油松雌配子体游离核有丝分裂的细胞学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽宁兴城油松种子园的油松(Pinus tabulaeformis Carr.)雌性不育株(28号无性系)表现为球果能正常长大,但雌配子体由于游离核有丝分裂不能继续进行而停止发育,导致胚珠败育。该不育系具有稳定的遗传特性,是研究木本植物雌配子体发育调控机制的极好材料。为进一步分析该不育系游离核停止分裂的原因,本论文在系统研究油松28号不育系游离核停止分裂前后细胞形态学和组织化学的基础上,以油松种胚为材料建立了油松悬浮细胞系,采用细胞同步化技术、流式细胞仪技术、蛋白质双向电泳技术等研究手段初步分析了油松细胞周期调控机制;并进一步利用免疫印迹、免疫组化技术探讨了细胞周期相关调控因子在游离核分裂关键时期的表达。研究结果为揭示裸子植物雌配子体发育过程中细胞周期调控因子的表达与调控机制提供了非常有价值的信息,对拓展木本植物发育生物学的研究领域,以及揭示植物雌性不育机制等都具有十分重要的意义。
     1.利用油松雌配子体分离、电镜观察、细胞组织化学等技术,观察比较了在游离核停止分裂前后油松11号可育系和28号不育系珠被、珠心、雌配子体及游离核的显微结构、超微结构、营养物质的动态变化。发现油松不育系雌配子体发育停止在游离核时期,该时期不育系游离核等细胞器出现异常,细胞核膨大,核仁消失,核内染色质发生汇聚、凝集,在雌配子体细胞质中含有大量的异常线粒体,其形态异常膨大或延长,内部结构模糊不清,而小液泡的数量明显减少,甚至看不到较大的液泡,并且有部分液泡膜出现凹陷或裂解。另外不育系胚珠珠心组织细胞异常加厚,多糖物质出现异常积累。
     2.油松悬浮细胞细胞周期的研究结果显示,处于指数生长的油松悬浮细胞用3mM HU处理24h后,细胞恢复生长3h时,90.71%的细胞被阻断于G1期,恢复生长27h时,M/A分裂指数达到最大值,并且有40%的细胞进入G2期。分析同步化处理后恢复生长3h和27h的细胞蛋白质组,发现G1期细胞特有蛋白质点11个,M期细胞新增加4个。与G1期相比,M期表达量明显上调的蛋白质点7个,明显下调的蛋白质点3个。差异蛋白质主要分布在18kDa/pI6.3-30kDa/pI7.5和60kDa/pI6.5-70kDa/pI7.2两个区域。推测这些蛋白质可能参与了不同时期细胞周期的调控过程。
     3. CaM和类Cyclin C蛋白在雌配子体游离核有丝分裂过程中起着重要作用。CaM,类Cyclin C蛋白在油松细胞周期过程中呈现出相似的周期性变化,即G1期含量较少,S期大量积累,到G2期CaM含量有所减少,在下一个细胞周期S期又增加,表明这些因子与油松细胞周期调控有关。CaM和类Cyclin C蛋白在油松胚珠中的分布具有时空调控特征。在游离核旺盛分裂期,珠被大细胞层中CaM的分布明显减少,而外侧珠被组织中CaM的分布明显增加,推测珠被组织可能作为产生或集散CaM的部位,通过钙(Ca2+)信号系统调控了游离核的分裂以及珠心组织细胞的降解;在雌配子体细胞化过程中,雌配子体游离核区CaM含量的增加,推测可能与游离核细胞壁的形成相关。类Cyclin C蛋白伴随着油松雌配子体游离核的旺盛分裂而表达,在败育后期不育系胚珠中类Cyclin C蛋白过度表达,推测可能参与了油松游离核有丝分裂的调控,类Cyclin C蛋白异常表达可能是影响雌配子体育性的重要因素。
The cones of clone 28 can aggrandize normally, but their ovules aborted due to the free nuclei mitosis failure of female gametophyte in the seed orchard of Pinus tabulaeformis Carr. in Xingcheng, Liaoning Province. It is an excellent material for mechanism research on the female gametophyte development of woody plants with its steady genetic characteristic of female sterility. The projective of this study was to analyze the mechanism of the free nuclei mitosis failure in this female sterility clone. After system studies of cytomorphology and histochemistry in ovules during the free nuclei mitosis failure, a fine cell culture from the embryos of P. tabulaeformis was established in this paper. The regulation mechanism of cell cycle in P. tabulaeformis was analyzed by cell synchronization, flow cytometric and 2-dimensional electrophores. Western blotting and immunohistochemical were applied to exploring the expression of the cell-cycle regulating factors during the free nuclei mitosis failure. The results were valuable information for understanding the expression and regulation of cell-cycle associated factors during female gametophyte development of gymnosperm, which were significant for extending study field of woody plants developmental biology and uncovering the mechanism of female sterility.
     1. The changes of the microstructure, ultrastructure and nutrient in the integument, female gametophyte and free nuclei in the clone 28 and clone 11 during the free nuclei mitosis failure were studied by isolation technique of female gametophyte, electron transmission microscope and histochemistry. The female gametophyte development in the female-sterile clone stopped at the stage of free nuclei. The cell organs of female gametophyte in the female-sterile clone were abnormal, the nucleus became swollen,the nucleolus disappeared, and the chromatin began to condense. There were large amounts of abnormal mitochondria swelling and extending in the cytoplasm of female gametophyte and their inside structures became unclean, while the number of vacuole decreased significantly even no larger vacuoles were found in the cytoplasm. Depression and rupture appeared in tonoplast. Cell walls were getting thick in nucellus cells near the female gametophyte and polysaccharides accumulated abnormally.
     2. The result of study on the cell cycle in P. tabulaeformis showed that suspension cells in exponential phase treated with 3 mM HU for 24h, after subcultured for 3h following the treatment, 90.71% cells were in phase G1; cultured for 27h after the removal, about 40% cells entered in phase G2, meanwhile the maximum number of cells in metaphase/anaphase was found. The changes of protein components between cells in 3h and 27h after the removal were analyzed by 2-dimensional electrophoresis. The result showed there were 11 proteins expressed only in phase G1 and 4 proteins expressed only in phase M. The volume of 7 proteins increased and the volume of 3 proteins decreased in phase M compared to proteins of cells in phase G1. These proteins distributed mainly in 18kDa/pI6.3-30kDa/pI7.5 and 60kDa/pI6.5-70kDa/pI7.2, and may be necessary for regulation of distinct phases in cell cycle.
