电针预处理通过EAAT2调节NDRG2诱导脑缺血耐受的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中风是世界第二大致死性第一大致残性疾病。因此需要开发有效地治疗手段来预防中风发生,同时减少缺血再灌注造成的损伤。电针是一种传统医学与现代电疗结合的新的治疗手段。由于针刺对于很多心脑疾患都有很好的疗效,电针疗法是对传统针刺的一大提升。我们近年的研究显示,电针能够发挥预处理效应,诱导脑缺血耐受。随后的机制研究显示,电针的预处理效应涉及到许多信号通路,如提高抗氧化物活性、调节内源性大麻素系统以及抑制凋亡。脑内星形胶质细胞在缺血后第一个受到损伤,并启动级联反应,影响神经元的转归。NDRG2表达于星形胶质细胞,并可能参与星形胶质细胞的功能调节,我们前期研究也证实NDRG2在脑缺血损伤后表达上调。但其在电针预处理诱导的脑缺血耐受中的作用以及上下游调节机制尚不清楚。本研究旨在探讨NDRG2在电针预处理中的作用,并研究其上下游调节机制。
     实验一NDRG2在电针预处理诱导的脑缺血耐受作用的研究
     目的:探讨NDRG2在电针预处理诱导的脑缺血耐受中的作用
     方法:60只雄性SD大鼠,体重280-320g,随机分为3组(n=20):假手术组(Sham):不插入栓线,其余处理同MCAO组;对照组(Con):建立MCAO模型,再灌注24h后处死;EA组(EA):单次电针刺激,刺激后2h行MCAO,再灌注后24h处死动物。动物处死后取材,用免疫荧光双标法定性观察NDRG2蛋白的细胞分布,Western Blot定量检测NDRG2蛋白表达,RT-PCR半定量测NDRG2mRNA表达,免疫荧光双标法测NDRG2的细胞定位,细胞凋亡用TUNEL法检测。
     结果:缺血再灌24h后,NDRG2表达上调且主要分布于缺血半影区的GFAP阳性细胞中,NDRG2mRNA的表达和蛋白表达趋势一致。NDRG2在假手术组主要定位于星形胶质细胞的胞浆,单纯缺血时则主要定位于胞核,电针预处理组NDRG2表达较缺血组减少,胞核与胞浆均存在定位。TUNEL与NDRG2双标结果显示:NDRG2信号与TUNEL阳性细胞存在共定位,电针预处理组缺血半暗区TUNEL与NDRG2双阳性细胞表达较缺血组减少。
     结论:电针预处理通过逆转NDRG2表达上调减少凋亡,从而诱导脑缺血耐受。
     实验二电针预处理通过EAAT2调节NDRG2表达的研究
     目的:探讨电针预处理是否通过EAAT2调节NDRG2表达
     方法:100只雄性SD大鼠,体重280-320g,随机分为5组(n=20):假手术组(Sham):不插入栓线,其余处理同MCAO组;单纯缺血组(Con):建立MCAO模型,再灌注24h后处死;EA组(EA):单次电针刺激,刺激后2h行MCAO,再灌注后24h处死动物;EAAT2激动剂(CXT)组;EAAT2抑制剂(DHK)组。再灌注后24h评价神经功能学评分及脑梗死容积,动物处死后取材,用免疫荧光双标法定性观察NDRG2蛋白的细胞分布,WesternBlot定量检测EAAT2及NDRG2蛋白表达。
     结果:CXT组神经功能学评分明显优于MCAO组,DHK组与MCAO组组间比较无显著统计学差异。CXT组脑梗死容积明显小于MCAO组(P<0.01),DHK组与MCAO组组间比较无显著统计学差异。CXT组EAAT2表达高于MCAO组,DHK组与MCAO组组间比较无显著统计学差异。CXT组NDRG2表达低于MCAO组,DHK组与MCAO组组间比较无显著统计学差异。NDRG2主要分布于缺血半影区的GFAP阳性细胞中,在假手术组主要定位于星形胶质细胞的胞浆,MCAO时主要定位于胞核,电针预处理组胞核与胞浆均存在定位,CXT组主要表达于胞浆,DHK组多表达于胞核。
     结论:电针预处理可通过上调星形胶质细胞中EAAT2的表达,抑制NDRG2的上调,从而减轻脑缺血损伤。
     实验三2-AG通过NDRG2调节STAT3在脑缺血耐受中作用的研究
     目的:探讨2-AG通过NDRG2调节STAT3在脑缺血耐受中的作用
     方法:培养原代星形胶质细胞细胞,构建氧糖剥夺OGD模型模拟脑缺血。细胞转染pSRL-SIH1-H1-GFP后行OGD,对照组不施行OGD,其余同实验组。MTT及LDH检测细胞活力,Western Blot检测NDRG2及STAT3表达。随后转染pSRL-CDH1-GFP细胞后加入2-AG行OGD,MTT及LDH检测细胞活力,Western Blot观察NDRG2及STAT3表达。
     结果:MTT及LDH结果显示,ODG后星形胶质细胞活力较正常细胞降低,转染pSRL-SIH1-H1-GFP组细胞活力与正常细胞无差异;与正常星形胶质细胞相比,OGD后NDRG2、pSTAT3蛋白水平上调,而pSRL-SIH1-H1-GFP转染组NDRG2、pSTAT3蛋白水平低于ODG组。2-AG组细胞活力比OGD组细胞活力高,pSRL-CDH1-GFP转染细胞后,抑制了2-AG组的细胞生存;Western Blot结果显示,与OGD组相比,2-AG组NDRG2、pSTAT3表达下调,转染pSRL-CDH1-GFP后,逆转了2-AG对NDRG2、pSTAT3表达的抑制作用。
     结论:2-AG通过减少NDRG2表达从而抑制STAT3磷酸化产生神经保护效应。
Stroke is the second most common cause of death and results in a largenumber of people with disability worldwide. Therefore, it is a huge and urgentmedical need to develop novel and rational strategies aimed at preventing strokeas well as reducing impairments caused by ischemia/reperfusion (I/R) injury.EAis a novel therapy based on traditional acupuncture combined with modernelectrotherapy. Due to the beneficial effects of acupuncture to different brainand heart diseases, EA has been used in treatment as an improvement ontraditional acupuncture.In recent years, numerous studies have shown that EAalso induced pretreatment effect, inducing ischemic tolerance as well. Manystudies have shown that protective mechanisms of EA preconditioning mayinvolve a series of regulatory molecular pathways including activityenhancement of antioxidant, regulation of the endocannabinoid system,inhibition of apoptosis, etc. Astrocytes is the first cell type in the central nervoussystem to encounter insult after brain ischemia, and induced initiation ofischemic cascade.NDRG2is expressed in astrocytes, and may involve in the modulation of glial cell function in the central nervous system. However, therole of NDRG2in the EA induced cerebral ischemic tolerance is unknown. Thisstudy was designed to investigate the role of NDRG2in neuroprotective effectof EA, and to explore its possible up and downstream regulation mechanism.
