人血清白蛋白cDNA转化橡胶树的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人血清白蛋白(human serum albumin,HSA)是人血浆中最丰富的蛋白质,具有维持血液渗透压、运输营养物质等生理功能,在临床医学中应用十分广泛。而目前市售的HSA主要来源于捐血者的血浆,有限的血液资源和人血中可能存在的病原污染限制了HSA的临床使用。人们迫切期望通过新途径来开发HSA,而通过基因工程手段开发重组人血清白蛋白来替代血源白蛋白是发展前景良好的新途径。
     与微生物生物反应器和动物生物反应器相比,植物生物反应器有其独特的优越性。橡胶树的乳管系统十分发达,类似于动物的乳腺系统,割胶后胶乳从乳管中排出,从而使其中的蛋白产物采收加工及分离纯化十分方便。选择合适的乳管表达基因启动子可以使外源基因在其中表达,从而把橡胶树乳管系统变成生产外源蛋白的理想生物反应器。基于这种设想,本研究对橡胶树遗传转化体系的建立进行研究,并把含有橡胶树REF启动子的HSA cDNA乳管表达载体分别通过基因枪转化法和农杆菌转化法,导入橡胶树愈伤组织中,得到了以下的结论:
     (1)以未成熟的雄花、内珠被和组织培养幼苗为外植体,用不同浓度的植物生长素和细胞分裂素组合,对外植体进行诱导,获得了大量的愈伤组织。
     ①对未成熟的雄花来讲,其最佳的愈伤组织诱导培养基为:MS培养基+7.0%麦芽糖+4.0mg/L 2,4-D+0.2mg/L 6-BA+1.2mg/L PVP+1.0%琼脂(pH 5.8),于25±1℃,黑暗培养:继代培养基:将碳源改为7.0%蔗糖,激素浓度调至原浓度的1/10,其他条件不变。
     ②对橡胶树未成熟种子的愈伤组织来讲,其最佳培养基为:MS培养基+4.0mg/L 2,4-D+0.2mg/L KT+1.2mg/L PVP+7.0%麦芽糖+1.0%琼脂(pH5.8),于25±1℃黑暗培养;继代培养时的激素浓度为诱导激素浓度的1/10,其他成分和培养条件不变。
     ③对橡胶树组培苗来讲,其最佳的愈伤组织诱导培养基为:MS培养基+3g/L蔗糖+3g/L麦芽糖+2mg/L 2,4-D+1mg/L 6-BA+1.2mg/L PVP+1.0%琼脂(pH5.8),于25±1℃黑暗培养:继代培养的激素浓度为诱导激素浓度的1/10,其他成分和培养条件不变。
Human serum albumin (HSA) is a kind of protein abundant in human blood plasma which can keep osmotic pressure of blood and transfer nutrient from one part of the body to another. It is widely used in clinic. But now most HSA comes from blood plasma. And HSA is restricted in clinic because of shortage of blood source and the latent viruses. Then it is urgent to produce HSA by other means and recombinant HSA from genetic engineering is prosperous now.Compared with microbe bioreactor and animal bioreactor, plant bioreactor has many unique advantages. Hevea brasiliensis has strong laticifer system which is like galacto-phore in animal. Latex runs out after laticifer is cut so that it is easy for proteins contained in latex to be cured and isolated. When proper promoter is added before foreign gene, it can be expressed in laticifer system. Then laticifer system can be turned into an ideal bioreactor. Herein lies the suppose that to establish regeneration system of Hevea brasiliensis and to transfer the expression vector combining REF promoter with HSA cDNA by bombardment or agrobacteria infection. In the study, quite a few of results are got as below:(1) Immature androecia, seeds and cultivated plantlets were used as explants. They were cultured on modified MS medium with different combination of auxin and cytokinin. Then large quantities of calli came out.For immature androecia, the best callus induction medium was MS medium added to 7.0% maltose, 1.2mg/L PVP, 4.0mg/L 2,4-D and 0.2mg/L 6-BA with 1.0% agar-agar powder. The pH of the medium was 5.8. Culture the explants on medium at 25 ± 1 °C in darkness. Carbon source was changed with 7.0% sucrose and the plant hormones were turned down to 1/10 after the first culture without any change of other things.(2)For immature seed, the best induction medium was MS medium with 4.0mg/L 2,4-D,0.2mg/L KT ,1.2mg/L PVP,7.0% sucrose and 1.0% agar-agar powder with pH value of 5.8. Plant hormones were turned down to 1/10 after the first culture.(3)For cultivated plantlet, the best callus induction medium was MS medium with
引文