     3. It was found that CaM and Cyclin C-like protein played an important role in the free nuclei mitosis of female gametophyte. The result showed that the expression of CaM and Cyclin C-like protein changed similarly throughout the cell cycle, the content of CaM and Cyclin C-like protein in phase G1 was little, and increased greatly in phase S, then in phase G2 the content decreased. After that, cells entered into next cell cycle, the content increased again in phase S. These results indicated that CaM and Cyclin C-like protein involved in the cell cycle regulation of P. tabulaeformis. The distribution of CaM,Cyclin C-like protein expressed the time-space-regulation specificity. At the stage of free nuclei vigorous division, the CaM distribution in the layers of big cells in integument decreased, however, the CaM distribution in the outboard cells in the integument increased obviously. Therefore, the integument was probably taken as a synthetic site or a accumulated and scattered site of CaM, and regulated free nuclei mitosis and cell degradation in nucellus. The content increase of CaM in free nuclei suggested to be related to cell wall formation during cell generating process in female gametophyte. Cyclin C-like protein expressed following free nuclei vigorous division. Overexpression of Cyclin C-like protein at the late stage of the abortion suggested it might involve in the regulation of free nuclei mitosis, and its aberrant expression may be an important factor influencing the female gametophyte fertility.
引文
[1] 包仁艳,姜春宁,郑彩霞等.植物雌配子体发育的分子调控研究进展.北京林业大学学报,2005,27(4):90-96
    [2] 包仁艳.油松雌性不育系胚珠不育机制的初步研究.博士论文,2006
    [3] 边艳青,孙大业.外源钙调素对白芷原生质体再生和第一次分裂的影响.植物生理学报,1994,20(3):293-297
    [4] 蔡得田,周嫦.由向日葵幼花或胚珠培养出单倍体小植株与胚状体.科学通报,1983(22):1399-1401
    [5] 曹慧娟.植物学(第二版).北京:中国林业出版社,2001:119-126
    [6] 曹双河,张相岐,张爱民.光(温)敏雄性不育的调控机理和分子遗传学研究进展.植物学通报,2005,22(1):19-26
    [7] 曹玉芳,许方,姚敦义.松杉类植物雌雄配子体的发育与胚胎发生.莱阳农学院报,1995,12(3):206-212
    [8] 陈成彬,宋文芹.利用HU和APM双阻断法诱导高频率植物根尖细胞有丝分裂同步化的研究.南开大学学报(自然科学),1999,32(1):28-31
    [9] 陈春满,罗丽娟,邱德勃等.巴西橡胶树种子发育过程中演粉积累动态.热带作物学报,2001,2(1):6-18
    [10] 陈朋军.油松 28 号无性系雌性不育的细胞生物学研究.硕士论文,2003
    [11] 陈绍荣,韩红梅,吕应堂.钙调素mRNA和蛋白在水稻花药和雌蕊发育过程中的原位定位[J ].Act Bot Sin (植物学报),1998,40(12):1 087-1 092
    [12] 陈绍荣,吕应堂,杨弘远.钙调素 mRNA 在烟草花药发育过程中的原位定位.科学通报,1998,43(20):2 202-2 206
    [13] 陈以峰,梁世平,杨弘远.烟草胚囊胞外钙调素的免疫电镜定位.电子显微学报,1998,17(4):383-384
    [14] 陈祖铿,王伏雄.穗花杉的胚珠结构与雌、雄配子体的发育.植物学报,1985,27(1):19-25
    [15] 程晓蕾,郭俊成.烟草根尖细胞分裂同步化试验研究.安徽农学通报,1997,3(3):48-49
    [16] 崔素娟,王洪海,马力耕等.花柱和花粉胞外钙调素对花粉萌发和花粉管伸长的影响.植物生理学报,1998,24(4):320-326
    [17] 邓秀新,章文才.几种果树胚囊的酶法分离与观察.果树学报,1990,7:71-74
    [18] 丁坤善,郑彩霞,包仁艳.油松雌性不育系的 POD 同工酶和蛋白质多肽分析.西北植物学报,2004,24(1):17-20
    [19] 范六民,杨弘远,周嫦.外源Ca2 +对烟草花粉管生长和生殖核分裂的影响.植物学报,1997,39:899-904
    [20] 傅春梅,孙蒙祥,周嫦等.烟草受精后胚囊和合子的分离和合子的离体分裂.Acta Botanica Sinica(植物学报:英文版),1996,38:262-267
    [21] 傅缨,陈以峰,梁世平等.烟草受精前后胚囊中钙调素的免疫细胞化学定位.Acta Bot Sin (植物学报),1998,40(8):683-687
    [22] 谷澎芳.金钱松雌球花的形态构造及大抱子和雌配子体的形成.浙江林学院学报,1991,8(2):174-152
    [23] 顾藴洁,熊飞,王仲等.水稻和小麦胚乳发育的比较.南京师大学报(自然科学版),2001,24:65-74.