     Experiment1
     Purpose: N-myc downstream regulated gene2(NDRG2) was reported to bewidely expressed in the nervous system. However, the expression and potentialrole of NDRG2in focal cerebral ischemia brain remain unclear. Herein, weinvestigated whether or not the NDRG2was involved in the ischemic toleranceinduced by EA preconditioning in rats.
     Methods: Male SD rats were radomly divided into three groups as follows:Sham, MCAO and EA groups. After24h period of reperfusion, brain sampleswere harvested to determine the expression of NDRG2in the brain by reversetranscriptase-polymerase chain reaction (RT-PCR), Western Blot analysis andimmunohistochemical staining. Cellular apoptosis was assessed by TUNELstaining.
     Results: By using double immunofluorescence, NDRG2signals in astrocyteswas suppressed in EA group at24h after reperfusion, and NDRG2proteinexpression was weak in the nucleus and strong in the cytoplasm in the EA group,but strong in nucleus in the MCAO group. Triple immunofluorescent stainingfor TUNEL, NDRG2, and DAPI showed that most of NDRG2signalsco-localized with apoptotic cells. Moreover, the number of apoptotic cellsdecreased with attenuation of NDRG2-positive signals in EA group comparedwith MCAO group. Conclusion: NDRG2is involved in anti-apoptosis induced byelectroacupuncture preconditioning after focal cerebral ischemia in rats。
     Experiment2
     Purpose: To investigated if EAAT2regulate NDRG2involved in cerebralischemic tolerance induced by electroacupancture.
     Methods: Male SD rats were radomly divided into three groups as follows:Sham, MCAO, EA, CXT and DHK groups. After24h period of reperfusion,the animals were examined for neurological scores and then killed to measuredinfarct volumes, brain samples were harvested to determine the expression ofNDRG2in the brain by Western Blot analysis and immunohistochemicalstaining.
     Results: The neurological scores were higher in EA and CXT groups than thatin MCAO group, no statistical difference was found between DHK group andMCAO group.The infarct volumes in EA and CXT groups were significantlysmaller than that in MCAO group, no statistical difference was found betweenDHK and MCAO group. EAAT2signals was suppressed in DHK group andactivated in EA and CXT groups.The expression of NDRG2protein expressionwas weak in the EA and CXT groups, but strong in the DHK group.Conclusion: Electroacupancture preconditioning suppressed NDRG2viaupregulated the expression of EAAT2involved in cerebral ischemic tolerance.
     Experiment3
     Purpose: To investigated the role of NDRG2regulate STAT3in protectiveeffect induced by2-AG in primary astrocytes after OGD.
     Methods: After transfecting the NDRG2pSRL-SIH1-H1-GFP vector, OGD4h, reoxygenation was subjected to primary astrocytes in24h. The cell growth wasmonitored by MTT and LDH assay, NDRG2and STAT3protein level wasdetected by Western Blot and immunocytochemistry. Then ransfecting theNDRG2pSRL-CDH1-GFP and add2-AG. After OGD was subjected to primaryastrocytes, the cell growth was monitored by MTT and LDH assay, NDRG2andSTAT3protein were detected by Western Blot and immunocytochemistry.
     Results: The cell viability was inhibited after OGD, no statistical difference wasfound between pSRL-SIH1-H1-GFP and Sham groups. The level of NDRG2,pSTAT3in ODG group were higher than those in sham group, and comparedto OGD group, the upregulation of NDRG2, pSTAT3in pSRL-SIH1-H1-GFPgroup were supressed. The cell viability in2-AG group was higher thanthat inOGD group, and ransfecting the NDRG2pSRL-CDH1-GFP vector reversed theprotective effects of2-AG. no statistical difference was found betweenpSRL-SIH1-H1-GFP and OGD groups. The level of NDRG2, pSTAT3in2-AGgroup were loeer than those in OGD group, no statistical difference was foundbetween pSRL-SIH1-H1-GFP and OGD groups.
     Conclusion:2-AG suppressed phosphorylation of STAT3by decreasedexpression of NDRG2induced neuroprotection.
引文
[1] Xiong L, Lu Z, Hou L, et al. Pretreatment with repeated electroacupunctureattenuates transient focal cerebral ischemic injury in rats.[J]. Chin Med J (Engl),2003,116(1):108-111.
    [2] Wang Q, Peng Y, Chen S, et al. Pretreatment with electroacupunctureinduces rapid tolerance to focal cerebral ischemia through regulation ofendocannabinoid system.[J]. Stroke,2009,40(6):2157-2164.
    [3] Du J, Wang Q, Hu B, et al. Involvement of ERK1/2activation inelectroacupuncture pretreatment via cannabinoid CB1receptor in rats.[J]. BrainRes,2010,1360:1-7.
    [4] Wang Q, Li X, Chen Y, et al. Activation of epsilon protein kinaseC-mediated anti-apoptosis is involved in rapid tolerance induced byelectroacupuncture pretreatment through cannabinoid receptor type1.[J]. Stroke,2011,42(2):389-396.
    [5] Li Y, Shen L, Cai L, et al. Spatial-temporal expression of NDRG2in ratbrain after focal cerebral ischemia and reperfusion.[J]. Brain Res,2011.
    [6] Shen L, Zhao Z Y, Wang Y Z, et al. Immunohistochemical detection ofNdrg2in the mouse nervous system.[J]. Neuroreport,2008,19(9):927-931.
    [7] Rao V L, Dogan A, Todd K G, et al. Antisense knockdown of the glialglutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1,exacerbates transient focal cerebral ischemia-induced neuronal damage in ratbrain.[J]. J Neurosci,2001,21(6):1876-1883.
    [8] Kang J M, Park H J, Choi Y G, et al. Acupuncture inhibits microglialactivation and inflammatory events in the MPTP-induced mouse model.[J].Brain Res,2007,1131(1):211-219.