[1] 陈守才,邵寒霜,郑学勤.用RAPD技术鉴定橡胶树抗白粉病基因连锁标记.热带作物学报.1994.15(增刊).21
    [2] 陈章良.天花粉蛋白基因的克隆、序列测定及在大肠杆菌和烟草中的表达.中国科学.1992.9.944-950
    [3] 陈正华,钱长发,岑明.三叶橡胶花药培养中体细胞与小孢子的关系.西北植物学报.1981.1(1).31-37
    [4] 董去洲,贾士荣.基因枪在植物遗传转化上的应用.生物工程进展.1993.14(2).14,15-18
    [5] 段晓岚,陈善葆.中国农业科学.1985.3.6-10
    [6] 傅荣昭,孙勇如,贾士荣.植物遗传转化手册.中国科学技术出版社.1994.32
    [7] 郭美锦,储炬,杭海峰,庄英萍,叶勤,张嗣良.重组人血清白蛋白表达研究进展.生物工程进展.2000.20(5).39-42
    [8] 黄贵修.利用差异显示探索橡胶树死皮病病因的研究.华南热带农业大学硕士学位论文.1999
    [9] 黄淑帧,黄英,陈美珏,陈巍,黄赞,李华,李景春,任兆瑞,曾溢滔.转人血清白蛋白基因试管牛的研究.遗传学报.2000.27(7).573
    [10] 黄英,黄缨,黄赞,颜景斌,马湛卢,盛敏,任兆瑞,曾溢滔,黄淑帧.山羊β-酪蛋白基因启动子区指导人血清白蛋白在转基因小鼠乳汁中的高效表达.科学通报.2000.45(19).2081-2086
    [11] 梁国平,肖三元.橡胶树花药离体培养及完整植株的诱导.热带农业科技.2004.27(1).8-11
    [12].梁计南,谭中文,谭志勇,张志胜,孔垂华,胡飞.甘蔗不同基因型组织培养特性的研究.华南农业大学报(自然科学版).2002.23(4).37-40
    [13] 李维国.超氧物歧化酶(SOD)基因的克隆、表达载体构建及转化橡胶树的研究.华南热带农业大学硕士学位论文.2000
    [14] 刘志昕.橡胶树Hevein基因的克隆、表达及植物遗传转化研究.华南热带农业大学博士学位论文.1999
    [15] 卢雄斌,龚祖埙.植物转基因方法及进展.生命科学.1998.10(3).125-131
    [16] 罗安定.橡胶树优异种质的AFLP指纹图谱研究.华南热带农业大学硕士学位论文.2000
    [17] 彭世清,吴坤鑫,陈守才.橡胶延长因子的cDNA的克隆和序列分析.华南热带农业大学学报.2000.2.1
    [18] 王关林,方宏筠.植物基因工程原理与技术.北京.科学出版社.1998.32
    [19] 王关林,方宏筠.植物基因工程原理与技术(第二版).科学出版社.2002.805-807
    [20] 吴胡蝶,王泽云,陈雄庭.影响橡胶离体细胞萌发成植株的几个因素.热带农业科学.1997.2.5-8
    [21] 郑新民,乔宪风,杨在清,魏庆信.转人血清白蛋白基因猪的表达分析.经济动物学报.2002.6(2).24-26
    [22] 钟文田.第一次全国农业生物技术学术讨论会论文摘要汇编.1986.11
    [23] 周建南.世界天然橡胶产销概况及产量预测.世界热带农业信息.1996.5.1-3
    [24] Adiwilaga K, Kush A. Cloning and charaterization of cDNA encoding FPP sytHSAe from rubber tree. Plant Mol Biol. 1996.30.935
    [25] Arakawa T, Langridge WHR. Plants are not just passive creatures. Nature Med. 1998.4.550
    [26] Arakawa T, Yu J, Langridge WHR. A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nature Biotechnology. 1998. 16.934
    [27] Transgenic cows to produce human albumin by ton. Biotechnol News. 1997. 17(8).1
    [28] Archer B. L., Audley B. G., Mcsweeney G. P. Studies on composition of latex serum and bottom fraction particles. J. Rubb. Res. Inst. Malaya. 1969.21 (4). 561-569
    [29] Arokiaraj P. Agrobaterum-mediated tranformation of Hevea cells derived form in vitro and in vivo seeding cultures. J Nat Rubber Res. 1991.6(1).55
    [30] Arokiaraj P. CaMV 35S promoter directs GUS in the laticiferous system transgenic Hevea brasiliensis. Plant Cell Reports. 1998. 17.621-625
    [31] Artsaenko O, Kettig B, Fiedler U. Potato tubers as a biofactory for recombinant antibodies. Molecular Breeding. 1998.4.313
    [32] Barr KA, Hopkins, SA & Sreekrishna, K. Protocol for efficient secretion of HSA developed from Pichia pastoris. Pharm Eng. 1992. 12.48-51
    [34] Besse P. DNAfingerprints in Hevea brasiliensis using human minisatellite probes. Heredity. 1993a. 70.237
    [35] Besses P. Ribosomal DNA variation in wild and cultivate rubber tree.Genome .1993b.36.1049
    [36] Bytebier B F, Deboeck F, Greve H D. T-DNA organization in tumor cultures and transgenic plants of the monocotyledin Asparagus officinalis. Proc Natl Sci USA. 1987.84.5345-5349
    [37] Chan M T, Chang H H, Ho S L. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a amylase promoter glucuronidase gene. Plant Mol Biol. 1993. 22.491-506