    [24] 韩素英,齐力旺,杨云龙等.几种针叶树种离体培养条件的研究.林业科技通讯,1995,10:21-22
    [25] 贺窑青,郑彩霞.油松雌性不育性与胚珠发育过程中物质代谢关系的初探.北京林业大学学报,2007,29(5):88-93
    [26] 胡适宜.植物胚胎学实验方法(七)同时显示胚中贮藏的淀粉、蛋白质和脂类的永久制片法.植物学通报,1994,11(4):49-51
    [27] 黄晋玲,杨鹏,李炳林等.棉花晋A细胞质雄性不育系小孢子发生的显微和超微结构观察.棉花学报,2001,13(5):259-263
    [28] 吉成均,安尼瓦尔·买买提,方精云.银杏雌配子体的发育和受精作用的研究现状.西北植物学报,2003,23(1):158-163
    [29] 吉成均,杨雄,李正理.银杏大孢子形成的超微结构研究.植物学报,1999,41:1323-1326
    [30] 姜春宁.油松胚珠发育关键时期的蛋白质组学研究.博士论文,2007
    [31] 姜静,李同华,庄振东等.白桦雌花发育、大孢子发生及胚胎发育的解剖学观察,植物研究,2003,23(1):46-53
    [32] 金春英,红松配子体的发育过程.植物研究,1985(1),5(1):113-126
    [33] 金福兰,印丽萍,周 等.植物组织中钙调素免疫组化定位.南京农业大学学报,1988,4:139-140
    [34] 赖钟雄,陈振光.龙眼胚性培养细胞原生质体分离和纯化.农业生物技术学报,2002,10:347-351
    [35] 李凤兰,沈熙环,李悦.油松雌性不育无性系的发现及其原因分析.河北林学院学报,1992,7(2):93-98
    [36] 李凤兰,郑彩霞.油松胚珠后期败育问题初探.北京林业大学学报,1990,12(3):68-73
    [37] 李红兵,程刚,孙大业.细胞外钙调素对白芷悬浮培养细胞增殖的作用.科学通报,1992,37(19):1 804-1 807
    [38] 李乐工,胡适宜.用酶解压片法观察胚囊.植物学报,1985,27:561-568.
    [39] 李敏俐,郑彩霞.油松雌性不育系(28 号无性系)的 RAPD 分析.北京林业大学学报,2002,24(4):35-38
    [40] 李平,李旭峰,杜林方等.攀枝苏铁生殖生物学特性研究-大孢子发生、受精前雌配子体及颈卵器的发育(J).四川大学学报,1998,35(5):770-776
    [41] 李师弢,陈绍荣,吕应堂等.钙调素mRNA 在受精前后分离的烟草胚囊内的定位.Act Bot Sin(植物学报),1999,41(7):686-689
    [42] 李湘阳,周坚.泡桐生活胚囊的分离及细胞学观察.南京林业大学学报,2000,24:37-40
    [43] 刘恒蔚,周瑞阳.红光和远红光间断暗期对光敏感雌性不育苎麻物质代谢的影响.应用基础与工程科学学报,2006,14(2):167-171
    [44] 刘林,叶秀麟,梁承邺.非洲狼尾草珠心细胞程序死亡过程的超微结构观察.热带亚热带植物学报,2001,9(2):136-141
    [45] 刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用.北京:中国农业出版社,2001:91-100
    [46] 罗丽娟,葛皓,邱德勃.柱花草内珠被、胚柄及胚乳细胞的程序性死亡.热带作物学报,2003,24(1):59-63
    [47] 马虹,曹瑞,马晓娟.革苞菊胚珠发育过程中多糖动态的研究.2001,32(4):442-444
    [48] 马力耕,崔素娟,徐晓冬等.G蛋白在细胞外钙调素启动花粉萌发中的作用.自然科学进展,1997,7(6):751-754
    [49] 母锡金,蔡雪,朱至清等.Structural and histochemical studies of apparatus of polyembryonic rice-Ap III.植物学报,2002,44:1 387-1 395
    [50] 欧阳学智,李宝健.水稻籼粳杂种 F1 雌配子体败育的超微结构和酸性磷酸酶细胞化学研究.实验生物学报,1995,28(4):435-439
    [51] 攀汝汶.树木显微解剖图谱(M).北京:中国林业出版社,1989
    [52] 彭永康,赵建,陈瑞阳.大蒜根尖细胞有丝分裂同步化诱导与中期染色体分离.植物研究,1999,19(3):302-307
    [53] 彭永康,赵建,陈瑞阳.小麦根尖细胞有丝分裂同步化诱导与中期染色体分离.天津师大学报(自然科学版),1998,18(4):52-57
    [54] 齐力旺,杨云龙,韩素英等.油松封顶芽的组织培养.植物生理学通讯,1995,(1):40-41
    [55] 钱领元,黎章矩.油茶雌性不育株原因的探讨.浙江林学院学报,1985,2(2):7-12
    [56] 曲波,许玉凤,邵美妮等.虎眼万年青胚珠及胚囊发育的研究.沈阳农业大学学报,2004,35(1):7-9
    [57] 宋春凤,李向印,白鹃等.白芷培养细胞外钙调素结合蛋白的胶体金电镜定位研究.实验生物学报,1997,30(3):313-321
    [58] 苏建英,王黎元.白杆两性孢子叶球的胚胎学研究.阴山学刊,1999,15(2):49-56
    [59] 孙蒙祥,杨弘远,周嫦.分离烟草胚囊的新方法及诱导卵细胞与助细胞原生质体的原位融合[J].植物学报,1993,35:893-900
    [60] 田成玉,赵春建,李春英等.樟子松大抱子的发生和雌配子体的形成过程(J).植物研究,2006,26(6):672-675
    [61] 屠骊珠,马虹,李龙梅.中间锦鸡儿的胚胎发生和组织化学变化.内蒙古大学学报(自然科学版),1988,19(4):685-695
    [62] 屠骊珠,马虹,潘景丽.沙枣(Elaeagnus angustifolia L.)的胚和胚乳发育.内蒙古大学学报(自然科学版),1989,20(1):114-125
    [63] 王伏雄,钱南芬.水杉的胚胎发育.植物学报,1964,12(3):241-253
    [64] 王近卫,堀内昭作,林伯年等.无核白葡萄的无核果形成的组织形态学研究.园艺学报,1992,19(1):1-6
    [65] 王丽娟,衣俊鹏,车延江.樟子松种子败育与形态解剖的研究.东北林业大学学报,1993,21(4):107-111
    [66] 王镨,方文荣,夏如达.用酶解染色压片法观察水仙受精.浙江农业大学学报,1990,16:174-178
    [67] 王雅清,崔克明.杜仲次生木质部导管分子分化中的程序性死亡.植物学报,1998,40(l2):l 102-1 107
    [68] 王耀芝,汪丽虹.蚕豆胚珠发育过程中淀粉动态的观察.西北植物学报,1990,10(1):30-36
    [69] 王振英,彭永康,陈宏.用双向电泳分析百合减数第一分裂周期蛋白质的变化.植物研究,2001,4:596-599
    [70] 吴梅贞,席湘媛.花生的胚和胚乳的发育.山东农业大学学报,1988,19(2):11-17
    [71] 吴树彪,尚勇进.大麦胚珠发育中淀粉动态研究.华北农学报,1992,7(4):14-18
    [72] 伍成厚,夏快飞,梁承邺等.五唇兰珠心细胞程序死亡的超微结构观察.吉首大学学报(自然科学版),2004,25(4):27-29
    [73] 夏快飞,梁承邺,叶秀粦.钙调素及钙调素相关蛋白在植物细胞中的研究进展.广西植物,2005,25(3):269-273
    [74] 杨光圣,瞿波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999,18(5):405-411
    [75] 杨军,赵洁,梁世平.水稻受精前后胚囊内钙调素分布的变化:免疫金电镜观察.植物学报,2002,43(3):264-272
    [76] 杨维才,石东乔.植物雌配子体发育研究进展.植物学通报,2007,24(3):302-310
    [77] 姚家琳,付春华,胡春根.李胚胎发育中败育现象的研究.华中农业大学学报,2002,19(1):71-73
    [78] 尤瑞麟.小麦珠心细胞衰退过程的超微结构研究.植物学报,1985,27(4):345-353
    [79] 于青.Ca2+-CaM 在 PGMR 育性转换中的作用研究.武汉大学学报(自然科学版),1992,(1):123-126
    [80] 张华新,李凤兰,沈熙环等.油松无性系雌雄配子体的形成及胚胎发育.北京林业大学学报,1997,19(3):1-7
    [81] 张健、吕柳新、叶明志.胚胎败育型荔枝胚胎发育异常的显微及亚显微观察.河南农业大学学报,2006,40(2):194-197