    [9] Lei C, Deng J, Wang B, et al. Reactive oxygen species scavenger inhibitsSTAT3activation after transient focal cerebral ischemia-reperfusion injury inrats[J]. Anesth Analg,2011,113(1):153-159.
    [10] Lee E B, Kim A, Kang K, et al. NDRG2-mediated Modulation of SOCS3and STAT3Activity Inhibits IL-10Production.[J]. Immune Netw,2010,10(6):219-229.
    [11] Salter K, Hellings C, Foley N, et al. The experience of living with stroke: aqualitative meta-synthesis[J]. J Rehabil Med,2008,40(8):595-602.
    [12] Yepes M, Roussel B D, Ali C, et al. Tissue-type plasminogen activator inthe ischemic brain: more than a thrombolytic[J]. Trends Neurosci,2009,32(1):48-55.
    [13] Lansberg M G, Schwartz N E. Tissue plasminogen activator does notbenefit most eligible patients with stroke[J]. Arch Neurol,2009,66(4):540-541,541.
    [14] Toyoda K, Fujii K, Kamouchi M, et al. Free radical scavenger, edaravone,in stroke with internal carotid artery occlusion[J]. J Neurol Sci,2004,221(1-2):11-17.
    [15]杨静,熊利泽,王强,等.不同刺激参数及其组合对电针诱导大鼠脑缺血耐受效应的影响[J].中国针灸,2004,24(3):208-212.
    [16]劳宁,熊利泽,路志红,等.不同频率电针预处理对诱导脑缺血耐受程度的差异[J].中国临床康复,2005,9(9):116-117.
    [17]路志红,熊利泽,朱正华,等.电针诱导大鼠脑缺血耐受作用的穴位特异性研究[J].中国针灸,2002,22(10):671-673.
    [18]雷毅,熊利泽,曾毅,等.不同穴位重复电针预处理诱导兔脊髓缺血耐受效果的对比[J].中国临床康复,2003,7(26):3562-3564.
    [19]张民,刘剑波,张宏亮,等.单次电针预处理诱导大鼠局灶性脑缺血耐受的时程[J].中华麻醉学杂志,2003,23(5):355-357.
    [20] Wang Q, Xiong L, Chen S, et al. Rapid tolerance to focal cerebral ischemiain rats is induced by preconditioning with electroacupuncture: window ofprotection and the role of adenosine.[J]. Neurosci Lett,2005,381(1-2):158-162.
    [21]秦明,黄裕新,王景杰,等.电针在应激大鼠胃粘膜保护作用中对氧自由基和前列腺素的影响[J].第四军医大学学报,2001,22(9):803-805.
    [22] Gidday J M. Cerebral preconditioning and ischaemic tolerance[J]. Nat RevNeurosci,2006,7(6):437-448.
    [23]路志红,熊利泽,田磊,等.重复电针预处理对脑缺血再灌注大鼠脑皮层热休克蛋白70表达的影响[J].中华麻醉学杂志,2004,24(6):453-456.
    [24] Xiong L Z, Yang J, Wang Q, et al. Involvement of delta-and mu-opioidreceptors in the delayed cerebral ischemic tolerance induced by repeatedelectroacupuncture preconditioning in rats.[J]. Chin Med J (Engl),2007,120(5):394-399.
    [25] Dong H, Fan Y H, Zhang W, et al. Repeated electroacupuncturepreconditioning attenuates matrix metalloproteinase-9expression and activityafter focal cerebral ischemia in rats[J]. Neurol Res,2009,31(8):853-858.
    [26] Feng S, Wang Q, Wang H, et al. Electroacupuncture pretreatmentameliorates hypergravity-induced impairment of learning and memory andapoptosis of hippocampal neurons in rats.[J]. Neurosci Lett,2010,478(3):150-155.
    [27]王强,刘艳红,熊利泽,等.腺苷A1受体参与单次电针预处理诱导的脑急性缺血耐受[J].中国中西医结合急救杂志,2004,11(1):13-16.
    [28] Wang Q, Peng Y, Chen S, et al. Pretreatment with electroacupunctureinduces rapid tolerance to focal cerebral ischemia through regulation ofendocannabinoid system.[J]. Stroke,2009,40(6):2157-2164.
    [29] Zhong S, Li Z, Huan L, et al. Neurochemical Mechanism ofElectroacupuncture: Anti-injury Effect on Cerebral Function after FocalCerebral Ischemia in Rats[J]. Evid Based Complement Alternat Med,2009,6(1):51-56.
    [30]田代实,邓医宇,王光海,等.针刺预处理对大鼠局灶性脑缺血的抗细胞凋亡作用[J].第四军医大学学报,2004,25(1):27-29.
    [31]唐伟,孙忠人,王卓尔,等.针刺预处理对大鼠脑缺血再灌注损伤的保护作用[J].中国中医药科技,2006,13(4):209-210.
    [32] Jiang K, Zhao Z, Shui Q, et al. Electro-acupuncture preconditioningabrogates the elevation of c-Fos and c-Jun expression in neonatalhypoxic-ischemic rat brains induced by glibenclamide, an ATP-sensitivepotassium channel blocker[J]. Brain Res,2004,998(1):13-19.
    [33] Aubert A, Pellerin L, Magistretti P J, et al. A coherent neurobiologicalframework for functional neuroimaging provided by a model integratingcompartmentalized energy metabolism[J]. Proc Natl Acad Sci U S A,2007,104(10):4188-4193.
    [34] Escartin C, Valette J, Lebon V, et al. Neuron-astrocyte interactions in theregulation of brain energy metabolism: a focus on NMR spectroscopy[J]. JNeurochem,2006,99(2):393-401.
    [35] Hertz L, Peng L, Dienel G A. Energy metabolism in astrocytes: high rate ofoxidative metabolism and spatiotemporal dependence onglycolysis/glycogenolysis[J]. J Cereb Blood Flow Metab,2007,27(2):219-249.
    [36] Sokoloff L. Energetics of functional activation in neural tissues[J].Neurochem Res,1999,24(2):321-329.
    [37] Verkhratsky A, Toescu E C. Neuronal-glial networks as substrate for CNSintegration[J]. J Cell Mol Med,2006,10(4):826-836.
    [38] Brown A M, Sickmann H M, Fosgerau K, et al. Astrocyte glycogenmetabolism is required for neural activity during aglycemia or intensestimulation in mouse white matter[J]. J Neurosci Res,2005,79(1-2):74-80.
