文昌鱼CT/CGRP家族和内源性大麻素系统的预测与进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文昌鱼(amphioxus)是现存与脊椎动物祖先最接近的头索动物,是介于无脊椎动物和脊椎动物之间的过渡类型,一直被认为是研究脊椎动物起源和进化的重要模式动物。文昌鱼基因的序列和表达模式已被广泛用于不同物种之间的比较基因组学研究和发育同源性分析。作为脊椎动物的重要调节系统,降钙素(CT)/降钙素基因相关肽(CGRP)家族和内源性大麻素系统(ECS)具有重要研究价值和广阔应用前景。本文对文昌鱼CT/CGRP家族和ECS的生物大分子进行研究分析,进而探讨并揭示了这两个系统在脊椎动物进化过程中的发展与分化。
     CT/CGRP家族是脊椎动物的一大类蛋白家族,包括一类在组成和结构上相近的多肽。最近,发现无脊椎动物玻璃海鞘(Ciona intestinalis)也存在CT/CGRP家族成员Ci-CT,并被认为是脊椎动物CT/CGRP家族的原始类型。但CT/CGRP家族在脊椎动物进化过程中是如何分化成不同的家族成员迄今仍不清楚。本文首先在佛罗里达文昌鱼(Branchiostoma florida)基因组库中BLASTP搜索CT/CGRP家族的蛋白序列,发现了3条类CT/CGRP家族的氨基酸序列,并分别命名为Bf-CTL1、Bf-CTL2和Bf-CTL3,其长度分别为31aa、33aa和32aa。通过序列比对表明:上述3条Bf-CTL的蛋白前体拥有与其他脊索动物CT/CGRP家族成员相同的蛋白修饰位点,具体包括类降钙素结构域两侧典型内切蛋白酶解位点(KR/RR和RXXR)以及C末端Gly信号。通过一致性比较、系统进化树构建、基因结构分析、基因共线性分析以及蛋白三级结构预测等方法都表明Bf-CTL1、Bf-CTL2和Bf-CTL3分别与脊椎动物的AM1/4亚家族、CT/CGRP亚家族和AM2/3有类似的特征。在佛罗里达文昌鱼基因组数据库中,我们还发现了文昌鱼降钙素受体样受体(Bf-CRLR)及其受体活性修饰蛋白(Bf-RAMP),并推测它们对CT/CGRP家族生物学功能的发挥有必不可少的作用。
     通过进一步对文昌鱼CT/CGRP家族成员及其受体预测分析,表明文昌鱼中已经形成CT/CGRP家族系统,这很好地解释了脊椎动物CT/CGRP家族的起源,并表明脊椎动物早期的CT/CGRP家族已在头索动物中发生基因分化。
     本文随后对内源性大麻素系统(ECS)进行了系统的分析,作为一个重要的神经调节系统,ECS参与生物体许多生理和病理过程。在脊椎动物ECS中,目前已知存在8种受体(CNR1,CNR2,GPR55,PPARA,PPARG,TRPV1,TRPV4,TRPA)与大麻素相结合起作用,其中CNR1还需要大麻素受体活性互作蛋白CRIP1的活化。内源性大麻素合成路径中有5种合成酶(ABHD4,DAGLA,DAGLB,NAPE-PLD,PTPN22),并通过5种代谢酶(ASAHL,FAAH1,FAAH2,MGLL,PTGS2)代谢。但在无脊椎动物ECS中,相关受体和代谢合成酶的种类相对较少。
     本文从佛罗里达文昌鱼基因组库中搜索到5种类ECS受体(CNR,PPAR,TRPVL1,TRPVL2,TRPA)、3种类ECS合成酶(ABHD4/5,ABHD4/5L,DAGLA)、6种类ECS代谢酶(ASAHL,FAAH1,FAAH2,MGLL,PTGSL1,PTGSL2)和类大麻素受体活性互作蛋白CRIP1。通过与其他脊索动物ECS基因在蛋白结构域、蛋白功能位点图谱、基因结构和系统发生分析等方面进行比较,判定所提取基因都是脊椎动物ECS基因的原始类型。最后对佛罗里达文昌鱼和玻璃海鞘以及脊椎动物(人、鼠、斑马鱼和河豚)之间的ECS基因选择压力(Ka/Ks)进行计算和分析。通过分析,我们发现所有文昌鱼、海鞘和脊椎动物之间的ECS基因选择压力均小于1,这说明ECS基因在物种进化过程中进行了较强的纯化选择作用。通过相对进化速率(Ka+Ks)和选择压力间的相关性检验,再次验证了ECS基因在进化过程中的相对进化速率与选择压力无相关性。通过比较同义替代率(Ks)发现文昌鱼ECS基因Ks值达到饱和状态相对海鞘ECS基因Ks值较少,所以我们推测文昌鱼比海鞘ECS基因进化程度更高。
Amphioxus or lancelet, a cephalochordate, has long been regarded as the livinginvertebrate most closely related to the proximate invertebrate ancestor of vertebrates.It is a well known as a model organism which has been widely used for interspeciescomparative genome studies and developmental homology analysis. Calcitonin(CT)/calcitonin gene-related peptides (CGRP) family and endocannabinoidsystem(ECS) are very important control systems in vertebrates, their primitive typesare also found in invertebrates. This study was conducted to screen the genes ofCT/CGRP family and ECS in amphioxus, and to probe into the origin and evolutionof the systems in vertebrates.