    [82] 张宪省.矮生菜豆胚珠和胚囊的发育.山东农业大学学报,1994,25(1):59-64
    [83] 赵保华,孙大业,赵连元.外源钙调素对珍珠粟原生质体持续分裂的影响.科学通报,1993,38(3):1 344
    [84] 赵鸿娟,朱玉贤.外源钙调蛋白对植物细胞分裂增殖作用的研究.生物化学杂志,1996,12(4):413-417
    [85] 郑均宝,潘冬梅,陈正华等.油松离体胚子叶的组织分化和无根试管苗的形成.河北林学院学报,1994,9(2):97-101
    [86] 周爱文,柯铁,梅兴国等.低温诱导红豆杉细胞同步化的研究.武汉化工学院学报,2001,23(1):12-14
    [87] 周嫦,杨宏远,田惠桥等.水稻的未传粉子房培养.武汉大学学报(自然科学版),1983,4:146-153
    [88] 周嫦.几种被子植物生活胚囊的分离与鉴定.植物学报,1985,27:258-262
    [89] 周君莉,崔素娟,郭毅等.胞外钙调素对转基因rbcs基因表达调控.河北师范大学学报,1997,21(3):309-313
    [90] 周立刚,郑光植.人参细胞大量培养的研究.天然产物研究与开发,1991,3(1):222
    [91] 周丽红,姜春宁,郑彩霞.北京地区油松胚珠发育时期的确定.西北植物学报,2006,26:2 583-2 586
    [92] 朱卫平,黄荣韶,黄清渊等.红小豆胚囊的组织化学研究.湖南农业大学学报(自然科学版),2003,29(1):38-40
    [93] Ach R A, Durfee T, Miller A B, et al. RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Molecular Cell Biology, 1997, 17: 5 077-5 086
    [94] Akoulitchev, S, Chuikov, S, Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature, 2000, 407: 102–106
    [95] Amino S, Fujimura T, Komamine A. Synchrony induced by double phosphate starvation in a suspension culture of Catharanthus roseus. Plant Physiology, 1983, 59: 393-396
    [96] Arumuganathan K, Slattery J P, Tanksley S D, et al. Preparation and flow cytometric analysisof metaphase chromosomes of tomato. TAG Theoretical and Applied Genetics, 1991, 82: 101-111
    [97] Bai X, Peirson B N, Dong F, et al. Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis. Plant Cell, 1999, 11: 417-430
    [98] Bakeret S C, Robinson-Beers K, Villanueva J M, et al. Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics, 1997, 145: 1 109-1 124
    [99] Bao R Y, Zheng C X, Zhu L H. Proteomic technique used in studying ovule development of Chinese Pine (Pinus tabulaeformis Carr.). Journal of Plant Physiology and Molecular Biology, 2006, 32(4): 497-503
    [100] Bao R Y, Zheng C X. Content changes of several endogenous plant hormones in female-sterile Pinus tabulaeformis Carr. Forestry Studies in China, 2005, 7(4): 16-19
    [101] Beeckman T, Burssens S, Inzé D. The peri-cell-cycle in Arabidopsis. Journal of Experiment Botany, 2001, 52: 403-411.
    [102] Bergounioux C, Perennes C, Brown S C, et al. Cytometric analysis of growth regulator dependent transcription and cell cycle progression in P. hybrida protoplast cultures. Planta, 1988, 175: 500-505
    [103] Bhatt A M, Lister C, Page T, et al. The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. The Plant Journal, 1999, 19: 463-472
    [104] Biro R L, Sun D Y, Serlin B S, et al. Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution. Plant Physiology, 1984, 75: 382
    [105] Boer D BGW, Murray J A. Control of plant growth and development through manipulation of cell cycle genes. Current Opinion In Biotechnology, 2000, 11: 138-145
    [106] Boucheron E, Healy J H S, Bajon C. Ectopic expression of Arabidopsis CYCD2 and CYCD3 in tobacco has distinct effects on the structural organization of the shoot apical meristem. Journal of Experimental Botany, 2005, 409: 123-128
    [107] Boudolf V, Barróco R, de Almeida Engler J, et al. B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana. Plant Cell, 2004, 16: 945-955
    [108] Boudolf V, Vlieghe K, Beemster G T S, et al. The plant specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell, 2004, 16: 2 683-2 692
    [109] Bowman J C. A method of synchronizing somatic cell division for chromosome examination in cereals and forage grasses. Cereal Research Communications, 1977, 5: 9-12
    [110] Cheng P J, Li F L, Zheng C X. Anatomic study of female sterility of Pinus tabulaeformis Carr. Forestry Studies in China, 2003, 5(1): 13-15
    [111] Choi Y J, Cho E K, Lee S I, et al. Developmentlly regulated expression of the rice calmodulin promotor in transgenic tobacco plants. Molcules and Cells, 1996, 6 (3): 541-546.
