转录因子Id1对内皮祖细胞增殖、迁移的影响及在损伤血管修复中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.背景与目的:
     血管内皮损伤是动脉粥样硬化、高血压、糖尿病、介入治疗后再狭窄等多种血管性疾病共同的病理生理基础,尽早促进受损血管再内皮化、恢复内皮功能为抑制血管损伤不良修复、预防或防治血管再狭窄及血栓形成的有效策略。因此,揭示内皮再生机理,促进内皮细胞有益再生是损伤性血管疾病治疗中亟待解决的问题。既往认为血管损伤主要依靠损伤部位邻近的内皮细胞再生修复,但病损情况下邻近内皮的增殖能力有限。近年研究显示除了血管损伤局部附近内皮细胞再生外,不同来源的血管前体细胞同样是参与损伤内皮修复的重要力量。业已证实,内皮前体细胞即所称的内皮祖细胞(Endothelial precusor cells, EPCs),能“归巢”于血管损伤处定向分化为内皮细胞并通过旁分泌机制促进内皮修复和血管新生。然而,目前对于调控EPCs增殖、迁移等生理功能的机制或某些关键因子在其中的作用尚不完全清楚。
     分化抑制因子(Inhibitor of DNA binding/differentiation, Id)属于螺旋-环-螺旋(Helix-loop-helix, HLH)转录因子家族,Id包括Id1-Id4四个亚型,各成员均包括高度保守的HLH结构区,但缺乏碱性DNA结合区。Id与其他碱性HLH蛋白(如E2A,E12,E47,c-Myc)形成异二聚体,从而抑制了这些碱性HLH蛋白与DNA及其他组织特异性碱性LHL转录因子结合,影响特异性蛋白的表达,抑制细胞分化。目前发现,Id参与了包括表皮、肌肉、神经等多种类细胞增殖分化及及肿瘤形成,且Id1与骨髓EPCs动员等密切相关,但Id是否也对EPCs功能有调控作用并参与血管损伤修复尚不清楚。研究结果发现:①Id与血管系统发生密切相关,胚胎发育中Id1-Id4表达呈复杂的时空模式,但Id1、Id3广泛表达且重叠贯穿整个胚胎脑血管系统,Id1/Id3双基因敲除小鼠由于明显的血管畸形、分叉障碍导致胚胎E13.5期死亡;②Id参与肿瘤血管新生:Id在内皮细胞过表达导致血管新生,缺失导致促血管生成基因如FGFR-1的下调,而野生型骨髓内皮前体细胞高表达Id1、Id3,移植后掺合到肿瘤血管床参与血管新生,且Id1、Id3阳性表达与血管密度显著正相关;③体外细胞实验中,Id能促进人脐静脉内皮细胞(HUVEC)的增殖、激活及管样形成,促血管生长因子VEGF、TGF-β则诱导HUVEC及骨髓源EPCs表达Id1和Id3,提示Id1、Id3可能是VEGF等促血管生长作用的下游关键靶点。研究结果提示:Id1可能表达于EPCs,并有调控其增殖、血管新生的功效,推测Id1为决定EPCs增殖的一类开关基因,受上游特殊信号刺激Id1的表达左右着增殖重要基因的转录,在EPCs介导的血管损伤修复中发挥重要作用。
     在本课题中,我们将分别从细胞及在体动物水平探讨Id1在EPCs增殖、迁移以及血管损伤修复中的作用。为研究EPCs生理功能的调控机制及EPCs在血管损伤修复中的作用提供实验依据,为深入探讨促进血管损伤后内皮有益再生提供新的思路。
     2.方法:
     2.1重组腺病毒Ad-Id1的构建
     由大鼠组织中提取RNA,经RT-PCR扩增得到目的基因Id1片段,经pMD19T-Simple和AdEasy细菌内同源重组系统构建Id1的病毒过表达载体,即Ad-Id1,通过测序、PCR和酶切鉴定重组病毒Ad-Id1的构建。
     2.2 Id1对EPCs增殖、迁移功能的影响
     用密度梯度离心法及选择性培养的方法,体外分离、培养小鼠脾源性EPCs,通过细胞形态学、表面分子标志以及Dil-acLDL/FITC-UEA-I双阳性等方法进行鉴定;转染Ad- Id1以及si-RNA-Id1,观察过表达或沉默Id1基因对EPCs增殖、迁移的作用。
     2.3观察Id1在血管损伤后局部血管壁的表达及参与血管损伤修复过程的作用
     用体重为20g-30g的雄性昆明小鼠复制颈动脉损伤模型,通过荧光定量RT-PCR以及Western blot分别观察Id1在血管损伤修复过程中mRNA和蛋白表达水平的变化;将过表达Id1的EPCs注入颈动脉损伤小鼠尾静脉,14d后观察损伤血管局部再内皮化及新生内膜增殖程度。
     3.结果;
     3.1.重组腺病毒Ad-Id1的构建
     由大鼠组织提取RNA,进行RT-PCR获得含酶切位点的Id1基因全CDS区,将目的基因连接到pMD19T-Simple载体中进行扩增,经酶切、连接、转化等步骤后得到pAdTrack-Id1,与骨架质粒pAdEasy-1在BJ5183细菌内进行同源重组,通过筛选、293T细胞包装后获得重组病毒Ad-Id1,经鉴定、扩增获得高滴度的Ad-Id1病毒颗粒以用于下一步的实验。Ad-Id1的病毒滴度约为1.2×1010 -2.8×1011 pfu/ml。
     3.2 Id1对体外培养脾源性EPCs增殖、迁移功能的影响
     3.2.1脾源性EPCs鉴定
     分离培养的脾源性EPCs经过诱导分化后向内皮细胞表型转变,流式细胞检测Scal-1、VEGFR-2在培养细胞中的阳性率分别为83.5%、57.6%,Dil-acLDL/FITC- UEA-I双阳性细胞约占90%,说明所培养脾源性细胞是EPCs。
     3.2.2 Id1在脾源性EPCs的表达情况
     Id1在脾源性EPCs呈低水平表达,而当受到血清或VEGF刺激后,Id1的基因及蛋白水平均明显增高;静止状态下Id1定位表达于EPCs细胞浆内。
     3.2.3基因转染脾源性EPCs
     转染后细胞状态良好,贴壁生长,无变圆、缩小或脱落等病理迹象,经过荧光倒置显微镜、RT-PCR以及Western blot观察发现Ad- Id1的转染效率在第24小时约60%,48-72小时达高峰,约80%。si-RNA-Id1转染后4天,Id1在EPCs的表达被显著抑制,转染率约50%。