     As an important protein family in vertebrates, CT/CGRP family, which includesseveral polypeptides with structural similarities, has been extensively studied.Recently, a new member of the CT/CGRP family named Ci-CT has been identified inthe ascidian (Ciona intestinalis), which was regarded as an primitive type ofCT/CGRP family in vertebrates. However, the differentiation of CT/CGRP familymembers in the evolution of vertebrates remains unclear so far. In this study, we haveobtained three CT/CGRP peptide-like peptides named Bf-CTL1, Bf-CTL2andBf-CTL3from the Florida amphioxus (Branchiostoma floridae) genome database byBLASTP, which were consisted of31aa,33aa and32aa, respectively. Our resultsshowed that each of the three Bf-CTL precursor proteins had the same modifier locuswith other chordates by sequence comparison including a CT-like domain flanked by a Gly C-terminal amidation signal and typical endoproteolytic sites (KR/RR andRXXR) at N-and C-termini. It was also revealed that Bf-CTL1, Bf-CTL2andBf-CTL3genes was respectively similar to AM1/4, CGRP and AM2/3in vertebrates.Additionally, a CT receptor-like receptor (Bf-CRLR) and a receptoractivity-modifying protein (Bf-RAMP) which were both necessary for functioning ofCT/CGRP peptides, were also identified in the genome database of B. floridae.
     With the further analysis of the predicted CT/CGRP family, we found that theCT/CGRP family had already formed in amphioxus.We also discovered that the geneof primitive CT/CGRP family had differentiated in cephalochordates
     The endocannabinoid system (ECS) is an important neural control system, andtakes part in many physiological activities in animals. In vertebrate, the ECS consistsof8receptors (CNR1, CNR2, GPR55, PPARA, PPARG, TRPV1, TRPV4, TRPA) ofcannabinoid, as well as a cannabinoid receptor-interacting protein (CRIP1). There is5synthetic enzymes (ABHD4, DAGLA, DAGLB, NAPE-PLD, PTPN22) and5catabolic enzymes (ASAHL, FAAH1, FAAH2, MGLL, PTGS2) in endocannabinoidmetabolic synthesis pathway. However, the ECS has less receptors and enzymes ininvertebrates.
     We have found5receptors (CNR,PPAR,TRPVL1,TRPVL2,TRPA) ofcannabinoid,3synthetic enzymes (ABHD4/5,ABHD4/5L,DAGLA),6catabolicenzymes (ASAHL,FAAH1,FAAH2,MGLL,PTGSL1,PTGSL2) and a CRIP1inB. floridae genome database. All these genes were identified with a set ofbioinformatics analysis, including phylogenetic prediction analysis, gene structureanalysis, protein structural domain analysis and functional assessment score (FAS)mapping, etc. At last, the ECS genes selection pressure (Ka/Ks) of vertebrates relative to amphioxus and ascidian were compared and analyzed. Finally we found that theECS genes Ka/Ks of vertebrates relative to amphioxus and ascidian were all less than1, meaning that genes underwent relatively strong purified selection in evolution. Bycorrelation analysis, we conclude that all of the relative rate of evolution tempo(Ka+Ks) values for individual pairwise calculations didn’t correlate with theircorresponding Ka/Ks values in ECS genes evolution. Moreover, calculation andcomparative analysis concluded that Ks of ECS genes in amphioxus are less thanthose in sea squirts. So it’s clear that ECS genes in amphioxus are more evolutionarythan those of in sea squirts.