    [39] Gruetter R. Glycogen: the forgotten cerebral energy store[J]. J NeurosciRes,2003,74(2):179-183.
    [40] Mangia S, Giove F, Tkac I, et al. Metabolic and hemodynamic events afterchanges in neuronal activity: current hypotheses, theoretical predictions and invivo NMR experimental findings[J]. J Cereb Blood Flow Metab,2009,29(3):441-463.
    [41] Rouach N, Koulakoff A, Abudara V, et al. Astroglial metabolic networkssustain hippocampal synaptic transmission[J]. Science,2008,322(5907):1551-1555.
    [42] Tsacopoulos M, Magistretti P J. Metabolic coupling between glia andneurons[J]. J Neurosci,1996,16(3):877-885.
    [43] Dienel G A, Hertz L. Glucose and lactate metabolism during brainactivation[J]. J Neurosci Res,2001,66(5):824-838.
    [44] Dimmer K S, Friedrich B, Lang F, et al. The low-affinity monocarboxylatetransporter MCT4is adapted to the export of lactate in highly glycolytic cells[J].Biochem J,2000,350Pt1:219-227.
    [45] Hu Y, Wilson G S. A temporary local energy pool coupled to neuronalactivity: fluctuations of extracellular lactate levels in rat brain monitored withrapid-response enzyme-based sensor[J]. J Neurochem,1997,69(4):1484-1490.
    [46] Korf J. Is brain lactate metabolized immediately after neuronal activitythrough the oxidative pathway?[J]. J Cereb Blood Flow Metab,2006,26(12):1584-1586.
    [47] Schurr A. Lactate: the ultimate cerebral oxidative energy substrate?[J]. JCereb Blood Flow Metab,2006,26(1):142-152.
    [48] Abi-Saab W M, Maggs D G, Jones T, et al. Striking differences in glucoseand lactate levels between brain extracellular fluid and plasma in conscioushuman subjects: effects of hyperglycemia and hypoglycemia[J]. J Cereb BloodFlow Metab,2002,22(3):271-279.
    [49] Magnoni S, Ghisoni L, Locatelli M, et al. Lack of improvement in cerebralmetabolism after hyperoxia in severe head injury: a microdialysis study[J]. JNeurosurg,2003,98(5):952-958.
    [50] Galeffi F, Foster K A, Sadgrove M P, et al. Lactate uptake contributes tothe NAD(P)H biphasic response and tissue oxygen response during synapticstimulation in area CA1of rat hippocampal slices[J]. J Neurochem,2007,103(6):2449-2461.
    [51] Oz G, Berkich D A, Henry P G, et al. Neuroglial metabolism in the awakerat brain: CO2fixation increases with brain activity[J]. J Neurosci,2004,24(50):11273-11279.
    [52] Gibbons H M, Dragunow M. Adult human brain cell culture forneuroscience research[J]. Int J Biochem Cell Biol,2010,42(6):844-856.
    [53] Petito C K, Morgello S, Felix J C, et al. The two patterns of reactiveastrocytosis in postischemic rat brain[J]. J Cereb Blood Flow Metab,1990,10(6):850-859.
    [54] Anderson M F, Blomstrand F, Blomstrand C, et al. Astrocytes and stroke:networking for survival?[J]. Neurochem Res,2003,28(2):293-305.
    [55] Fawcett J W, Asher R A. The glial scar and central nervous systemrepair[J]. Brain Res Bull,1999,49(6):377-391.
    [56] Ayata C, Ropper A H. Ischaemic brain oedema[J]. J Clin Neurosci,2002,9(2):113-124.
    [57] Budd S L, Lipton S A. Calcium tsunamis: do astrocytes transmit cell deathmessages via gap junctions during ischemia?[J]. Nat Neurosci,1998,1(6):431-432.
    [58] Largo C, Cuevas P, Herreras O. Is glia disfunction the initial cause ofneuronal death in ischemic penumbra?[J]. Neurol Res,1996,18(5):445-448.
    [59] Saito R, Graf R, Hubel K, et al. Reduction of infarct volume by halothane:effect on cerebral blood flow or perifocal spreading depression-likedepolarizations[J]. J Cereb Blood Flow Metab,1997,17(8):857-864.
    [60] Thompson R J, Macvicar B A. Connexin and pannexin hemichannels ofneurons and astrocytes[J]. Channels (Austin),2008,2(2):81-86.
    [61] Chen Y, Swanson R A. Astrocytes and brain injury[J]. J Cereb Blood FlowMetab,2003,23(2):137-149.
    [62] Dringen R. Metabolism and functions of glutathione in brain[J]. ProgNeurobiol,2000,62(6):649-671.
    [63] Mizui T, Kinouchi H, Chan P H. Depletion of brain glutathione bybuthionine sulfoximine enhances cerebral ischemic injury in rats[J]. Am JPhysiol,1992,262(2Pt2): H313-H317.
    [64] Xu L, Emery J F, Ouyang Y B, et al. Astrocyte targeted overexpression ofHsp72or SOD2reduces neuronal vulnerability to forebrain ischemia[J]. Glia,2010,58(9):1042-1049.
    [65] Shashidharan P, Plaitakis A. Cloning and characterization of a glutamatetransporter cDNA from human cerebellum[J]. Biochim Biophys Acta,1993,1216(1):161-164.
    [66] Storck T, Schulte S, Hofmann K, et al. Structure, expression, and functionalanalysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain[J].Proc Natl Acad Sci U S A,1992,89(22):10955-10959.
    [67] Shashidharan P, Wittenberg I, Plaitakis A. Molecular cloning of humanbrain glutamate/aspartate transporter II[J]. Biochim Biophys Acta,1994,1191(2):393-396.
    [68] Perego C, Vanoni C, Bossi M, et al. The GLT-1and GLAST glutamatetransporters are expressed on morphologically distinct astrocytes and regulatedby neuronal activity in primary hippocampal cocultures[J]. J Neurochem,2000,75(3):1076-1084.
    [69] Liang J, Takeuchi H, Doi Y, et al. Excitatory amino acid transporterexpression by astrocytes is neuroprotective against microglial excitotoxicity[J].Brain Res,2008,1210:11-19.
    [70] Schmitt A, Asan E, Lesch K P, et al. A splice variant of glutamatetransporter GLT1/EAAT2expressed in neurons: cloning and localization in ratnervous system.[J]. Neuroscience,2002,109(1):45-61.