     3.2.4 Ad- Id1对EPCs增殖的作用
     采用MTT法分析发现,Ad- Id1对EPCs增殖显著影响。无论与未转染对照组还是Ad-GFP对照组比较,Ad- Id1对EPCs的增殖有统计学差异(均* P<0.05),提示Ad- Id1对EPCs有促进增殖的作用。
     3.2.5 Ad- Id1对EPCs迁移的作用
     外源性Id1过表达显著促进EPCs迁移。在Ad- Id1作用诱导下,平均每个视野中迁移EPCs的数目从7.1±1.8增加到26.1±2.8,增加了近3倍(* P<0.01)。加入Id1封闭性抗体Id1-Ab后,Ad- Id1促迁移作用明显减弱(# P<0.05),提示EPCs迁移能力的增强是过表达Id1导致。
     3.2.6利用小片段RNA(si-RNA)干扰沉默Ad- Id1对EPCs增殖、迁移的影响
     结果表明si-RNA- Id1介导的Id1基因的沉默明显抑制了EPCs的增殖、迁移功能,与未干预组及阴性对照组比较均有显著差异(* p<0.05)。
     3.3 Id1在血管损伤修复中的表达及作用
     3.3.1小鼠颈动脉损伤模型的建立
     经损伤血管组织切片H&E染色证实,本研究成功复制了小鼠颈动脉损伤模型,镜下观察到血管损伤后7天局部内膜有增生,14天时新生内膜增生明显,到28天新生的内膜几乎堵塞整个血管腔。内膜/中膜比值(IA/MA)14d组为1.30±0.15,28d组为4.10±0.20较损伤7d组的0.28±0.02显著增加(分别为P<0.01,P=0.000)。
     3.3.2 Id1在血管损伤局部血管壁的表达
     免疫组化实验显示Id1在损伤血管的新生内膜、中膜以及外膜组织均有表达。Id1mRNA在正常血管组织低表达,血管损伤后表达迅速上升,114d即达到高峰,之后逐渐下降维持到血管损伤后第28天仍较对照组高。Western blot检测到Id1蛋白表达在血管损伤后第7d开始上调,14d时达到高峰,然后逐渐回落,在损伤后第28天仍有表达。
     3.3.3移植过表达Id1的EPCs对损伤血管再内皮化的影响
     损伤14d时Ad-Id1-EPCs转染组再内皮化率为68.36±4.51%,而Ad-GFP-EPCs转染组及未转染组再内皮化率分别为43.1±6.59%、40.5±7.82%,两者之间无统计学差异,但与Ad-Id1-EPCs转染组比较均存在明显差异(P<0.05),说明转染Id1过表达的EPCs可促进第14d时损伤血管再内皮化
     3.3.4移植过表达Id1的EPCs对损伤血管局部新生内膜增殖的影响
     血管损伤后第14d,Ad-Id1-EPCs转染组小鼠损伤颈动脉内、中膜比值为1.08±0.15,结果与Ad-GFP-EPCs组(1.16±0.14)及未转染组(1.15±0.17)比较三组之间比较无明显差异(P>0.05),而三组中膜面积均无明显差异(P>0.05),提示转移植表达Id1的EPCs未减轻血管损伤后新生内膜的增殖程度。
     4.结论:
     4.1 Id1在静止状态的脾源性EPCs呈低表达,定位于细胞浆内;
     4.2 Id1影响EPCs增殖、迁移功能:过表达Id1可促进EPCs的增殖、迁移,干扰Id1则抑制EPCs的增殖、迁移;
     4.3 Id1在损伤血管局部呈动态表达,14d为其表达高峰期;
     4.4移植过表达Id1的EPCs到颈动脉损伤动物模型,可促进14d后损伤血管再内皮化,但未明显抑制局部新生内膜的增殖。
1. Background and Objective:
     Enhancement of reendothelialization is a critical therapeutic option to repair injured blood vessels. Regeneration of injured endothelium has been attributed to the migration and proliferation of neighboring endothelial cells (ECs). Mature ECs are terminally differentiated cells with a low proliferative potential, and their capacity to substitute damaged endothelium is limited. Increasing evidence suggests that circulating endothelial progenitor cells (EPCs), which can home to sites of tissue injury and differentiate into mature ECs and participate in re-endothelialization after vascular injury, may be an endogenous repair mechanism to maintain the integrity of the endothelial monolayer by replacing denuded parts of the artery. EPCs also secrete various cytoprotective or pro-angiogenic factors in a paracrine manner to promote the survival and proliferation of ECs. The physiological and therapeutic significance of EPCs in reendothelialization processes is currently the subject of intensive investigation.
