FAAH) [J]. Bioorg. Med. Chem. Lett 2008; 18:2109-2113.
    [221]Walter L, Dinh T, Stella N. ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase[J]. J Neurosci 2004; 24:8068-8074.
    [222]Walter L, Franklin A, Witting A, Moller T, Stella N. Astrocytes in culture produce anandamide and other acylethanolamides[J]. J Biol Chem 2002; 277:20869-20876.
    [223]Walter L, Stella N. Endothelin-1 increases 2-arachidonoyl glycerol (2-AG) production in astrocytes[J]. Glia 2003; 44:85-90.
    [224]Stella N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas[J]. Glia; 58:1017-1030.
    [225]Garcia O.D., Arevalo M.A,, Petrosino S, Docagne F, Hagen C, Bisogno T, Watanabe M, Guaza C, Di M.V., Molina H.E. The endocannabinoid system is modulated in response to spinal cord injury in rats[J]. Neurobiol Dis 2009; 33:57-71.
    [226]Alkaitis M.S., Solorzano C, Landry R.P., Piomelli D, DeLeo J.A., Romero-Sandoval E.A. Evidence for a role of endocannabinoids, astrocytes and p38 phosphorylation in the resolution of postoperative pain[J]. PLoS One; 5:e10891.
    [227]Luongo L, Palazzo E, Tambaro S, Giordano C, Gatta L, Scafuro M.A., Rossi F.S., Lazzari P, Pani L, de Novellis V, Malcangio M, Maione S. 1-(2',4'-dichlorophenyl)-6-methyl-N-cyclohexy lamine-1,4-dihydroindeno [1,2-c]pyrazole-3-c arboxamide, a novel CB2 agonist, alleviates neuropathic pain through functional microglial changes in mice[J]. Neurobiol Dis; 37:177-185.
    [228]Lambert D.M., Fowler C.J. The endocannabinoid system:drug targets, lead compounds, and potential therapeutic applications[J]. J Med Chem 2005; 48:5059-5087.
    [229]Bouaboula M, Poinot C.C., Bourrie B, Canat X, Calandra B, Rinaldi C.M., Le Fur G, Casellas P. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1[J]. Biochem J 1995; 312 (Pt 2):637-641.
    [230]Bouaboula M, Poinot C.C., Marchand J, Canat X, Bourrie B, Rinaldi C.M., Calandra B, Le Fur G, Casellas P. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor[J]. Eur J Biochem 1996; 237:704-711.
    [231]Derkinderen P, Ledent C, Parmentier M, Girault J.A. Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus[J]. J Neurochem 2001; 77:957-960.
    [232]Correa F, Hernangomez M, Mestre L, Loria F, Spagnolo A, Docagne F, Di Marzo V, Guaza C. Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors:roles of ERK1/2, JNK, and NF-kappaB[J]. Glia; 58:135-147.
    [233]Ma W, Quirion R. Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus[J]. Pain 2002; 99:175-184.
    [234]Zhuang Z.Y., Gerner P, Woolf C.J., Ji R.R. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model[J]. Pain.2005; 114(1-2):149-159
    [235]Zhuang Z.Y., Wen Y.R., Zhang D.R, Borsello T, Bonny C, Strichartz G.R., Decosterd 1, Ji R.R. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation:respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance[J]. J Neurosci 2006; 26:3551-3560.
    [236]Gao Y.J., Ji R.R. Light touch induces ERK activation in superficial dorsal horn neurons after inflammation:involvement of spinal astrocytes and JNK signaling in touch-evoked central sensitization and mechanical allodynia[J]. J Neurochem 2010; 115:505-514.
    [237]Basbaum, A.I., Woolf, C.J. Pain[J]. Curr. Biol.1999.9, R429-R431.
    [238]Tao, Y.X., Gu, J., Stephens Jr., R.L. Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states[J]. Mol. Pain 2005.1,30.
    [239]Sessle, B.J., Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates[J]. Crit. Rev. Oral Biol. Med. 2000.11,57-91.
    [240]Broer, A., Deitmer, J.W., Broer, S., Astroglial glutamine transport by system N is upregulated by glutamate[J]. Glia 2004.48,298-310.
    [241]Fonseca, L.L., Monteiro, M.A., Alves, P.M., Carrondo, M.J., Santos, H., Cultures of rat astrocytes challenged with a steady supply of glutamate:new model to study flux distribution in the glutamate-glutamine cycle[J]. Glia 2005.51,286-296.
    [242]Keyser, D.O., Pellmar, T.C., Regional differences in glial cell modulation of synaptic transmission[J]. Hippocampus 1997.7,73-77
    [243]Rae, C, Hare, N., Bubb, W.A., McEwan, S.R., Broer, A., McQuillan, J.A., Balcar, V.J., Conigrave, A.D., Broer, S., Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools:further evidence for metabolic compartmentation[J]. J. Neurochem. 2003; 85,503-514.
    [244]Armano, S., Coco, S., Bacci, A., Pravettoni, E., Schenk, U., Verderio, C., Varoqui, H., Erickson, J.D., Matteoli, M.,. Localization and functional relevance of system a neutral amino acid transporters in cultured hippocampal neurons[J]. J. Biol. Chem.2002; 277,10467-10473.
    [245]Varoqui, H., Zhu, H., Yao, D., Ming, H., Erickson, J.D., Cloning and functional identification of a neuronal glutamine transporter[J]. J. Biol. Chem.2000; 275,4049-4054.
    [246]Chiang, C.Y., Li, Z., Dostrovsky, J.O., Hu, J.W., Sessle, B.J., Glutamine uptake contributes to central sensitization in the medullary dorsal horn[J]. Neuroreport 2008; 19,1151-1154.