引文
[1] Darwin C R.1874. The descent of man and selection in relation to sex.(2ndedition). John Murray, London.
    [2] Shimeld S M, Holland N D. Amphioxus molecular biology: insights intovertebrate evolution and developmental mechanisms. Can. J. Zool.2005,83:90-100.
    [3] Holland L Z, Laudet V, Schubert M. The chordate amphioxus: an emerging modelorganism for developmental biology. Cell. Mol. Life. Sci.2004,61:2290-2308.
    [4]张士璀等.文昌鱼-研究脊椎动物起源和进化的模式动物.生命科学,2001,13:214-218.
    [5] Holland N D, Chen J Y. Origin and early evolution of the vertebreate: newinsights from advances in molecular biology, anatomy, and palaeontology.Bioessay,2001,23(2):142-151.
    [6] Graham A. The evolution of the vertebrates-genes and development. Curr. Opin.Genet. Dev.,2000,10:624-628.
    [7] Liqht S F. Amphioxus fishers near the university of Amoy, China. Science,1923,Ⅷ:57-60.
    [8]金德祥等.厦门文昌鱼.动物学报,1953,5(1):65-78.
    [9] Canestro C, Albalat R, Hjelmqvist L, Godoy L, Jornvall H, Gonzalez-Duarte R.Ascidian and amphioxus Adh genes correlate functional and molecular features ofthe ADH family expansion during vertebrate evolution. Mol Evol,2002,54:81-89.
    [10]方永强.文昌鱼生态习性及其资源的保护.动物学杂志,1987,22:41-45.
    [11] Lacalli T C, Holland N D, West Phil J E. Tran Roy Soc Lon B,1994,344:165-185.
    [12] Covelli I,Salvatore G,Sena L,Roche J.Surlaformationd’hormones thyroidienneset de leurs pre’curseurs parBranchiostoma lanceolaturn.C.R.Soe Biol Paris,1960, l54:1l65-1169.
    [13] Fredriksson G, Ericson L E,Olsson R.Iodine binding in the endostyle of larvalBranchiostoma lanceolatum (Cephalochordata). Gen Comp Endocrinol.1984.56(2):177-184.
    [14] Tsuneki K, Kobayashi H, Ouji M.Histochemical distribu—tion of peroxidase inamphioxus and cyclostomes withspecial reference to theendostyle.Gen CompEndocrinol,1983,50(2):188-200.
    [15] Paris M, Brunet F, Markov G V, Schubert M, Laudet V.The amphioxus genomeenlightens the evolution of the thyroid hormone signaling pathway. Dev GenesEvol,2008,218(11-l2):667-680.
    [16] Hammar J A. Zur Kenntnis der Leberentwicklung bei Amphioxus. Anat. Anz.1898,14:602–606.
    [17] Han L,Zhang S C,Wang Y J,Sun X T. Immunohisto.chemical localizationof vitellogenin in the hepatic diverticulum of the amphioxus Branchiostomabelcheri tsingtauense,with implications of the origin of the liver.Invert Biol,2006,125(2):171-176.
    [18] Liang Y J,Zhang S C,Lun LM,Han L.Presence and lo—calization ofantithrombin and its regulation after acute lipOpOlyssacharide exposure inamphioxus,with implieations for the origin of vertebrate liver.Cell Tissue Res,2006,323(3):537-541.
    [19] Liang Y J,Zhang S C.Demonstration of plasminogen-like protein in amphioxuswith implications of the origin of vertebrate liver.Acta Zool(Stockholm),2006,87(2):141-l45.
    [20] Lun L M,Zhang S C,Liang Y J.Alanine aminotransferase in amphioxus:presence,localization and upregulation after acute lipopOlysaccharide exposure.JBiochem M ol Biol,2006,39(5):511-515.