     Mobilization of EPCs by cytokines, growth factors or drugs; infusion ex-vivo expanded EPCs; and EPC-based gene therapy have been suggested to contribute to re-endothelialization and to inhibit intimal hyperplasia after vascular injury. A critical limitation for therapeutic application of post-natal EPCs is their low number in the circulation (which is even lower in patients with cardiovascular risk factors). The approaches mentioned above have the potential to overcome the problem. The mechanisms underlying reendothelialization by EPCs must be intensively investigated and these mechanisms understood before novel strategies for EPC therapy are translated into clinical applications.
     During reendothelialization, migration and proliferation of EPCs are the key steps regulated by various mechanisms and signals. The inhibitor of DNA binding 1 (Id1) proteins, an important subfamily member of helix-loop-helix (HLH) transcriptional factors, has been implicated in regulating the growth, proliferation, migration and differentiation of cells. Several studies have focused on the Id1 transcription factor because Id1 knockout mice (Id1+/– Id3–/–) exhibit impaired tumor growth associated with impaired recruitment of EPCs. Restraint of the expression of the cyclin-dependent kinase inhibitor p21 by Id1 is one key element of its activity in facilitating EPC generation in the bone marrow. Recent studies also demonstrated tumor-induced expression of Id1 in EPCs, and conditional Id1 suppression resulted in impaired mobilization of EPCs. These studies shed light on the relationship between Id1 and the functional regulation of EPCs, including recruitment, population and mobilization of EPCs.
     Based on the available data concerning Id1 on EPC behavior, Id1 may exert potential effects on the migration and proliferation of EPCs, contributing to the neovascularization and vascular repair process after injury. In this study, we overexpressed Id1 and si-RNA to evaluate the possible role of Id1 on EPCs proliferation, migration, and participation in vascular regeneration. Our findings provide a novel insight into understanding of biological function of Id1 and the molecular mechanisms behind EPCs-mediated vascular regeneration.
     2. Methods:
     2.1 Construction of recombinant adenoviral vectors
     Adenoviral vectors repectively expressing Id1 were generated using the AdEasy system. Briefly, full-length rat Id1 cDNA were generated by RT-PCR using total RNA from Sprague–Dawley (SD) rat heart and spleen. The cDNA was first TA-cloned into pMD19-T simple vector and then subcloned into pAdTrack-CMV, resulting in pAdTrack-Id1. The shuttle vectors were used to generate recombinant adenoviruses according to the manufacturer’s protocol. All PCR-amplified fragments and cloning junctions were verified by DNA sequencing and enzymatic digestion. An adenovirus encoding green fluorescent protein (GFP; Ad-GFP) was used as control.
     2.2 Effecs of Id1 on spleen derived EPCs proliferation and migration in vitro
     spleen derived EPCs were isolated by density gradient centrifugation and cultured in low glucose DMEM supplemented with 10% FCS and 10ng/mL VEGF. To confirm the EPCs phenotype, cells were incubated with DiI-acLDL for 4 hours, fixed with 4% paraformaldehyde and then incubated with FITC-labeled lectin (UEA-1) for 1 hour. Dual-stained cells positive for both DiI-acLDL and UEA-1 were identified as EPCs. Additionally, flow cytometry (FACS) analysis was performed using antibodies against mouse Scal-1 and VEGFR-2. To investigate the effect of Id1 on spleen derived EPCs proliferation and migaration in vitro, we transduced Ad- Id1 and pGenesil- Id1 into EPCs that were cultured in serum- and VEGF- free medium.
     2.3 Expression and function of Id1 during vascular repair following mice carotid artery injured
     To evaluate the role of Id1 in vascular repair in vivo, firstly, we examined the expression of Id1 in injured mice carotid artery, using PCR and Westen blot analysis. Secondly, we transduced Ad- Id1 and pGenesil- Id1 into EPCs. Thirdly, these transduced EPCs were injected by intravenous tail vein after induction of arterial injury. The injured segments were isolated 14 days after EPCs transplantation. Overexpression of Id1 was confirmed by immunohistochemistry. No observable adverse side effect (mortality or any other clinical signs of distress/morbidity) was found in experimental animals. Evans Blue dye was administered to evaluate reendothelialization at 14 day after injury, and the neointimal formation was assessed at 14 day following vascular injury.