    [71] Yamada T, Kawahara K, Kosugi T, et al. Nitric oxide produced duringsublethal ischemia is crucial for the preconditioning-induced down-regulation ofglutamate transporter GLT-1in neuron/astrocyte co-cultures[J]. Neurochem Res,2006,31(1):49-56.
    [72] Yernool D, Boudker O, Folta-Stogniew E, et al. Trimeric subunitstoichiometry of the glutamate transporters from Bacillus caldotenax andBacillus stearothermophilus[J]. Biochemistry,2003,42(44):12981-12988.
    [73] Yernool D, Boudker O, Jin Y, et al. Structure of a glutamate transporterhomologue from Pyrococcus horikoshii[J]. Nature,2004,431(7010):811-818.
    [74] Koch H P, Larsson H P. Small-scale molecular motions accomplishglutamate uptake in human glutamate transporters[J]. J Neurosci,2005,25(7):1730-1736.
    [75] Mennerick S, Dhond R P, Benz A, et al. Neuronal expression of theglutamate transporter GLT-1in hippocampal microcultures[J]. J Neurosci,1998,18(12):4490-4499.
    [76] Dowd L A, Robinson M B. Rapid stimulation of EAAC1-mediatedNa+-dependent L-glutamate transport activity in C6glioma cells by phorbolester[J]. J Neurochem,1996,67(2):508-516.
    [77] Palos T P, Ramachandran B, Boado R, et al. Rat C6and human astrocytictumor cells express a neuronal type of glutamate transporter[J]. Brain Res MolBrain Res,1996,37(1-2):297-303.
    [78] Dunlop J, Lou Z, Mcilvain H B. Properties of excitatory amino acidtransport in the human U373astrocytoma cell line[J]. Brain Res,1999,839(2):235-242.
    [79] Bar-Peled O, Ben-Hur H, Biegon A, et al. Distribution of glutamatetransporter subtypes during human brain development[J]. J Neurochem,1997,69(6):2571-2580.
    [80] Furuta A, Martin L J, Lin C L, et al. Cellular and synaptic localization ofthe neuronal glutamate transporters excitatory amino acid transporter3and4[J].Neuroscience,1997,81(4):1031-1042.
    [81] Schlag B D, Vondrasek J R, Munir M, et al. Regulation of the glialNa+-dependent glutamate transporters by cyclic AMP analogs and neurons[J].Mol Pharmacol,1998,53(3):355-369.
    [82] Hu W H, Walters W M, Xia X M, et al. Neuronal glutamate transporterEAAT4is expressed in astrocytes[J]. Glia,2003,44(1):13-25.
    [83] Arriza J L, Eliasof S, Kavanaugh M P, et al. Excitatory amino acidtransporter5, a retinal glutamate transporter coupled to a chlorideconductance[J]. Proc Natl Acad Sci U S A,1997,94(8):4155-4160.
    [84] Pow D V, Barnett N L. Developmental expression of excitatory amino acidtransporter5: a photoreceptor and bipolar cell glutamate transporter in ratretina[J]. Neurosci Lett,2000,280(1):21-24.
    [85] Rothstein J D, Dykes-Hoberg M, Pardo C A, et al. Knockout of glutamatetransporters reveals a major role for astroglial transport in excitotoxicity andclearance of glutamate[J]. Neuron,1996,16(3):675-686.
    [86] Rao V L, Dogan A, Bowen K K, et al. Antisense knockdown of the glialglutamate transporter GLT-1exacerbates hippocampal neuronal damagefollowing traumatic injury to rat brain[J]. Eur J Neurosci,2001,13(1):119-128.
    [87] Vizi E S. Role of high-affinity receptors and membrane transporters innonsynaptic communication and drug action in the central nervous system[J].Pharmacol Rev,2000,52(1):63-89.
    [88] Rossi D J, Oshima T, Attwell D. Glutamate release in severe brainischaemia is mainly by reversed uptake[J]. Nature,2000,403(6767):316-321.
    [89] Danbolt N C. Glutamate uptake[J]. Prog Neurobiol,2001,65(1):1-105.
    [90] Kanai Y, Hediger M A. The glutamate and neutral amino acid transporterfamily: physiological and pharmacological implications[J]. Eur J Pharmacol,2003,479(1-3):237-247.
    [91] Grewer C, Rauen T. Electrogenic glutamate transporters in the CNS:molecular mechanism, pre-steady-state kinetics, and their impact on synapticsignaling[J]. J Membr Biol,2005,203(1):1-20.
    [92] Sepkuty J P, Cohen A S, Eccles C, et al. A neuronal glutamate transportercontributes to neurotransmitter GABA synthesis and epilepsy[J]. J Neurosci,2002,22(15):6372-6379.
    [93] Murray C J, Lopez A D. Alternative projections of mortality and disabilityby cause1990-2020: Global Burden of Disease Study[J]. Lancet,1997,349(9064):1498-1504.
    [94] Fei Z, Zhang X, Bai H M, et al. Posttraumatic secondary brain insultsexacerbates neuronal injury by altering metabotropic glutamate receptors[J].BMC Neurosci,2007,8:96.
    [95] Romera C, Hurtado O, Botella S H, et al. In vitro ischemic toleranceinvolves upregulation of glutamate transport partly mediated by theTACE/ADAM17-tumor necrosis factor-alpha pathway[J]. J Neurosci,2004,24(6):1350-1357.
    [96] Maragakis N J, Rothstein J D. Glutamate transporters: animal models toneurologic disease[J]. Neurobiol Dis,2004,15(3):461-473.
    [97] Inage Y W, Itoh M, Wada K, et al. Expression of two glutamatetransporters, GLAST and EAAT4, in the human cerebellum: their correlation indevelopment and neonatal hypoxic-ischemic damage[J]. J Neuropathol ExpNeurol,1998,57(6):554-562.
    [98] Martin L J, Brambrink A M, Lehmann C, et al. Hypoxia-ischemia causesabnormalities in glutamate transporters and death of astroglia and neurons innewborn striatum[J]. Ann Neurol,1997,42(3):335-348.
    [99] Fukamachi S, Furuta A, Ikeda T, et al. Altered expressions of glutamatetransporter subtypes in rat model of neonatal cerebral hypoxia-ischemia[J].Brain Res Dev Brain Res,2001,132(2):131-139.
    [100] Munch C, Zhu B G, Leven A, et al. Differential regulation of5' splicevariants of the glutamate transporter EAAT2in an in vivo model of chemicalhypoxia induced by3-nitropropionic acid[J]. J Neurosci Res,2003,71(6):819-825.