    [21] Barington E J W. The digestive system of Amphioxus(Branchiostomalancelatus).Phil Trans Roy Soc Lond series B,1937,228:269-310.
    [22] Tjoy L T,Welsch U.Electron microscopical observationson Kolliker’s andHatschek’s pit on the wheel organ in thehead region of amphioxus(Branchiostomalanceolatum).Cell issue Res,1974,153(2):175-187.
    [23]方永强.文昌鱼在生殖内分泌进化中的地位.科学通报,1998,43(3):225-232.
    [24]方永强,王龙.文昌鱼轮器哈氏窝匀浆对幼体蟾蜍睾丸发育的初步探讨.实验生物学报,1984,l7(1):115-117.
    [25]张致一,朱益陶,陈大元.促黄体素(LH)在文昌鱼哈氏窝中免疫细胞化学定位.科学通报,1982,27(15):946-947.
    [26]方永强.鱼类促性腺激素在文昌鱼哈氏窝免疫细胞化学定位.科学通报,1993,38(9):840-842.
    [27] Wilson E B. Amphioxus, and the mosaic theory of development. J. Morphol.1893,8:579–639.
    [28] Conklin E G. The embryology of amphioxus. J. Morph.1932,54:69-151.
    [29] Tung T C, Wu S C, Tung Y Y F. Rotation of the animal blastomeres inamphioxus eggs at the8-cell stage. Sci Record New Ser,1960,4:389-394.
    [30] Tung T C, Wu S C, Tung Y Y F. The developmental potencies of the blastomerelayers in amphioxus egges at the32-cell stage. Sci. Sin,1959,9:119-141.
    [31] Ohno S.(Eds),1970. Evolution by Gene Duplication. Berlin: Springer-Verlag,
    [32] Holland P W H, Garcia-Fernandez J, Williams NA et al. Gene duplications andthe origins of vertebrate development. Development,1994, Suppl:125-133.
    [33] Minguillón C, Gardenyes J, Serra E, Castro L F C, Hill-Force A, Holland P W H,Amemiya C T, Garcia-Fernàndez J. No more than14: the end of the amphioxusHox cluster. Int. J. Biol. Sci.,2005,1:19-23.
    [34] Copp D H,Cmaeron E C,Cheney B A,Dvaidson A G F,Hense K G. Evidencefor calcitonin,a new homrone from the Parathyroid that lowers blood calcium.Endocrniology.1962a,70:638-649.
    [35] Amara S G, Jonas V, Rosenfeld M G, Ong E S, Evans R M. Alternative RNAprocessing in calcitonin gene expression generates mRNAs encoding differentpolypeptide products. Nature,1982,298(5871):140-144.
    [36] Rosenfeld M G, Mermod J J, Amara S G, Swanson L W, Sawchenko P E, Rivier J,Vale W W, Evans R M. Production of a novel neuropeptide encoded by thecalcitonin gene via tissue-specific RNA processing. Nature.1983,304(5922):129-135.
    [37] Cooper G J, Day A J, Willis A C, Roberts A N, Reid K B, Leighton B. Amylinand the amylin gene: structure, function and relationship to islet amyloid and todiabetes mellitus. Biochim Biophys Acta.1989,1014(3):247–258.
    [38] Kitamura K,Kangawa K, Kawamoto M,et al.Adrenomedull in a novelhypotensive peptide isolated from human pheochromocytoma.Biochem BiophysRes Commun,1993,192:553-560.
    [39] Katafuchi T, Hamano K, Kikumoto K, et al. Calcitonin receptor-stimulatingpeptide (CRSP), a new member of the calcitonin gene-related peptide family: Itsisolation from porcine brain, structure,tissue distribution and biological activity.Biol Chem,2003,278:12046-12054.
    [40] Jaesook R, Chia L C, Alka B, et al. Intermedin is a calcitonin/calcitoningene-related peptide family peptide acting through the calcitonin receptor-likereceptor and receptor activity-modifying protein receptor complexes. J Biol Chem,2004,279(8):7264-7274.
    [41] Toshio Sekiguchi, Nobuo Suzuki, Nobuyuki Fujiwara Calcitonin in aprotochordate, Ciona intestinalis-the prototype of the vertebratecalcitonin/calcitonin gene-related peptide superfamily. FEBS Journal.2009,276:4437-4447.