     3. Results:
     3.1 Recombinant adenoviral vectors expressing Id1
     Full length cDNA encoding Id1 was amplified by RT-PCR using total RNA from Sprague–Dawley (SD) rat heart or spleen. The cDNA was first TA-cloned into pMD19-T simple vector and then subcloned into adenoviral shuttle vector pAdTrack-CMV. Recombinant adenovirus Ad-Id1 were generated and purified according to the manufacturer’s protocol. The adenovirus virus titer was about 1.2×1010-2.8×1011 plaque-forming units per millilitre (pfu /ml), as determined by plaque assay.
     3.2 Effecs of Id1 on spleen derived EPCs proliferation and migration in vitro
     3.2.1 spleen derived EPCs isolation and characterization
     After 4-7 days of culture, adherent EPCs were characterized by immunofluorescence and flow cytometry analysis (FACS). The majority of cells (>90%) stained positive for DiI-AcLDL and lectin, and expressed endothelial/stem cell markers, including Scal-1 (83.5%) and VEGFR-2 (57.6 %) confirming the cell type of EPCs.
     3.2.2 Expression and location of Id1 in EPCs
     Id1 was present at fairly low levels in quiescent EPCs, but was rapidly upregulated upon stimulation with serum and VEGF (a strong growth factor of EPCs) and was detected via mRNA in RT-PCR or by protein in western blotting. To analyze the subcellular localization of Id1, EPCs were fixed and subjected to DAB staining with anti-Id1 multiclonal antibody by immunocytochemical staining: Id1 was localized predominantly in the cytoplasm.
    
     3.2.3 EPCs transfection
     Adenovirus-mediated Id1 expression was confirmed by fluorescence, RT-PCR, and Western blot analysis. The transfection efficiency was 60% at 24h post-transfection and 80% at 48-72h post-transfection. Four days after introduction of pGenesil1-Id1, an approximate 60% of Id1 expression loss was shown, as measured by Western blot and RT-PCR.
     3.2.4 Effect of Ad- Id1 on EPCs proliferation
     The proliferation of EPCs was not ehanced significantly by Ad- Id1. Despite a decrease observed in cells transfected with Ad- Id1 as compared with Ad-GFP (p<0.05), it has significant meaning in compare with untransfected control (p<0.05).
     3.2.5 Effect of Ad- Id1 on EPCs migration
     Over expression of exogenous Id1 extensively improved the migration of EPCs, and in fact, the average migrated cell number of the EPCs increased by approximately 3-fold, from 7.1±1.8 to 6.1±2.8 (* P<0.01) compared to that of the control cells.
     3.2.6 Role of siRNA- Id1
     After introduction of si-RNA- Id1 EPCs exhibited a decrease in cell proliferation and migration when compared with negative control siRNA transfected cells or untransfected cells (* p< 0.05).
     3.3 Expression and function of Id1 during vascular repair following mice carotid artery injured
     3.3.1 Mice carotid injury model
     Histological analysis and H&E staining demonstrated that neointimal formation was initiated at 7days and obviously developed at 28 day after vascular injury in control mouse. In addition, after transfection with Ad- Id1 or Ad-GFP, green fluorescence was detected with vascular tissues under a fluorescence microscope at 48 h post-vascular injury, indicating the efficiency of adenovirus transfection in mice carotid arteries.
     3.3.2 Expression of Id1 during vascular repair process
     Id1 mRNA expression was detected at low levels in normal uninjured control arteries, whereas following vascular injury Id1 mRNA level was rapidly enhanced with a peak at 14 d which gradually declined thereafter in 14 days and remained elevated for up to at least 28days. Id1 protein expression was assessed by Western blotting and was consistently found to be up-regulated. Further, immunohistochemistry showed that Id1 was detected in the intima and media of local vessels.
     3.3.3 Effect of Ad- Id1-EPCs transplantation on vascular reendothelialization
     Evans Blue dye was administered to evaluate reendothelialization at 14 days after injury. Nonendothelialized lesions were marked blue about 100% at injured vessels, whereas the reendothelialized area appeared white at uninjured vessels. The reendothelialized area in the Ad- Id1-EPCs infected arteries was significantly larger than that in Ad-GFP-EPCs, and non-infected groups (reendothelialized area /totle vessel injured area ratio was 68.36±4.51, 43.1±6.59 and 40.5±7.82, respectively, p<0.05), suggesting that transplantation of Ad-Id1-EPCs effectively promoted reendothelialization after vascular injury.
     3.3.4 Effect of Ad- Id1-EPCs transplantation on neointimal formation
     No marked decrease in the I/M ratio was shown in Ad- Id1-EPCs group compared with Ad-GFP-EPCs or non-infected group at day 14 (1.08±0.1, 1.16±0.14 and 1.15±0.17, respectively, p>0.05).
     4. Conclusions:
     4.1 Id1 was present at fairly low levels in quiescent EPCs and was localized mainly in the cytoplasm. Id1 was rapidly upregulated upon stimulation with serum and VEGF;
     4.2 Overexpression of Id1 stimulated spleen derived EPCs proliferation and migration, and that was reversed by si-RNA-mediated silencing of Id1 expression;
     4.3 Id1 was dynamically expressed in vascular lesions, and attained the peak expression in14 day after injure.
     4.4 Ad-Id1-EPCs transplantation could home into the vascular injury site and accelerate reendothelialization of denuded vessel, howere, could not inhibit the neointima formation at the same period after vascular injury.