    [38] Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Bio.,1995.36.521-547
    [39] Cheng M, Fry J E, Pang S Z.Genenic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 1997. 115. 971-980
    [40] Chey ML, Kush A, Tan CT. Characterization of cDNA and genomic clones encoding HMG-CoA reductase from Hevea brasiliensis. Plant Mol Biol. 1991. 16.567
    [41] Dalsgaard K, Uttenthal A, Jones TD. Plant-derived vaccine protects target animals against a viral disease. Nature Biotchnology. 1997. 15. 248-252
    [42] D' Auzac J.,Gretin H.,Marin B.A plant vacular system. The lutoid from Hevea brasiliensis latex. Physiol. Veg. 1982.20 (2) .311-331
    [43] De Wilde C, Van Houdt H, De Buck S. Plants as bioreactors for protein production, avoiding the problem of transgene silencing. Plant Mol Biol. 2000. 43(2-3).347-359
    [44] Eugene l,Savenkov , Jari P. T, Valkonen. Silencing of a viral RNA silencing supprissor in transgenic plants. Journal of General Viology. 2002. 83.2325-2335
    [45] Enriquez O G A, Vazquez P R l,Prieto S D L. Herbicide-resistant sugarcane (Saccharum Officinarum L.) plants by Agrobacterium-mediated transformation. Planta. 1998. 206(1).20-27
    [46] Feng Guo, DESHMUKH N. GOPAUL, and GREGGORY D. VAN DUYNE. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA. 1999. 96.7143-7148
    [47] French R, Janda M, Ahlquist P. Bacterial gene inserted in an engineered RNA virus, efficient expression in monocotyledonous plant cells. Science. 1986. 231.1294
    [48] Finnegan J, McElroy D. Transgene inactivation.plant fight back. Biotechnology. 1994.12(9).883-888
    [49] GBIanc, L. Lardet. Differential carbohygrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis(Mull.Arg.). Journal of Experimental Botany. Vol.53. No.373.1453-1462
    [50] Giddings G, Allison G, Brooks D. Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol. 2000. 18(1 l).l 151-1155
    [51] Goldberg R, De Paiva G, Yadegari R. Plant embryogenesis. zygote to seed.Science. 1994.(266).605-614
    [52] Gomez J. B., Moir G. G. J. (吴继林译)巴西橡胶乳管的亚细胞学.热作译丛.1981.(1).1-9
    [53] Goyvaerets E, Dennis MS, Light DR. Cloning and sequencing the cDNA encoding the rubber elongation factor of Hevea brasiliensis. Plant Physiol, 1991, 97.317
    [54] Hadrami I. E., Auzac J. Effect of polyamine bilsynthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. J. Plant Physiol. 1992. 140.33-36
    [55] Haq TA, Mason HS, Clements JD. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science. 1995.268(5). 714
    [56] Hein MB, Yeo TC, Wang F. Expression of cholera toxin subunits in plants. Ann NY Acad Sci. 1996, 794.50
    [57] Hiei Y, Ohta S, Komari T. Plant J. 1994.6 (2). 271-282
    [58] Hoekema K. A., Hirsch P. R., Hooykaas P. J. J. Cell Biochem. 1990. Suppl. 14E.333
    [59] Ishida Y, Saito H, Ohta S. High efficiency transformation of maiza (Zea mays L.) mediated by Agrobacterium Tumefaciens, Nat Biotechnol. 1996. 14(6). 745-750
    [60] Joseph Sambrook, David W. Russell (黄培堂等对). Molecular Cloning. A Laboratory Manual(3rd ed.). Cold Spring Harbor Laboratory Press. 2001.30-32:701-702