    [42] Osaki T, Katafuchi T, Minamino N. Genomic and expression analysis of caninecalcitonin receptor-stimulating peptides and calcitonin/calcitonin gene-relatedpeptide. Journal of biochemistry,2008,144(4):419-430.
    [43] Wimalawansa S J. Amylin, calcitonin gene-related peptide, calcitonin, andadrenomedullin: a peptide superfamily. Crit Rev Neurobiol.1997,11:167–239.
    [44] Lafont, A G, Dufour S, Fouchereau-Peron M. Evolution of the CT/CGRP family:comparative study with new data from models of teleosts, the eel, and cephalopodmolluscs, the cuttlefish and the nautilus Gen. Comp. Endocrinol.2007,12:1–15.
    [45] Howlett A C. Cannabinoid compounds and signal transduction mecha2nisms. InCannabinoid receptors2molecular biology and pharmacology. London: AcademicPress,1995:66-207.
    [46] Cluk M W,Murpy L O,Olson J,Knezetic J A,Adrian T E,Amylin geneexpression mediated by cAMP/PKA and transcription factors HNF-1and NFY.Molecular and Cellular Endocrinology,2003,210:63-75.
    [47] Brain S D, Grant A D. Vascular actions of calcitonin gene-related peptide andadrenomedullin. Physiol Rev.,2003,84:903-934.
    [48] Petermann J B, Born W, Chang J Y, Fischer J A. Identification in the humancentral nervous system, pituitary, and thyroid of a novel calcitonin gene-relatedpeptide, and partial amino acid sequence in the spinal cord. J. Biol. Chem.,1987,262:542–545.
    [49] Cooper G J, Willis A C, Clark A, Turner R C, Sim R B, Reid K B. Purificationand characterization of a peptide from amyloidrich pancreases of type2diabeticpatients. Proc. Natl. Acad. Sci. USA,1987,84:8628–8632.
    [50] Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura, S., Matsuo H, EtoT. Adrenomedullin: a novely potensive peptide isolated from humanpheochromocytoma. Biochem. Biophys. Res. Commun.1993,192,553–560.
    [51] Ogoshi M, Inoue K, Naruse K, Takei Y. Evolutional history of the calcitoningene-related peptide family in the vertebrates revealed by comparative genomicanalyses. Peptides2006,27:3154–3164.
    [52] Beltowski J, Jamroz A. Adrenomedullin—what do we know10years since itsdiscovery? Pol. J. Pharmacol.2004,56:5–27.
    [53] Lopez J., Martinez A. Cell and molecular biology of the multi-multifunctionalpeptide, adrenomedullin. Int. Rev. Cytol.2002,221:1–92.
    [54] Cluk M W,Murpy L O,Olson J,Knezetic J A,Adrian T E,Amylin geneexpression mediated by cAMP/PKA and transcription factors HNF-1and NFY.Molecular and Cellular Endocrinology,2003,210:63-75.
    [55] Shigemitsu Y, Seiki W, Yukitomo A, et al. Interaction between3’Untranslatedregion of calcitonin receptor messenger ribonucleicacid (RNA) and adenylatePuridylate. Endocrinology,2004,145(4):1730-1738.
    [56] Wang X, Nakamura M, MoriI, et al. Calcitonin receptor gene and breast cancer:quantitative analysis with laser capture microdissection. Breast Cancer Res Treat,2004,83(2):109-117.
    [57] McLatchie L M, Fraser N J, Main M J, et al. RAMPs regulate the transport andligand specificity of the calcitonin-receptor-like receptor. Nature,1998,393:333-339.
    [58] Poyner D R, Sexton P M, Marshall I, et al. International union of pharmacology.XXXII. The mammalian calcitonin gene2related peptides, adrenomedullin,amylin, and calcitonin receptors. Pharmacol Rev,2002,54(2):233-246.
    [59] Marzo V, Fontana A, Cadas H, et al. Formation and inactivation of endogenouscannabinoid anandamide in central neurons [J]. Nature,1994,372:686-691.
    [60] Sugiura T, Waku K.2-A rachidonoylglycerol and the cannabinoid receptors [J].Chem Phys Lipids,2000,108:89-106.