引文
1. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM. Statin therapy accelerate reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002,105:3017–3024.
    2. He T, Smith LA, Harrington S, Nath KA, Caplice NM, Katusic ZS.Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Stroke 2004,35:2378–2384.
    3. Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, Nickenig G. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 2003,93:e17–e24.
    4. Fujita J, Mori M, Kawada H, Ieda Y, Tsuma M, Matsuzaki Y, Kawaguchi H, Yagi T, Yuasa S, Endo J, Hotta T, Ogawa S, Okano H, Yozu R, Ando K, Fukuda K. Administration of granulocyte colony-stimulating factor after myocardial infarction enhances the recruitment of hematopoietic stem cellderived myofibroblasts and contributes to cardiac repair. Stem Cells 2007, 25:2750–2759.
    5. Wassmann S, Werner N, Czech T, Nickenig G. Improvement of endothelial function by systemic transfusion of vascular progenitor cells. Circ Res 2006, 99:e74–e83.
    6. Thum T, Tsikas D, Stein S, Schultheiss M, Eigenthaler M, Anker SD, Poole-Wilson PA, Ertl G, Bauersachs J. Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. J Am Coll Cardiol: 2005,46 1693–1701.
    7. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res2001, 89:e1–e7.
    8. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003,348:593–600.
    9. Wu Y, Ip JE, Huang J, Zhang L, Matsushita K, Liew CC, Pratt RE, Dzau VJ. Essentialrole of ICAM-1/CD18 in mediating recruitment, angiogenesis, and repair to the infracted myocardium. Circ Res2006, 99:315–322.
    10. Kasprzak EM, Jagodziński PP. Endothelial progenitor cells as a new agent contributing to vascular repair. Arch Immunol Ther Exp 2007,55:247–259.
    11. Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix–loop–helix proteins in cell growth and differentiation. Trends Cell Biol 1998,8:58-65.
    12.陈剑飞,黄岚,晋军武晓静刘兰周健赵晓晖崔斌.年龄对大鼠骨髓内皮祖细胞数量和功能的影响及其意义.中华心血管病杂志.2006;34(11):1026-8.
    13. Nishiyama K, Takaji K, Kataoka K, Kurihara Y, Yoshimura M, Kato A, Ogawa H, Kurihara H.Id1 gene transfer confers angiogenic property on fully differentiated endothelial cells and contributes to therapeutic angiogenesis. Circulation 2005,112: 2840-50.
    14. Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 2005,5:5603-5614.
    15. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001,7:1194–1201.
    16. Ruzinova MB, Schoer RA, Gerald W, Egan JE, Pandolfi PP, Rafii S, Manova K, Mittal V, Benezra R. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 2003,4:277–289.
    17. Ciarrocchi A, Jankovic V, Shaked Y, Nolan DJ, Mittal V, Kerbel RS, Nimer SD, Benezra R.Id1 Restrains p21 expression to control endothelial progenitor cell formation. PLoS ONE 2007,12:e1338.
    18. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V. Endothelial Progenitor Cells Control the Angiogenic Switch in Mouse Lung Metastasis. Science 2008,319:195-198.
    19. Yin YG, Huang L, Zhao XH, Fang YQ, Yu SY, Zhao JH, Cui B. AMD3100 Mobilizes Endothelial Progenitor Cells in Mice, But Inhibits Its Biological Functions by Blockingan Autocrine/Paracrine Regulatory Loop of Stromal Cell Derived Factor–1 In Vitro. J Cardiovasc Pharmacol 2007,50:61–67.
    20. Zhao XH, Huang L, Yin YG, Fang YQ . Estrogen induces endothelial progenitor cells proliferation and migration by estrogen receptors and P13K-dependent pathways. Microvasc Res 2008,75: 45-52.
    21. Benezra R, Rafii S, Lyden D.The Id proteins and angiogenesis. Oncogene 2001,20:8334-8341.
    22. Wong YC, Wang X, Ling MT. Id-1 expression and cell survival. Apoptosis 2004,9:279-289.
    23. Engel I, Murre C. The function of E- and Id proteins in lymphocyte development. Nat Rev Immunol 200,111:93-199.
    24. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999,18:3964–3972.
    25. Bin L, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. The FASEB J 2006,20:1495-1497.
    26. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell 1990,61:49–59.
    27. Garrell J, Modolell J.The Drosophila extramacrochaetae locus, an antagonist of proneural genes that, like these genes, encodes ahelix–loop–helix protein. Cell 1990,61:39–48.
    28. Norton JD.ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis, J. Cell. Sci 2000,113:3897–3905.
    29. Tzeng SF. Inhibitors of DNA binding in neural cell proliferation and differentiation, Neurochem. Res 2003,28:45–52.
    30. Ouyang XS, Wang X, Ling MT, Wong HL, Tsao SW, Wong YC. Id-1stimulates serum independent prostate cancer cell proliferation through inactivation of p16(INK4a)/pRB pathway. Carcinogenesis 2002,23:721-725.