    [101] Pow D V, Naidoo T, Lingwood B E, et al. Loss of glial glutamatetransporters and induction of neuronal expression of GLT-1B in the hypoxicneonatal pig brain[J]. Brain Res Dev Brain Res,2004,153(1):1-11.
    [102] Chen J C, Hsu-Chou H, Lu J L, et al. Down-regulation of the glialglutamate transporter GLT-1in rat hippocampus and striatum and itsmodulation by a group III metabotropic glutamate receptor antagonist followingtransient global forebrain ischemia[J]. Neuropharmacology,2005,49(5):703-714.
    [103] Robinson M B, Djali S, Buchhalter J R. Inhibition of glutamate uptakewith L-trans-pyrrolidine-2,4-dicarboxylate potentiates glutamate toxicity inprimary hippocampal cultures[J]. J Neurochem,1993,61(6):2099-2103.
    [104] Dugan L L, Bruno V M, Amagasu S M, et al. Glia modulate the responseof murine cortical neurons to excitotoxicity: glia exacerbate AMPAneurotoxicity[J]. J Neurosci,1995,15(6):4545-4555.
    [105] Guiramand J, Martin A, de Jesus F M, et al. Gliotoxicity in hippocampalcultures is induced by transportable, but not by nontransportable, glutamateuptake inhibitors[J]. J Neurosci Res,2005,81(2):199-207.
    [106] Erten S F, Kocak A, Ozdemir I, et al. Protective effect of melatonin onexperimental spinal cord ischemia[J]. Spinal Cord,2003,41(10):533-538.
    [107] Yamada T, Kawahara K, Kosugi T, et al. Nitric oxide produced duringsublethal ischemia is crucial for the preconditioning-induced down-regulation ofglutamate transporter GLT-1in neuron/astrocyte co-cultures[J]. Neurochem Res,2006,31(1):49-56.
    [108] Hashiguchi A, Yano S, Morioka M, et al. Up-regulation of endothelialnitric oxide synthase via phosphatidylinositol3-kinase pathway contributes toischemic tolerance in the CA1subfield of gerbil hippocampus[J]. J CerebBlood Flow Metab,2004,24(3):271-279.
    [109] Dallas M, Boycott H E, Atkinson L, et al. Hypoxia suppresses glutamatetransport in astrocytes[J]. J Neurosci,2007,27(15):3946-3955.
    [110] Boycott H E, Wilkinson J A, Boyle J P, et al. Differential involvement ofTNF alpha in hypoxic suppression of astrocyte glutamate transporters[J]. Glia,2008,56(9):998-1004.
    [111] Furness D N, Dehnes Y, Akhtar A Q, et al. A quantitative assessment ofglutamate uptake into hippocampal synaptic terminals and astrocytes: newinsights into a neuronal role for excitatory amino acid transporter2(EAAT2)[J].Neuroscience,2008,157(1):80-94.
    [112] Montiel T, Camacho A, Estrada-Sanchez A M, et al. Differential effects ofthe substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC) and thenon-substrate inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) ofglutamate transporters on neuronal damage and extracellular amino acid levelsin rat brain in vivo[J]. Neuroscience,2005,133(3):667-678.
    [113] Rothstein J D, Patel S, Regan M R, et al. Beta-lactam antibiotics offerneuroprotection by increasing glutamate transporter expression[J]. Nature,2005,433(7021):73-77.
    [114] Lee S G, Su Z Z, Emdad L, et al. Mechanism of ceftriaxone induction ofexcitatory amino acid transporter-2expression and glutamate uptake in primaryhuman astrocytes.[J]. J Biol Chem,2008,283(19):13116-13123.
    [115] Romera C, Hurtado O, Botella S H, et al. In vitro ischemic toleranceinvolves upregulation of glutamate transport partly mediated by theTACE/ADAM17-tumor necrosis factor-alpha pathway[J]. J Neurosci,2004,24(6):1350-1357.
    [116] Weller M L, Stone I M, Goss A, et al. Selective overexpression ofexcitatory amino acid transporter2(EAAT2) in astrocytes enhancesneuroprotection from moderate but not severe hypoxia-ischemia[J].Neuroscience,2008,155(4):1204-1211.
    [117] Chu K, Lee S T, Sinn D I, et al. Pharmacological Induction of IschemicTolerance by Glutamate Transporter-1(EAAT2) Upregulation[J]. Stroke,2007,38(1):177-182.
    [118] Weller M L, Stone I M, Goss A, et al. Selective overexpression ofexcitatory amino acid transporter2(EAAT2) in astrocytes enhancesneuroprotection from moderate but not severe hypoxia-ischemia.[J].Neuroscience,2008,155(4):1204-1211.
    [119] Tilleux S, Goursaud S, Hermans E. Selective up-regulation of GLT-1incultured astrocytes exposed to soluble mediators released by activatedmicroglia[J]. Neurochem Int,2009,55(1-3):35-40.
    [120] Lewerenz J, Albrecht P, Tien M L, et al. Induction of Nrf2and xCT areinvolved in the action of the neuroprotective antibiotic ceftriaxone in vitro[J]. JNeurochem,2009,111(2):332-343.
    [121] Saitoh Y, Kato A, Hagihara Y, et al. Gene therapy for ischemic braindiseases[J]. Curr Gene Ther,2003,3(1):49-58.
    [122] Tsuboniwa N, Morishita R, Hirano T, et al. Safety evaluation ofhemagglutinating virus of Japan--artificial viral envelope liposomes innonhuman primates[J]. Hum Gene Ther,2001,12(5):469-487.
    [123] Deng Y, Yao L, Chau L, et al. N-Myc downstream-regulated gene2(NDRG2) inhibits glioblastoma cell proliferation.[J]. Int J Cancer,2003,106(3):342-347.
    [124] Hu X L, Liu X P, Deng Y C, et al. Expression analysis of the NDRG2gene in mouse embryonic and adult tissues.[J]. Cell Tissue Res,2006,325(1):67-76.
    [125] Okuda T, Kokame K, Miyata T. Differential expression patterns of NDRGfamily proteins in the central nervous system.[J]. J Histochem Cytochem,2008,56(2):175-182.
    [126] Lachat P, Shaw P, Gebhard S, et al. Expression of NDRG1, adifferentiation-related gene, in human tissues.[J]. Histochem Cell Biol,2002,118(5):399-408.