    [112] Christensen C A, King E J, Jordan J R, et al. Megagametogenesis in Arabidopsis wild typeand the Gf mutant. Sexual Plant Reprod, 1997, 10: 49-64
    [113] Christensen C, Subramanian S, Drews G N. Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Developmental Biology, 1998, 202: 136-151
    [114] Christopher G J, Robinson-beers K, Gasser C S. The Arabidopsis SUPERMAN gene mediates asymmetricgrowth of the outer integument of ovules. Plant Cell, 1995, 7: 333-345
    [115] Chye M L, Liu C M, Tan C T. A cDNA clone encoding Brassica calmodulin. Plant Molcular Biology, 1995, 27: 415-423
    [116] Clain E, Brulfert. AHydroxyurea-induced mitotic synchronization in Allium sativum root meristems. Planta, 1980, 150: 26-31
    [117] Cockcroft C, den Boer B, Healy J, et al. Cyclin D control of growth rate in plants. Nature, 2000, 405: 575-579
    [118] Cooper S. Mammalian cells are not synchronized in G1-phase by starvation or inhibition: Considerations of the fundamental concept of G1-phase synchronization. Cell Proliferation, 1998, 31: 9-16
    [119] De Veylder L, Beeckman T, Beemster G, et al. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell, 2001, 13: 1 653-1 667
    [120] Dewitte W, Riou-Khamlichi C, Scofield S, et al. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell, 2003, 15: 79-92
    [121] Doerner P W. Cell cycle regulation in plants. Plant Physiology, 1994, 106: 823-827
    [122] Doerner P, J?rgensen J E, You R, et al. Control of root growth and development by cyclin expression. Nature, 1996, 38: 520-523
    [123] Dolezel J, Cihalikoval J, Lucretti S. A high yield procedure for isolation of metaphase hromosomes from root tips of Vicia faba. Planta, 1992, 188: 93-98
    [124] Dolezel1 J, Cíhalíkova1 J, Weiserova1 J, et al. Cell cycle synchronization in plant root meristems. Methods in Cell Science, 1999, 21: 95-107
    [125] Drews G N, Lee D, Christensen C A. Genetic analysis of female gametophyte development and function. Plant Cell, 1998, 10: 5-17
    [126] Ebel C, Mariconti L, Gruissem W. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature, 2004, 429: 776-780
    [127] Elliott R C, Betzner A S, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 1996, 8: 155-168
    [128] Feldmann K A, Coury D A, Christianson M L. Exceptional segregation of a selectable marker(KanR) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics, 1997, 147: 1 411-1 422
    [129] Fisher D D, Cyr R J. Calcium levels affect the ability to immunolocalize calmodulin to cortical microtubules. Plant Physiology, 1993, 103: 543-55l
    [130] Folsom M W, Cass D D. Changes in transfer cell distribution in the ovule of soybean after fertilization. Canadian Journal of Botany, 1986, 64: 965-972
    [131] Forbes L. A rapid enzyme-smear technique for the detection and study of plural embryo sacs in mature ovaries in several Paspalum species. Agrono-my Journal, 1960, 52:300-301
    [132] Futcher B. Cell cycle synchronization. Methods in Cell Science, 1999, 21: 79-86
    [133] Gassere C S, Broadhvest J, Hauser B A. Genetic analysis of ovule development. Annual. Reviews Plant Physiology and Plant Molcular Biology, 1998, 49: 1-24
    [134] Ghosh S, Sen J, Kalia S, et al. Establishment of synchronization in carrot cell suspension culture and studies on stage specific activation of glyoxalase I. Methods in Cell Science, 1999, 21: 141-148
    [135] Golaszewska B, Bednarska E, Narbutt O. Immunocytochemical localization of calmodulin in fertile and sterile anther of Allium cepa L. Acta Biologica Cracoviensia Series Botanica, 2000, 42: 37-45
    [136] Golubovskaya I N, Avalinka N, Sheridan W F. Effects of several meiotic mutants on female meiosis in maize. Developmental Genetics, 1992, 13:411-424
    [137] Golubovskaya I N. Meiosis in maize: mei genes and the conception of genetic control of meiosis. Advance Genet, 1989, 26: 149-193
    [138] Golubovskaya, I N, Mashnenkov A S. Genetic control of meiosis 1. Meiotic mutation in corn (Zea mays L.) afd, causing the elimination of the first meiotic division. Genetika, 1975, 11: 11-17
    [139] Groover A, Jones A M. Tracheary Element Differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiology, 1999, 119: 375-384
    [140] Grossniklaus U, Schneitz K. The molecular and genetic basis of ovule and megagametophyte development. Seminars in Cell and Development Biology, 1998, 9: 227-238
    [141] Gualberti G, Dolezèl J, Macas J et al. Preparation of pea (Pisum sativum L.) chromosome and nucleus suspensions from single root tips. TAG Theoretical and Applied Genetics, 1996, 92: 744-751
    [142] Gutierrez C. The retinoblastoma pathway in plant cell cycle and development. Current Opinion In Biotechnology, 1998, 1: 492-497
    [143] Hakman I, Fowke L C. Somatic Embryogenesis in Black Spruce and White Spruce. Canadian Journal of Botany, 1987, 65: 656-659
    [144] Hammond R A, Foster K A, Berchthold M W, et al. Calcium-dependent calmodulin-binding proteins associated with the mammalian DNA polymease alpha. Biochimica et biophysica acta Bioenergetics, 1988, 951(2/3): 315
    [145] Hemerly A, Bergounioux C, Van Montagu M, et al. Genes regulating the plant cell cycle: isolation of a mitotic-like cyclin from Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 1992, 89: 3 295-3 299
    [146] Hemerly A, Ferreira p, Van Montagu M, et al. Cell division events are essential for embryo patterning and morphogenesis: studies on dominant-negative cdc2aAt mutants of Arabidopsis. The Plant Journal, 2000, 23: 123-130
    [147] Howden R .Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics, 1998, 149: 621-631
    [148] Howden R, Park S K, Moore J M, et al. Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics, 1998, 149: 621-631
    [149] Huang B Q, Russell S D. Fertilization in Nicotiana tabacum: Cytoskeletal modifications in the embryo sac during synergid degeneration. Planta, 1994, 194: 200-214
    [150] Huang B Q, Sheridan W F. Embryo sac development in the maize indeterminate gametophyte1 mutant: abnormal nuclear behavior and defective microtubule organization. Plant Cell, 1996, 8: 1 391-1 407
    [151] Imai K K, Ohashi Y, Tsuge T, et al. The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication. Plant Cell, 2006, 18: 382-396
    [152] Inzé D, Gutiérrez C, Chua N H. Trends in plant cell cycle research. Plant Cell, 1999, 11: 991-994
    [153] Iwakawa H, Shinmyo A, Sekine M. Arabidopsis CDKA;1, cdc2 homologue, controls proliferation of generative cells in male gametogenesis. The Plant Journal, 2006, 45: 819-831
    [154] Janmey P A. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annual Reviews in Physiology, 1994, 56: 169-191
    [155] Jeffrey P D, Russo A A, Polyak K, et al. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature, 1995, 376: 313-320
    [156] Jones A. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends in Plant Science, 2000, 5: 255-230.