    31. Kreider BL, Benezra R, Rovera G., Kadesch T. Inhibition of myeloid differentiation by the helix-loop-helix protein Id. Science 1992,255:1700-1702.
    32. Alani RM, Hasskarl J, Grace M, Hernandez MC, Israel MA, Munger K. Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1. Proc Natl Acad Sci USA 1999,96: 9637-9641.
    33. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R, Kerbel RS. Therapy induced acute recruitment of circulating endothelial progenitor cells to tumors. Science2006, 313:1785–1787.
    34. Han S, Guo CC, Hong L, Liu J, Hang ZY, Liu CJ, Wang J, Wu KC, Ding J, Fan DM. Expression and significance of Id1 helix–loop–helix protein overexpression in gastric cancer. Cancer Lett 2004,216: 63–71.
    35. Takai N, Miyazaki T, Fujisawa K, Nasu K, Miyakawa I. Id1 expression is associated with histological grade and invasive behavior in endometrial carcinoma. Cancer Lett 2001,165:185–193.
    36. Tu X, Baffa R, Luke S, Prisco M, Baserga R. Nucleo-cytoplasmic Shuttling of Id2, a Negative Regulator of Basic Helix-Loop-Helix Transcription Factors. Exp Cell Res 2003,288:119-130.
    37. Lasorella A, Iavarone A. The protein ENH is a cytoplasmic sequestration factor for Id2 in normal and tumor cells from the nervous system. Natl Acad Sci USA 2006,103:4976-4981.
    38. Sun L, Trausch-Azar JS, Ciechanover A, Schwartz AL. Ubiquitin-proteasome-mediated degradation, intracellular localization, and protein synthesis of MyoD and Id1 during muscle differentiation. J Biol Chem 2005,280:26448-26456.
    39. Li X, Luo Y, Starremans PG, McNamara CA, Pei Y, Zhou J. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol2005 ,7:1202-1212.
    40. Deed RW, Hara E, Atherton GT, Peters G, Norton JD. Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation. Mol Cell Biol 199,717:6815– 6821.
    41. Chen B, Han BH, Sun XH, Lim RW. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function. Nucleic Acids Res 1997,25:423– 430.
    42. Yokota Y. Id and development. Oncogene 2001,20:8290–8298.
    43. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S,Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003,107: 1322–1328.
    44. Zheng H, Dai T, Zhou BQ, Zhu JH, Huang H, Wang M, Fu G.S. SDF-1α/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis 2008,201:36–42.
    45. Sikder H, Huso DL, Zhang H, Wang B, Ryu B, Hwang ST, Powell JD, Alani R. Disruption of Id1 reveals major differences in angiogenesis between transplanted and autochthonous tumors. Cancer Cell 2003,4:291–299.
    46. L. Zentilin, S. Tafuro, S. Zacchigna. Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels Blood, 2006; 107(9): 3546 - 3554
    47. R. Khurana, M. Simons, J. F. Martin, and I. C. Zachary Role of Angiogenesis in Cardiovascular Disease: A Critical Appraisal Circulation, 2005; 112(12): 1813 - 1824.
    48. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348: 593–600.
    49. Murasawa S, Llevadot J, Silver M.Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation. 2002 Aug 27;106(9):1133-9.
    50. Rengo and Massimo Chiariello Franco Georgina M.endothelial regeneration after balloon injury Aging exacerbates negative remodeling and impairs AJP– Heart 2004 287:2850-2860,.
    51. Hamada H, Kim MK, Iwakura A, Ii M, Thorne T, Qin G, Asai J, Tsutsumi Y, Sekiguchi H, Silver M, Wecker A, Bord E, Zhu Y, Kishore R, Losordo DW. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction.Circulation. 2006 21;114(21):2261-70.
    52. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007 Feb 27;
    53. Boos CJ, Lip GY, Blann AD. Circulating endothelial cells in cardiovascular disease. J Am Coll Cardiol. 2006 Oct 17;48(8):1538-47
    54. Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 2005 Sep 1;106(5):1525-31.
    55. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999; 85: 221–228
    56. David M. Smadja; Ivan Bièche; Georges Uzan; Heidi Bompais; Laurent Muller; Catherine Boisson-Vidal; Michel Vidaud; Martine Aiach; Pascale Gaussem. PAR-1 Activation on Human Late Endothelial Progenitor Cells Enhances Angiogenesis In Vitro With Upregulation of the SDF-1/CXCR4 System Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25:2321
    57.赵晓辉,黄岚,尹扬光,周健,方玉强,朱光旭,陈剑飞,崔斌.雌二醇对骨髓EPCs部分生物学功能的影响.中华老年心脑血管病杂志-2006:8(5)-343-345
    58. Murphy C, Kanaganayagam GS, Jiang B, Chowienczyk PJ, Zbinden R, Saha M, Rahman S, Wheatcroft S, Shah AM, Marber MS, Kearney MT.Vascular Dysfunction and Reduced Circulating Endothelial Progenitor Cells in Young Healthy UK South Asian Men. Arterioscler Thromb Vasc Biol. 2007;27(4):936-42
    59. Hughes AD, Coady E, Raynor S, Mayet J, Wright AR, Shore AC, Kooner JS, Thom SA, Chaturvedi N.Reduced endothelial progenitor cells in European and South Asian men with atherosclerosis.Eur J Clin Invest. 2007;37(1):35-41.