    [127] Qu X, Zhai Y, Wei H, et al. Characterization and expression of threenovel differentiation-related genes belong to the human NDRG gene family.[J].Mol Cell Biochem,2002,229(1-2):35-44.
    [128] Nichols N R. Ndrg2, a novel gene regulated by adrenal steroids andantidepressants, is highly expressed in astrocytes.[J]. Ann N Y Acad Sci,2003,1007:349-356.
    [129] Takahashi K, Yamada M, Ohata H, et al. Expression of Ndrg2in the ratfrontal cortex after antidepressant and electroconvulsive treatment.[J]. Int JNeuropsychopharmacol,2005,8(3):381-389.
    [130] Mitchelmore C, Buchmann-Moller S, Rask L, et al. NDRG2: a novelAlzheimer's disease associated protein.[J]. Neurobiol Dis,2004,16(1):48-58.
    [131] Murray J T, Campbell D G, Morrice N, et al. Exploitation of KESTREL toidentify NDRG family members as physiological substrates for SGK1andGSK3[J]. Biochem J,2004,384(Pt3):477-488.
    [132] Burchfield J G, Lennard A J, Narasimhan S, et al. Akt mediatesinsulin-stimulated phosphorylation of Ndrg2: evidence for cross-talk withprotein kinase C theta.[J]. J Biol Chem,2004,279(18):18623-18632.
    [133] Choi S C, Kim K D, Kim J T, et al. Expression and regulation of NDRG2(N-myc downstream regulated gene2) during the differentiation of dendriticcells.[J]. FEBS Lett,2003,553(3):413-418.
    [134] Nichols N R. Ndrg2, a novel gene regulated by adrenal steroids andantidepressants, is highly expressed in astrocytes[J]. Ann N Y Acad Sci,2003,1007:349-356.
    [135] Li Y, Shen L, Cai L, et al. Spatial-temporal expression of NDRG2in ratbrain after focal cerebral ischemia and reperfusion[J]. Brain Res,2011,1382:252-258.
    [136] Stromberg H, Svensson S P, Hermanson O. Distribution of thetranscription factor signal transducer and activator of transcription3in the ratcentral nervous system and dorsal root ganglia[J]. Brain Res,2000,853(1):105-114.
    [137] Suzuki S, Tanaka K, Nogawa S, et al. Phosphorylation of signaltransducer and activator of transcription-3(Stat3) after focal cerebral ischemiain rats[J]. Exp Neurol,2001,170(1):63-71.
    [138] Wen T C, Peng H, Hata R, et al. Induction of phosphorylated-Stat3following focal cerebral ischemia in mice[J]. Neurosci Lett,2001,303(3):153-156.
    [139] Dziennis S, Jia T, Ronnekleiv O K, et al. Role of signal transducer andactivator of transcription-3in estradiol-mediated neuroprotection[J]. JNeurosci,2007,27(27):7268-7274.
    [140] Haas C A, Hofmann H D, Kirsch M. Expression of CNTF/LIF-receptorcomponents and activation of STAT3signaling in axotomized facialmotoneurons: evidence for a sequential postlesional function of the cytokines[J].J Neurobiol,1999,41(4):559-571.
    [141] Wang Q, Wang F, Li X, et al. Electroacupuncture pretreatment attenuatescerebral ischemic injury through alpha7nicotinic acetylcholinereceptor-mediated inhibition of high-mobility group box1release in rats[J]. JNeuroinflammation,2012,9(1):24.
    [142] Fan Y, Ye J, Shen F, et al. Interleukin-6stimulates circulatingblood-derived endothelial progenitor cell angiogenesis in vitro[J]. J Cereb BloodFlow Metab,2008,28(1):90-98.
    [143] Schabitz W R, Kollmar R, Schwaninger M, et al. Neuroprotective effectof granulocyte colony-stimulating factor after focal cerebral ischemia[J]. Stroke,2003,34(3):745-751.
    [144] Komine-Kobayashi M, Zhang N, Liu M, et al. Neuroprotective effect ofrecombinant human granulocyte colony-stimulating factor in transient focalischemia of mice[J]. J Cereb Blood Flow Metab,2006,26(3):402-413.
    [145] Choi J S, Kim S Y, Cha J H, et al. Upregulation of gp130and STAT3activation in the rat hippocampus following transient forebrain ischemia[J]. Glia,2003,41(3):237-246.
    [146] Satriotomo I, Bowen K K, Vemuganti R. JAK2and STAT3activationcontributes to neuronal damage following transient focal cerebral ischemia[J]. JNeurochem,2006,98(5):1353-1368.
    [147] Raghavendra R V, Bowen K K, Dhodda V K, et al. Gene expressionanalysis of spontaneously hypertensive rat cerebral cortex following transientfocal cerebral ischemia[J]. J Neurochem,2002,83(5):1072-1086.
    [148] Yamashita T, Sawamoto K, Suzuki S, et al. Blockade of interleukin-6signaling aggravates ischemic cerebral damage in mice: possible involvement ofStat3activation in the protection of neurons[J]. J Neurochem,2005,94(2):459-468.
    [149] Tanaka K. Alteration of second messengers during acute cerebral ischemia-adenylate cyclase, cyclic AMP-dependent protein kinase, and cyclic AMPresponse element binding protein[J]. Prog Neurobiol,2001,65(2):173-207.
    [150] Yi J H, Park S W, Kapadia R, et al. Role of transcription factors inmediating post-ischemic cerebral inflammation and brain damage[J].Neurochem Int,2007,50(7-8):1014-1027.
    [151] Gu F, Hata R, Ma Y J, et al. Suppression of Stat3promotes neurogenesisin cultured neural stem cells[J]. J Neurosci Res,2005,81(2):163-171.
    [152] Sriram K, Benkovic S A, Hebert M A, et al. Induction of gp130-relatedcytokines and activation of JAK2/STAT3pathway in astrocytes precedesup-regulation of glial fibrillary acidic protein in the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration: key signaling pathwayfor astrogliosis in vivo?[J]. J Biol Chem,2004,279(19):19936-19947.
    [153] Suzuki S, Yamashita T, Tanaka K, et al. Activation of cytokine signalingthrough leukemia inhibitory factor receptor (LIFR)/gp130attenuates ischemicbrain injury in rats[J]. J Cereb Blood Flow Metab,2005,25(6):685-693.
    [154] Yamashita T, Sawamoto K, Suzuki S, et al. Blockade of interleukin-6signaling aggravates ischemic cerebral damage in mice: possible involvement ofStat3activation in the protection of neurons[J]. J Neurochem,2005,94(2):459-468.