    [157] Joppa L R, Williams N D, Maan S S. The chromosomal location of a gene (msg) affecting megasporogenesis in durum wheat. Genome, 1987, 29:578-581
    [158] Kaepler H F, Kaepler S M, Lee J H, et al. Synchronization of cell division in root tips of seven major cereal species for high yields of metaphase chromosomes for flow cytometric analysis and sorting. Plant Molecular Biology Reporter, 1997, 15: 141-147
    [159] Kapil R N, Tiwari S C. Plant embryological investigations and fluorescenece microscopy: An assessment of integration. International Review of Cytology, 1978, 53: 291-331
    [160] Kapil R N, Bhatnar A K. Ultrastructure and biology of female gametophyte in flowering plants. International Review of Cytology, 1981, 70: 291-334
    [161] Kapil R N. Contempart spectacle in angiosperms embryology. Acta Bot India, 1974, 2: 79-106
    [162] Klucher K M, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 1996, 8: 137-153
    [163] Klucher K M, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 1996, 8: 137-153
    [164] Kobayashi H, Fukuda H. Involvement of calmodulin and calmodulin-binding proteins in the differentiation of tracheary elements in Zinnia cells. Planta, 1994, 194: 388-394
    [165] Konar R N, Moitra A. Ultrastructure, cyto- and histochemistry of female gametophyte of gymnosperms. Gamete Research, 1980, 3: 67-97
    [166] Kono A, Umeda-Hara C, Lee J, et al. Arabidopsis Dtype cyclin CYCD4;1 is a novel cyclin partner of B2-type cyclin-dependent kinase. Plant Physiology, 2003, 132: 1 315-1 321
    [167] Kubalakova M, Valarik M, Bartos J, et al. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome, 2003, 46(5): 893-905
    [168] Kuran S, Marciniak K. Cytochemical investigations of the embryo sac of Lilium regale in various developments phase. Acta Societatis Botanicorum Poloniae, 1969, 38: 83-92
    [169] Kwee H S, Sundaresan V. The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the anaphase promoting complex in Arabidopsis. The Plant Journal, 2003, 36: 853-866
    [170] Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 2001, 411: 848-853
    [171] Léon-Kloosterziel K M, Keijzer C J, Koomneef M. A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell, 1994, 6: 385-392
    [172] Leopold P, O’Farrell P H. An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell, 1991, 66: 1 207–1 216.
    [173] Li D H, Yang X, Cui K M, et al. Morphological Changes in Nucellar Cells Undergoing Programmed Cell Death During Pollen Chamber Formation in Ginkgo biloba. Acta Biotanica Sinica, 2003, 45(1): 53-63
    [174] Li S O, Wan C X, Kong J, et al. Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitoc hondria. Functional Plant Biology,2004, 31(4): 369-376
    [175] Lin C T, Sun D, Song G X, et al. Calmodulin: localization in plant tissue. Chinese Journal of Histochemistry and Cytochemistry, 1986, 34: 561
    [176] Liu Z J, Ueda T, Miyazaki T, et al. A critical role for cyclin C in promotion of the hematopoietic cell cycle by cooperation with c-Myc. Molecular Cell Biology, 1998, 18: 3445-3454
    [177] Lorenz S, Tintelnot S, Reski R, et al. Cyclin D-knockout uncouples developmental progression from sugar availability. Plant Molecular Biology, 2003, 53: 227-236
    [178] Mader J C, Hanke D E, Immunocytochemical study of cell cycle control by cytokinin in cultured soybean cells. J. Plant Growth Regulation, 1996, 15: 95-102
    [179] Magyar Z, Meszaros T, Miskolczi P, et al. Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cell. Plant Cell, 1997, 9: 223-235
    [180] Maheshwari P, Sanwal M. The Archegonium in Gymnosperms: A Review. Mem Indian Botany, 1963, 4: 103-119
    [181] Maheshwari P, Singh H. The Female Gametophyte of Gymnosperms. Bioogical Reviews, 1967, 42: 88-130
    [182] Mariana L M, Liliana B. A rice membrane bound calcium dependent protein kinase is activated in response to low temperature. Plant Physiology, 2001, 125(4): 1 442-1 449
    [183] Masubelele N H, Dewitte W, Menges M, et al. D-type cyclins activate division in the root apex to promote seed germination in Arabidopsis. Proceedings of the National Academy of Sciences, 2005, 102: 15694-15699
    [184] Matthews B F. Isolation of mitotic chromosomes from partially synchronized carrot (D. carota) cell suspension cultures. Plant Science Letter, 1983, 31: 165-172
    [185] Menges M, Hennig L, Gruissem W, et al. Genome-wide gene expression in an Arabidopsis cell suspension. Plant Molecular Biology, 2003, 53: 423-442
    [186] Menges M, Murray J A H. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. The Plant Journal, 2002, 30(2): 203-212
    [187] Mercier R, Vezon D, Bullier E, et al. SWITCH1(SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes, 2001, 15: 1859-1871
    [188] Meskiene I, Bogre L, Dahl M, et al. CycMs3, a novel B-type alfalfa cyclin gene is induced in the G0 to G1 transition of the cell cycle. Plant Cell, 1995, 7: 759-771
    [189] Mironov V, De Veylder L, Van Montagu M, et al. Cyclin-dependent kinases and cell division in plants-the nexus. Plant Cell, 1999, 11: 509-521
    [190] Modrusan Z, Reiser L, Feldmann KA et al. Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Plant Cell, 1994, 6: 333-349
    [191] Moore J M, Vielle Calzada J P, Gagliano W, et al. Genetic characterization of hadad, a mutant disrupting female gametogenesis in Arabidopsis thaliana. Cold Spring Harbor Symp Quant Biology, 1997, 62: 35-47