    [61] Wilson R I, Nicoll R A. Endocanabinoid signaling in the brain. Science,2002,296(5568):678-682.
    [62] Gulyas A I, Cravatt B F, Bracey M H, et al. Segregation of twoendocannabinoidhydrolyzing enzymes into pre-and postsynaptic compartments inthe rathippocampus,cerebellum and amygdale [J]. Eur J N eurosc, i2004,20:441-458.
    [63] Pertwee R G, Ross R A. Cannabinoid receptors and their ligands. ProstaglandinsLeukot Essent Fatty Acids,2002,66(2):101-121.
    [64] Martin B R, Lichtman A H. Cannabinoid transmission and pain perception.Neurobiol Dis,1998,5:447-461.
    [65] Matsuda L A, Lolait S J, Brownstein M J, et al Structure of a cannabinoidreceptor and functional expression of the cloned cDNA [J]. Nature,1990,346(6284):561-564.
    [66] Pertwee R G. Medical uses of cannabinoids: The way forward. Addiction.1999,94(3):317-320.
    [67] Howlett A C. Cannabinoid compounds and signal transduction mechanisms. InCannabinoid receptors-molecular biology and pharmacology. London AcademicPress,1995:66-207.
    [68] Wilson R I, Nicoll RA. Endocanabinoid signaling in the brain. Science,2002;296(5568):678-682.
    [69] Christie M J, Vaughan C W. Cannabinoids act backwards. Nature,2001;410(6828):527-530.
    [70] Martin B R, Lichtman A H. Cannabinoid transmission and pain perception.Neurobiol Dis,1998,5(6Pt B):447-461.
    [71] Kapur A, Zhao PW, Sharir H, et al., A typical responsiveness of the orphanGPR55to cannabinoid ligands [J], J Biol Chem,2009,284(43):29817-29827.
    [72] Pisanti S, Bufuleo M, Endocannabinoid system modulation in cancer biology andtherapy [J].Phannacol Res,2009,60(2):107-116
    [73] Bisogno T. Endogenous Cannabinoids: Structure and Metabolism Journal ofNeuroendocrinology,2008,20:1–9
    [74] Matsuda L A, Lolait S J, Brownstein M J, et al. Structure of a cannabinoidreceptor and functional expression of the cloned cDNA [J]. Nature,1990,346(6284):561-564.
    [75] Munro S, Thomas K L, Abu-Shaar M. Molecular characterization of a peripheralreceptor for cannabinoids [J]. Nature,1993,365(6441):61-65.
    [76] Ogoshi M, Inoue K, Naruse K, Takei Y. Evolutionary history of the calcitoningene-related peptide family in vertebrates revealed by comparative genomicanalyses. Peptides.2006,27:3154–3164.
    [77] Takei Y, Ogoshi M, Wong M K S, Nobata S,2010. The calcitonin gene-relatedpeptide family form, function and future perspectives. Springer, Berlin.
    [78] Finn R D, Clements J, Eddy S R. HMMER web server: interactive sequencesimilarity searching. Nucleic Acids Research,2011,39: W29-W37.
    [79] Burge C B, Karlin S. Finding the genes in genomic DNA. Curr. Opin. Struct. Biol,1998,8,346-354.
    [80] Chaves L D, Krueth S B, Bauer M M, Reed K M. Sequence of a Turkey BACClone Identifies MHC Class III Orthologs and Supports Ancient Origins ofImmunological Gene Clusters,2011,132:55-63.
    [81] Kapustin Y, Souvorov A, Tatusova T, Lipman D. Splign: algorithms forcomputing spliced alignments with identification of paralogs. Biol Direct,2008,3:20.
    [82] Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version2.0. Bioinformatics,2007,23:2947–2948.
    [83] Bendtsen J D, Nielsen H, Heijne G, Brunak S. Improved Prediction of SignalPeptides: SignalP3.0. J Mol Biol,2004,340(4):783-795.
    [84] Tamura K, Dudley J, Nei M, Kumar S,2011. MEGA5: molecular evolutionarygenetics analysis using maximum likelihood, evolutionary distance, andmaximum parsimony methods. Mol Biol Evol,28,2731–2739.