    [247]Qin, M., Wang, J.J., Cao, R., Zhang, H., Duan, L., Gao, B., Xiong, Y.F., Chen, L.W., Rao, Z.R.,. The lumbar spinal cord glial cells actively modulate subcutaneous formalin induced hyperalgesia in the rat[J]. Neurosci. Res.2006; 55,442-450.
    [248]Raghavendra, V., Tanga, F.Y., DeLeo, J.A., Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS[J]. Eur. J. Neurosci.2004; 20,467-473.
    [249]Sun, S., Cao, H., Han, M., Li, T.T., Pan, H.L., Zhao, Z.Q., Zhang, Y.Q., New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis[J]. Pain 2007; 129,64-75.
    [250]Sun, S., Cao, H., Han, M., Li, T.T., Zhao, Z.Q., Zhang, Y.Q., Evidence for suppression of electroacupuncture on spinal glial activation and behavioral hypersensitivity in a rat model of monoarthritis[J]. Brain Res. Bull.2008; 75,83-93.
    [251]Piao, Z.G., Cho, I.H., Park, C.K., Hong, J.P., Choi, S.Y., Lee, S.J., Lee, S., Park, K., Kim, J.S., Oh, S.B.,. Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury[J]. Pain 2006; 121,219-231.
    [252]Bittencourt, A.L., Takahashi, R.N.,1997. Mazindol and lidocaine are antinociceptives in the mouse formalin model: involvement of dopamine receptor[J]. Eur. J. Pharmacol.330,109 113.
    [253]Malmberg, A.B., Yaksh, T.L. Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat[J]. J. Pharmacol. Exp. Ther.1992; 263,136-146
    [254]Sweitzer, S.M., Colburn, R.W., Rutkowski, M., DeLeo, J.A., Acute peripheral inflammation induces moderate glial activation and spinal IL-1 beta expression that correlates with pain behavior in the rat[J]. Brain Res.1999; 829,209-221.
    [255]Chen, J., Koyama, N., Differential activation of spinal dorsal horn units by subcutaneous formalin injection in the cat: an electrophysiological study[J]. Exp. Brain Res.1998; 118,14-18.
    [256]Guindon J, Hohmann A.G. The endocannabinoid system and pain[J]. CNS Neurol Disord Drug Targets,2009,8:403-421.
    [257]Costa B, Siniscalco D, Trovato A.E., Comelli F, Sotgiu M.L. AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain[J]. Br J Pharmacol,2006,148:1022-1032.
    [258]La R.G., Russo R, Campolongo P, Bortolato M, Mangieri R.A.,Modulation of neuropathic and inflammatory pain by the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide] [J]. J Pharmacol Exp Ther 2006,317: 1365-1371
    [259]Ahn K, Johnson D.S., Mileni M, Beidler D, Long J.Z. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain[J]. Chem Biol 2009,16: 411-420.
    [260]Kinsey S.G., Long J.Z., O'Neal S.T., Abdullah R.A., Poklis J.L. Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain[J]. J Pharmacol Exp Ther, 2009,330:902-910.
    [261][260] Long J.Z., Nomura D.K., Vann R.E., Walentiny D.M., Booker L. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo[J]. Proc Natl Acad Sci U S A,2009,106:20270-20275.
    [262]Walter L, Dinh T, Stella N. ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase[J]. J Neurosci 2004; 24:8068-8074.
    [263]Walter L, Franklin A, Witting A, Moller T, Stella N. Astrocytes in culture produce anandamide and other acylethanoIamides[J]. J Biol Chem 2002; 277:20869-20876.
    [264]Walter L, Stella N. Endothelin-1 increases 2-arachidonoyl glycerol (2-AG) production in astrocytes[J]. Glia 2003; 44:85-90.
    [265]Graham E.S., Ashton J.C., Glass M. Cannabinoid receptors:a brief history and "what's hot"[J]. Front Biosci 2009; 14:944-957.
    [266]Garcia O.D., Arevalo M.A., Petrosino S, Docagne F, Hagen C, Bisogno T, Watanabe M, Guaza C, Di M.V., Molina H.E. The endocannabinoid system is modulated in response to spinal cord injury in rats[J]. Neurobiol Dis 2009; 33:57-71.
    [267]Bouaboula M, Poinot C.C., Bourrie B, Canat X, Calandra B, Rinaldi C.M., Le F.G., Casellas P. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1[J]. Biochem J 1995; 312 (Pt 2):637-641.
    [268]Bouaboula M, Poinot C.C., Marchand J, Canat X, Bourne B, Rinaldi C.M., Calandra B, Le F.G., Casellas P. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression[J]. Eur J Biochem 1996; 237:704-711.
    [269]Derkinderen P, Ledent C, Parmentier M, Girault J.A. Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus[J]. J Neurochem 2001; 77:957-960.
    [270]Correa F, Hernangomez M, Mestre L, Loria F, Spagnolo A, Docagne F, Di M.V., Guaza C. Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB[J]. Glia; 58:135-147.
    [271]Alkaitis M.S., Solorzano C, Landry R.P., Piomelli D, DeLeo J.A., Romero-Sandoval E.A. Evidence for a role of endocannabinoids, astrocytes and p38 phosphorylation in the resolution of postoperative pain[J]. PLoS One; 5:e10891.
    [272]Kai L, Ting L, Ye C, Alan R.L., Kai Y.F. Peripheral formalin injury induces 2 stages of microglial activation in the spinal cord[J]. The Journal of Pain,2010,11:1056-1065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700