    [192] Nagata T, Kumagai F. Plant cell biology through the window of the highly synchronized tobacco BY-2 cell line. Methods in Cell Science, 1999, 21: 123-127
    [193] Nakagami H, Sekine M, Murakami H, et al. Tobacco rentinoblastoma-related protein phosophorylated by a distinct cyclin-dependent kinase complex with Cdc2/cyclin D in vitro.The Plant Journal, 1999, 18: 243-252
    [194] Neumann P, Lysak M, Dolezel J, et al. Isolation of chromosomes from Pisum sativum L. hairy root cultures and their analysis by flow cytometry. Plant Science, 1998, 137: 205-215
    [195] Oh S H, Roberts D M. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. Plant Physiology, 1990, 93: 880-887
    [196] Oh S H, Steine H, Dougall D K, et al. Modulation of calmodulin levels, calmodulin methylation, and calmodulin binding proteins during carrot cell growth and embryogenesis. Archives of Biochemistry and Biophysics, 1992, 297: 28-34
    [197] Olszewska A J, Marciniak K, Kuran H. Analysis of mitotic synchrony induced by cold treatment in root meristems of Vicia faba L. Environmental and Experimental Botany, 1990, 30: 373-382
    [198] Ouyang X Z. Ultrastructure and AcPase ultracytochemical localization of the abortive functional megaspores in intersubspecific F1 hybrid rice (Oryza sativa). Chinese Rice Research Newsletter, 1996, 4: 2-3
    [199] Perera I Y, Zielinski R E. Synthesis and accumulation of calmodulin in suspension cultures of carrot (Daucus carota L.): Evidence for posttranslational control of calmodulin expression. Plant Physiology, 1992, 100: 812-819
    [200] Peres A, Ayaydin F, Nikovics K, et al. Partial synchronization of cell division in cultured maize (Zea mays L.)cells: differential cyclin, cdc2, histone, and retinoblastoma transcript accumulation during the cell cycle. Journal of Experimental Botany, 1999, 337(50): 1 373-1 379
    [201] Raghavan V.Embryogenesis in cultured ovules and seeds / Experimental Embryogenesis in Vascular Plants. London: Academic Press, 1976: 205
    [202] Ray A, Lang J D, Golden T, et al. SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. Development, 1996a, 122: 2 631-2 638
    [203] Ray S, Golden T, Ray A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Developmental Biology, 1996b, 180: 365-369
    [204] Reed A J, Singletary G W. Roles of carborhydrate supply and phytohormones in maize kernel abortion. Plant Physiology, 1989, 91: 986-992
    [205] Reiser L, Fischer R L. The ovule and the embryo sac. Plant Cell, 1993, 5: 1 291-1 301
    [206] Ren, S, Rollins B J. Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell, 2004, 117: 239–251
    [207] Riou-Khamlichi C, Huntley R, Jacqmard A, et al. Cytokinin activation of Arabidopsis cell division by a D-type cyclin. Science, 1999, 5, 1 541-1 544
    [208] Roberts L W, Baba S. Evidence that auxin-induced xylogenesis in Lactuca explants requires calmodulin. Environmental and Experimental Botany, 1987, 27: 289-295
    [209] Robinson-Beers K, Pruitt R E, Gasser C S. Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell, 1992, 4: 1 237-1 249
    [210] Rodkiewicz B. Callose in cell walls during megasporogenesis in angiosperms. Planta, 1970, 93 (1): 39-47
    [211] Roudier F, Fedorova E, Gyorgyey J, et al. Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIRE-type cyclin-dependent kinase and a retinoblastoma protein. The Plant Journal, 2000, 23: 73-83
    [212] Sala F, Parisi B, Burroni D, et al. Specific and reversible inhibition by aphidicolin of the a like DNA polymerase of plant cells. FEBS Letters, 1980, 117: 93-98
    [213] Sallandrouze A, Faurobert M, Maataoui M El. Characterization of the developmental stages of cypress zygotic embryos by two-dimensional electrophoresis and by cytochemistry. Physiologia Plantarum, 2002, 114(4): 608–618
    [214] Samuels A L, Meehl J, Lipe M, Staehelin L A. Optimizing conditions for tobacco BY-2 cell cycle synchronization. Protoplasma, 1998, 202: 232-236
    [215] Schiefthaler U, Balasubramanian S, Sieber P, et al. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 1999, 96: 11 664-11 669
    [216] Schneitz K, Baker S C, Gasser C S, et al. Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana. Development, 1998, 125: 2 555-2 563
    [217] Schneitz K, Hülskamp M, Kopczak S D, et al. Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana. Development, 1997, 124: 1 367-1 376
    [218] Schneitz K. The molecular and genetic control of ovule development. Current Opinion In Plant Biology, 1999, 2: 13-17
    [219] Schnittger A, Sch?binger U, Stierhof Y D, et al. Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis Trichomes. Current Biology. 2002, 12: 415-420
    [220] Serratosa J, Pujol M J, Bachs O, et al. Rearrangement of nuclear calmodulin duringproliferative liver cell activation. Biochemical and Biophysical Research Communications, 1988, 150(3): 1 162
    [221] Sharma A K. Synchronization in plant cells – an introduction. Methods in Cell Science, 1999, 21: 73-78
    [222] Sheridan W F, Avalkina N A, Shamrov II, et al. The mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics, 1996, 142: 1 009-1 020
    [223] Sheridan W F, Goludeva E A, Abrhamova L I. The macl mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Geneties, 1999, 153: 933-941
    [224] Sheridan W F, Huang B Q. Nuclear behavior is defective in the maize (Zea mays L.) lethal ovule2 female gametophyte. The Plant Journal, 1997, 11: 1 029-1 041