    60. Andreou I, Tousoulis D, Tentolouris C, Antoniades C, Stefanadis C.Potential role of endothelial progenitor cells in the pathophysiology of heart failure: clinical implications and perspectives.Atherosclerosis. 2006 ;189(2):247-54
    61. Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med. 2003; 9: 702–712
    62. Pujol BF, Lucibello FC, Gehling UM et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 2000;65:287–300
    63. Schmeisser A, Garlichs CD, Zhang H et al. Monocytes coexpress endothelial andmacrophagocytic lineage markers and form cord-like structures in Matrigel? under angiogenic conditions. Cardiovasc Res 2001; 49:671–680
    64. Ciulla MM, Giorgetti A, Silvestris I, Cortiana M, Montelatici E, Paliotti R, Annoni GA, Fiore AV, Giordano R, De Marco F, Magrini F, Rebulla P, Cortelezzi A, Lazzari L.Endothelial colony forming capacity is related to C-reactive protein levels in healthy subjects. Curr Neurovasc Res. 2006 May;3(2):99-106.
    65. Imanishi T, Moriwaki C, Hano T, Nishio I .Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens. 2005 Oct;23(10):1831-7.
    66. Werner N, Nickenig G.Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol. 2006 Feb;26(2):257-66 aufs U, Urhausen A, Werner N, Scharhag J, Heitz A, Kissner G, Bohm M, Kindermann W, Nickenig G. Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil. 2005 Aug;12(4):407-14.
    67. He T, Smith LA, Harrington S, Nath KA, Caplice NM, Katusic ZS. Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Stroke. 2004;35:2378-84.
    68. Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, Mann MJ, , et al. Isolation and Transplantation of Autologous Circulating Endothelial Cells Into Denuded Vessels and Prosthetic Grafts. Circulation. 2003;108:2710.
    69. Wassmann S, Werner N, Czech T, Nickenig G. Improvement of endothelial function by systemic transfusion of vascular progenitor cells. Circ Res. 2006 Oct 13;99(8):e74-83.
    70. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cells recruitment for ischemic neovascularization. Circulation. 2003; 107:1322-1328.
    71. Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation. 2004; 109: 2454–61.
    72. Moore M.A, Hattori K, Heissig B, et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1, Ann N Y Acad Sci. 2001; 938: 36–45.
    73. Aiuti A, Turchetto L, Cota M, et al. Human CD34+ cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus. Blood. 1999;94:62-73.
    74. Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J, Hoffmann J, Urbich C, Lehmann R, Arenzana-Seisdesdos F, Aicher A, Heeschen C, Fichtlscherer S, Zeiher AM, Dimmeler S. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res. 2005 Nov 25;97(11):1142-51.
    75. Smadja DM, Bieche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C, Vidaud M, Aiach M, Gaussem P. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol. 2005 Nov;25(11):2321-7.
    76. Lataillade JJ, Domenech J, Le Bousse-Kerdiles MC. Stromal cell-derived factor-1 (SDF-1)\CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: survival, cell cycling and trafficking. Eur Cytokine Netw. 2004;15:177-88.
    77. Frenette PS, Weiss L. Sulfated glycans induce rapid hematopoietic progenitor cell mobilization:evidence for selectin dependent and independent mechanisms. Blood. 2000; 96 (7) :2460.
    78. Hattori K, Heissig B , Tashiro K, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood. 2001; 97 :3354 - 3360.
    79. Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. 2000; 97: 3422-7.
    80. Matsumura ME, Lobe DR, McNamara CA. Contribution of the helixloop-helix factor Id2 to regulation of vascular smooth muscle cell proliferation[J]. J Biol Chem, 2002,277(9):7293-7297.
    81. Matsumura ME, Li F, Berthoux L, et al. Vascular injury induces posttranscriptional regulation of the Id3 gene: cloning of a novel Id3 isoform expressed during vascular lesion formation in rat and human atherosclerosis[J]. Arterioscler Thromb Vasc Biol. 2001;21(5):752–758.
    82. Forrest ST, Barringhaus KG, Perlegras D, et al. Intron retention generates a novel Id3 isoform that inhibits vascular lesion formation[J]. J Biol Chem. 2004;279(31): 32897–32903.
    83. Caldon CE, Swarbrick A, Lee CS, et al. The Helix-Loop-Helix Protein Id1 Requires Cyclin D1 to Promote the Proliferation of Mammary Epithelial Cell Acini[J]. Cancer Res., April 15, 2008; 68(8): 3026 - 3036.
    84. Jaideep C , Ingrid SR , Jacquelyn M, et al. The Helix-Loop-Helix Inhibitor of Differentiation (ID) Proteins Induce Post-Mitotic Terminally Differentiated Sertoli Cells to Re-Enter the Cell Cycle and Proliferation[J]. Biol of research, 2005,72(5), 1205–1217.
    85. Sikder HA, Devlin MK, Dunlap S, et al. Id proteins in cell growth and tumorigenesis[J]. Cancer Cell 2003;3(6):525–30.