    [155] Battle T E, Frank D A. The role of STATs in apoptosis[J]. Curr Mol Med,2002,2(4):381-392.
    [156] Dziennis S, Jia T, Ronnekleiv O K, et al. Role of signal transducer andactivator of transcription-3in estradiol-mediated neuroprotection[J]. JNeurosci,2007,27(27):7268-7274.
    [157] Shyu W C, Lin S Z, Chiang M F, et al. Secretoneurin promotesneuroprotection and neuronal plasticity via the Jak2/Stat3pathway in murinemodels of stroke[J]. J Clin Invest,2008,118(1):133-148.
    [158] Covey M V, Levison S W. Leukemia inhibitory factor participates in theexpansion of neural stem/progenitors after perinatal hypoxia/ischemia[J].Neuroscience,2007,148(2):501-509.
    [159] Scholzke M N, Schwaninger M. Transcriptional regulation ofneurogenesis: potential mechanisms in cerebral ischemia[J]. J Mol Med (Berl),2007,85(6):577-588.
    [160] Cadet J L, Krasnova I N. Cellular and molecular neurobiology of brainpreconditioning.[J]. Mol Neurobiol,2009,39(1):50-61.
    [161] Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance againstcerebral ischaemia: from experimental strategies to clinical use.[J]. LancetNeurol,2009,8(4):398-412.
    [162] Dong H, Fan Y H, Zhang W, et al. Repeated electroacupuncturepreconditioning attenuates matrix metalloproteinase-9expression and activityafter focal cerebral ischemia in rats.[J]. Neurol Res,2009,31(8):853-858.
    [163] Petito C K, Babiak T. Early proliferative changes in astrocytes inpostischemic noninfarcted rat brain.[J]. Ann Neurol,1982,11(5):510-518.
    [164] Swanson R A, Ying W, Kauppinen T M. Astrocyte influences on ischemicneuronal death.[J]. Curr Mol Med,2004,4(2):193-205.
    [165] Ellen T P, Ke Q, Zhang P, et al. NDRG1, a growth and cancer relatedgene: regulation of gene expression and function in normal and disease states.[J].Carcinogenesis,2008,29(1):2-8.
    [166] Wang L, Liu N, Yao L, et al. NDRG2is a new HIF-1target genenecessary for hypoxia-induced apoptosis in A549cells.[J]. Cell PhysiolBiochem,2008,21(1-3):239-250.
    [167] Hirt L, Price M, Bogousslavsky J.[Cerebral ischemia and apoptosis][J].Rev Med Suisse,2005,1(17):1149-1152.
    [168] Hou W G, Zhao Y, Shen L, et al. Differential expression of N-Mycdownstream regulated gene2(NDRG2) in the rat testis during postnataldevelopment.[J]. Cell Tissue Res,2009,337(2):257-267.
    [169] Shi H, Li N, Li S, et al. Expression of NDRG2in esophageal squamouscell carcinoma.[J]. Cancer Sci,2010,101(5):1292-1299.
    [170] Suchak S K, Baloyianni N V, Perkinton M S, et al. The 'glial' glutamatetransporter, EAAT2(Glt-1) accounts for high affinity glutamate uptake intoadult rodent nerve endings.[J]. J Neurochem,2003,84(3):522-532.
    [171] Parpura V, Haydon P G. Physiological astrocytic calcium levels stimulateglutamate release to modulate adjacent neurons[J]. Proc Natl Acad Sci U S A,2000,97(15):8629-8634.
    [172] Seri B, Garcia-Verdugo J M, Mcewen B S, et al. Astrocytes give rise tonew neurons in the adult mammalian hippocampus[J]. J Neurosci,2001,21(18):7153-7160.
    [173] Abbott N J. Astrocyte-endothelial interactions and blood-brain barrierpermeability[J]. J Anat,2002,200(6):629-638.
    [174] Mauch D H, Nagler K, Schumacher S, et al. CNS synaptogenesispromoted by glia-derived cholesterol[J]. Science,2001,294(5545):1354-1357.
    [175] Yu A C, Lau L T. Expression of interleukin-1alpha, tumor necrosis factoralpha and interleukin-6genes in astrocytes under ischemic injury[J]. NeurochemInt,2000,36(4-5):369-377.
    [176] Chu K, Lee S T, Sinn D I, et al. Pharmacological Induction of IschemicTolerance by Glutamate Transporter-1(EAAT2) Upregulation.[J]. Stroke,2007,38(1):177-182.
    [177] Lipski J, Wan C K, Bai J Z, et al. Neuroprotective potential of ceftriaxonein in vitro models of stroke[J]. Neuroscience,2007,146(2):617-629.
    [178] Verma R, Mishra V, Sasmal D, et al. Pharmacological evaluation ofglutamate transporter1(GLT-1) mediated neuroprotection following cerebralischemia/reperfusion injury.[J]. Eur J Pharmacol,2010,638(1-3):65-71.
    [179] Zhang M, Li W B, Geng J X, et al. The upregulation of glial glutamatetransporter-1participates in the induction of brain ischemic tolerance in rats.[J].J Cereb Blood Flow Metab,2007,27(7):1352-1368.
    [180] Jung H H, Lee J J, Washington J M, et al. Inability of volatile anestheticsto inhibit oxygen-glucose deprivation-induced glutamate release via glutamatetransporters and anion channels in rat corticostriatal slices.[J]. Brain Res,2008,1227:234-239.
    [181] Bigdeli M R, Rahnema M, Khoshbaten A. Preconditioning with sublethalischemia or intermittent normobaric hyperoxia up-regulates glutamatetransporters and tumor necrosis factor-alpha converting enzyme in the ratbrain.[J]. J Stroke Cerebrovasc Dis,2009,18(5):336-342.
    [182] Planas A M, Soriano M A, Berruezo M, et al. Induction of Stat3, a signaltransducer and transcription factor, in reactive microglia following transientfocal cerebral ischaemia[J]. Eur J Neurosci,1996,8(12):2612-2618.
    [183] Lee E B, Kim A, Kang K, et al. NDRG2-mediated Modulation of SOCS3and STAT3Activity Inhibits IL-10Production[J]. Immune Netw,2010,10(6):219-229.
    [184] Park Y, Shon S K, Kim A, et al. SOCS1induced by NDRG2expressionnegatively regulates STAT3activation in breast cancer cells[J]. BiochemBiophys Res Commun,2007,363(2):361-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700