    [225] Shimotohno A, Umeda-Hara C, Bisova K, et al. The plantspecific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependentkinase-activating kinases in Arabidopsis. Plant Cell, 2004, 16: 2 954-2 966
    [226] Siddiqi I, Ganesh G, Grossniklaus U, et al. The dyad gene is required for progression through female meiosis in Arabidopsis. Development, 2000, 127: 197-207
    [227] Springer P S, McCombie R, Sundaresan V, et al. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science, 1995, 268: 877-880
    [228] Subramanyam C, Honn S C, Reed W C, et al. Nuclear localization of 68 kDa calmodulin-binding protein is associated with the onset of DNA replication. Journal of Cellular Physiology, 1990, 144(3): 423
    [229] Tassan, J P, Jaquenoud M, Leopold P, et al. Identification of human cyclin-dependent kinase-8, a Putative protein-kinase partner for cyclin-C. Proceedings of the National Academy of Sciences, 1995, 92: 8871–8875
    [230] Tirlapur U K, Van Went J L, Cresti M. Visualization of membrane calcium and calmodulin in embryo sacs in situ and isolated from Petunia hybrida L. and Nicotiana tabacum L. Annals of Botany, 1993, 71:161-167
    [231] Tirlapur U K, Willemse M T M. Changes in calmodulin levels during microsporogenesis, pollen development and. germination in Gasteria verrucosa (Mill.) H. Duval. Sexual Plant Reproduction, 1992, 5: 214-223
    [232] Tzafrir I, McElver J A, Liu C M, et al. Diversity of TITAN Functions in Arabidopsis Seed Development. Plant Physiology, 2002, 128: 38-51
    [233] Umeda M, Umeda-Hara C, Uxhimiya H A. cyclin-dependent kinase-activating kinase regulates differentiation of root initial cells in Arabidopsis. Proceedings of the National Academy of Sciences, 2000, 97: 13 396-13 400
    [234] Uzbekov R E. Analysis of the Cell Cycle and a Method Employing Synchronized Cells for Study of Protein Expression at Various Stages of the Cell Cycle. Biochemistry (Moscow), 2004, 69(5): 485-496
    [235] Van’t H J. Control of the cell cycle in higher plants. In: Padilla GM, Cameron IL, Zimmerman A(eds). Cell Cycle Controls, 1974: 77-85
    [236] Vantard M, Lambert A M, Mey J D, et al. Characterization and immunocytochemical distribution of calmodulin in higher plant endosperm cells: localization in the mitotic apparatus. The Journal of Cell Biology, 1985, 101:488-499
    [237] Vassilev L, Russev G. Hydroxyurea treatment does not prevent initiation of DNA synthesis in Ehrlich ascites tumour cells and leads to the accumulation of short DNA fragments containing the replication origins. Biochimica et Biophysica Acta, 1984, 781: 39-44
    [238] Wagenaar E B. High mitotic synchronization induced by 5-aminouracil in root cells of Allium cepa L. Experimental Cell Research, 1996, 43: 184-190
    [239] Wang A S, Phillips R L. Synchronization of suspension culture cells. In: Cell Culture and Somatic Cell Genetics of Plants, 1984, 11: 75
    [240] Wang G, Kong H, Sun Y. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiology, 2004, 135: 1 084-1 099
    [241] Wang M L, Leitch A R, Schwarzacher T, et al. Construction of a chromosome-enriched HpaII library from flow-sorted wheat chromosomes. Nucleic Acids Research, 1992, 20: 1 897-1 901
    [242] Wang Y, Magnard J L, McCormick S, et al. Progression through meiosis I and meiosis II in Arabidopsis anthers is regulated by an A-type cyclin predominately expressed in prophase I. Plant Physiology, 2004, 136: 4 127–4 135
    [243] Weingartner M, Criqui MC,Mészáros T, Binarova P, Schmit AC, et al. Expression of a nondegradable cyclin B1 affects plant development and leads to endomitosis by inhibiting the formation of phragmoplast. Plant Cell, 2004, 16: 643–657
    [244] Wildwater M, Campilho A, Perez-Perez J M, et al. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenancein Arabidopsis roots. Cell, 2005, 123: 13 37-1 349
    [245] Willemse M T M. Calcium and calmodulin distribution in the tapetum of Gasteria verrucosa during anther development. Plant Systematics and Evolution, 1993, 7(suppl): 107-116
    [246] Yang W C, Sundaresan V. Genetics of gametophyte biogenesis in Arabidopsis. Current Opinion in Plant Biology, 2000, 3(1): 53-57
    [247] Yang W C, Ye D, Xu J, et al. The Sporocyteless gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes and Development, 1999, 13: 2 108-2 117
    [248] You J S, Li S W, Wang D S, et al. The distribution of calmodulin and Ca2+-activated calmodulin in cell cycle of mouse erythroleukemia cells. Cell Reseach, 1990, 1: 89-94
    [249] Yu Y, Steinmetz A, Meyer D, et al. The tobacco A-type cyclin, Nicta; CYCA3; 2, at the nexus of cell division and differentiation. Plant Cell, 2003, 15: 2763-2777
    [250] Zhang Q, Xing S P, Hu Y X. Cone and Ovule Development in Platycladus orientalis (Cupressaceae). Acta botanica sinica, 2000, 42(6): 564-569
    [251] Zhou C, Yang H Y. In vitro production of haploids in rice through ovary culture. Biotecnology in Agirculture and Foresty, 1991, 14: 180-192
    [252] Zhou C, Yang H Y. Induction of haploid rice plantlets by ovary culture. Plant Science letters, 1981, 20: 231-237
    [253] Zhou Y, Wang H, Gilmer S, et al. Control of petal and pollen development by plant cyclin dependent kinase inhibitor ICK1 in transgenic Brassica plants. Planta, 2002, 215: 248-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700