    [85] Takei Y, Inoue K, Ogoshi M, Kawahara T, Bannai H, Miyano S. Identification ofnovel adrenomedullin in mammals: a potent cardiovascular and renal regulator.FEBS Lett,2004,556:53–58.
    [86] Geourjon C, Deléage G. SOPMA: Significant improvement in protein secondarystructure prediction by prediction from alignments and joint prediction. ComputAppl Biosci,1995,11(6):681-684.
    [87] DeLano W L.2002. The PyMOL Molecular Graphics System. San Carlos, CA:DeLano Scientific.
    [88] Wong M K S, Takei Y,2009. Cyclostome and chondrichthyan adrenomedullinsreveal ancestral features of the adrenomedullin family. Comp Biochem PhysiolPart B in press,154(3):317-325.
    [89] Vandepoele K, De Vos W, Taylor J, et al.. Major events in the genome evolutionof vertebrates: paranome age and size differ considerably between ray-finned fishand land vertebrates. Proc Natl Acad Sci USA,2004,101:1638–1643.
    [90] Yamanoue Y, Miya M, Inoue J G,2006. The mitochondrial genome of spottedgreen pufferfish Tetraodon nigroviridis (Telostei: Tetraodontiformes) anddivergence time estimation among model ogansms in fishes. Genes Genet Syst.81:29–39.
    [91] Buznikov G A, Slotkin T A, Lauder J M, et. al.2003. Sea Urchin Embryos andLarvae as Biosensors for Neurotoxins. New York, John Wiley&Sons, Inc.
    [92] Buznikov G, Nikitina L, Bezuglov V, Gretskaya N, Giacobini E, Lauder J. Theputative role of cannabinoids in regulation of early sea urchin embryogenesis. SocNeurosci,2002,23:14.
    [93] Matias I, McPartland J M, Di Marzo V. Occurrence and possible biological roleof the endocannabinoid system in the sea squirt Ciona intestinalis. J Neurochem,2005,93(5):1141-1156.
    [94] McPartland J M, Ryan W, Norris C. Tempo and Mode in the EndocannaboinoidSystem William Kilpatrick. J Mol Evol,2007,65:267–276.
    [95] Elphick M R. BfCBR: A cannabinoid receptor ortholog in the cephalochordateBranchiostoma floridae (Amphioxus). Gene,2007,399:65–71.
    [96] McPartland J M, Michelle G, Isabel M, Ryan W, Norris C. William Kilpatrick. Ashifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio). MolGenet Genomics,2007,277:555-570.
    [97] Tzeng Y H, Pan R, Li W H. Comparison of three methods for estimating rates ofsynonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol,2004,21:2290–2298.
    [98] Gillespie J H.1991. The causes of molecular evolution. Oxford University Press,Oxford, England.
    [99] Li W H. Molecular evolution. Sinauer Associates, Sunderland, Mass,1997.
    [100]Ohta T, and Ina Y. Variation in synonymous substitution rates among mammaliangenes and the correlation between synonymous and nonsynonymous divergences,J. Mol. Evol.,1995,41(6):717-720.
    [101]Kimura M.1993. The neutral theory of molecular evolution. CambridgeUniversity Press, Cambridge, England.
    [102]Ohta T. The Nearly Neutral Theory of Molecular Evolution, Annual Review ofEcology and Systematics,1992,23:263-286.
    [103]Messier W, Stewart C B. Episodic adaptive evolution of primate lysozymes,Nature,1997,385(6612):151-154.
    [104]Nei M, Kumar S.2000. Molecular Evolution and Phylogenetics. OxfordUnivesity Press, Oxford, England.
    [105]Nei M, Gojobori T. Simple methods for estimating the numbers of synonymousand nonsynonymous nucleotide substitutions. Mol Biol Evol.1986,3,418-426.
    [106]Li W H. Unbiased estimation of the Rates of synonymous and nonsynonymoussubstitution. J. Mol. Evol.1993.36:96-99.
    [107]Li W H, Wu C I. and Luo C C. A new method for estimating synonymous andnonsynonymous rates of nucleotide substitution considering the relativelikelihood of nucleotide and codon changes. Mol. Biol. Evol.1985,2:150-174.
    [108]Hurst L D. The Ka/Ks ratio: diagnosing the form of sequence evolution. TrendsGenet2002,18:486–487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700