    [61] Kedwick R G O, The formation of isoprenoids in Hevea latex. Physiology of Rubber Tree Latex. H Chrestin eds-CRC Press.Boca Raton. 1989.145
    [62] Kumagai MH, Turpen TH, WeinZettl N. Rapid high-level expression of biologically active trichosanthin in transfected plants by an RNA viral vector. Natl Acad Sci USA. 1993, 90.427
    [63] Kush A, Goyvaerets E, Chye ML. Laticifer-specific gene expression in Hevea brasiliensis. Proc Natl Acad Sci. USA. 1990. 87.1787
    [64] Kyung-Hwan Han. Genens expressed in the latex of Hevea brasiliensi. Tree Physiol. 2000. 20.503510
    [65] Lawn R. M., Adelman J., Bock S. C. The sequence of human serum albumin cDNA and its expression in E. coli. Nucleic Acids Res. 1981.9(22), 6103-6114
    [66] Low FC , Gale MD. Develpoment of molecular markers for Hevea. J Nat Rubber Res. 1991. 6(3). 152
    [67] Low FC, Gale MD. Recent advances in the development of molecular markers of Hevea studies. J Nat Rubber Res. 1996. 11 (1).32
    [68] Ma JKC, Hiatt A, Hein M. Generation and assembly of secretory antibodies in plants. Science. 1995. 268(5). 716719
    [69] Ma JKC, Hikmat BY, Wycoff K. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Med. 1998. 4. 60
    [70] Matsumoto S, Ikura K, Ueda M. Characterization of a human glycoprotein (erythropoietin, EPO) produced in cultured tobacco cells. Plant Molecular Biology. 1995. 27.1163
    [71] McCormick AA, Kumagai MH, Hanley K. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single chain Fv epitopes in tobacco plants. Proc Natl Acad Sci.1999.96.703
    [72] Maurice Moloney. The future of molecular farming. An interview on molecular farming. Plant 80.Biotechnology Institute (PBI). National Research Council. Canada. 1995
    [73] Moir G.F.J. Ultracentrifugation and staining of Hevea Latex. Nature. 1959. 184.1626-1628
    [74] Moloney MM. Oil-body Proteins as carriers of high-value peptides in plants. U.S. Patent 5650554. 1997.July 22.
    [75] Nehir OZDWMIR. Construction of a BAC-library for sunflower. PH.D Paper of Justus Lerbif University. Giessen. Germany. 2000
    [76] Oven MRL, Pen J. Transgenic plants, a production system for industrial and pharmaceutical proteins. John Wiley Sons Ltd. 1996. 99
    [77] Oh SK, Kang H, Shin DH. Isolation, charaterization and functional analysis of a novel cDNA clone encoding a SRPP from Hevea brasiliensis. J Biol Chem. 1999. 274 (24). 17132
    [78] Parmenter DL, Boothe JG, Rooijen GJH. Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Molecular Biology. 1995. 29.1167-1180
    [79] Philip B. W., Gilbert W. J. Cell Biochem. 1982. Suppl.6. 337-346
    [80] Potera C. EPIcyte produces antibodies in plants. Genetic Engineering News. 1999. February. 15
    [81] Richter LJ, Thanavala Y, Arntzen CJ. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol. 2000. 18(11). 1167-1171
    [82] Shani M., Barash I., Nathan M., Ricca G. Expression of human serum albumin in the milk of transgenic mice. Transgenic Res. 1992. 1(5). 195-208
    [83] Tingay S, McElroy D, Kalla R. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 1997.11 (6). 1369-1376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700