    86. Norton JD, Atherton GT. Coupling of cell growth control and apoptosis functions of Id proteins[J]. Mol Cell Biol. 1998;18(4):2371–2381.
    87. Rui-Wei Guo, Hong Wang, Pan Gao, et al. An essential role for stromal interaction molecule 1 in neointima formation following arterial injury[J]. Cardiovascular Research, 2009, 81(4):660-668.
    88. Xiaohui Zhao ,Lan Huang, Yangguang Yin ,Yuqiang Fang.Autologous endothelial progenitor cells transplantation promoting endothelial recovery in mice[J].Transpl Int, 2007, 20(8):712-721.
    89. Xiaohui Zhao, Lan Huang, Yangguang Yin, Yuqiang Fang.Estrogen induces endothelial progenitor cells proliferation and migration by estrogen receptors and P13K-dependent pathways[J].Microvasc Res. 2008,75(1):45-52.
    90. Xiaojing Wu, Lan Huang, Qi Zhou, Yaoming Song, Aimin Li, Jun Jin, Bin Cui. Effect of paclitaxel and mesenchymal stem cells seeding on ex vivo vascular endothelial repair and smooth muscle cells growth[J].J Cardiovasc Pharmacol. 2005,46(6):779-786.
    91. Clowes AW, Reidy MA, et al. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium[J]. Lab Invest. 1983;49(3): 327–333.
    92. Lindner V, Fingerle J, Reidy MA. Mouse model of arterial injury. Circ Res. 1993; 73: 792–796.
    93. Hamada H, Kim MK, Iwakura A, Ii M, Thorne T, Qin G, Asai J, Tsutsumi Y, Sekiguchi H, Silver M, Wecker A, Bord E, Zhu Y, Kishore R, Losordo DW. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation. 2006 Nov 21;114(21):2261-70.
    94. Ohta T, Kikuta K, Imamura H, Takagi Y, Nishimura M, Arakawa Y, Hashimoto N, Nozaki K. Administration of ex vivo-expanded bone marrow-derived endothelial progenitor cells attenuates focal cerebral ischemia-reperfusion injury in rats. Neurosurgery. 2006 Sep; 59(3):679-86.
    95. Liuzzo JP, Ambrose JA, Coppola JT. Sirolimus- and taxol-eluting stents differ towards intimal hyperplasia and re-endothelialization. J Invasive Cardiol. 2005 Sep;17(9): 497-502.
    96. Behrendt D, Ganz P. Endothelial function: from vascular biology to clinical applications. Am J Cardiol. 2002; 90 (suppl): 40L-48L.
    97. Pauleto P, Sartore S, Pessina AC. Smooth muscle-cell proliferation and differentiation in neointima formation and vascular restenosis. Clin Sci. 1994; 87: 467-479.
    98. Urao N, Okigaki M, Yamada H, Aadachi Y, Matsuno K, Matsui A, Matsunaga S, Tateishi K, Nomura T, Takahashi T, Tatsumi T, Matsubara H. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res. 2006 Jun 9;98(11):1405-13.
    99. Iwakura A, Luedemann C, Shastry S, Hanley A, Kearney M, Aikawa R, Isner JM, Asahara T, Losordo DW. Estrogen-mediated, endothelial nitric oxide synthase- dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation. 2003 Dec 23;108(25):3115-21.
    100. Shariat-Madar Z, Mahdi F, Warnock M, Homeister JW, Srikanth S, Krijanovski Y, Murphey LJ, Jaffa AA, Schmaier AH.Bradykinin B2 receptor knockout mice are protected from thrombosis by increased nitric oxide and prostacyclin. Blood. 2006 Jul 1;108(1):192-9.
    101. Hu H, Zhang XX, Wang YY, Chen SZ.Honokiol inhibits arterial thrombosis through endothelial cell protection and stimulation of prostacyclin. Acta Pharmacol Sin. 2005 Sep;26(9):1063-8.
    102. Iwakura A, Shastry S, Luedemann C, et al. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation. 2006;113: 1605-14.
    103. Ishizawa K, Kubo H, Yamada M, et al. Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cells. Biochem Biophys Res Commun. 2004;324:276-80.
    104. Tepper OM, Capla JM, Galiano RD, et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood. 2005;105:1068-77.
    105. Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerate reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002; 105: 3017-24.
    106. He T, Smith LA, Harrington S, et al. Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Stroke. 2004;35:2378-84.
    107. Werner N, Junk S, Laufs U, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res. 2003;93:e17-24.
    108. J G, Cq W, Hh F, Hy D, Xl X, Ym X, et al. Effects of resveratrol on endothelial progenitor cells and their contributions to reendothelialization in intima-injured rats. J Cardiovasc Pharmacol. 2006 May;47(5):711-21.
    109. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, et al. Statin therapy accelerate reendothelialization: a novel effect involving mobilization andincorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002; 105: 3017-24.
    110. Natori T, Sata M, Washida M, Hirata Y, Nagai R, Makuuchi M. G-CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells. Biochem Biophys Res Commun. 2002 Oct 4;297(4):1 058-61.
    111. Kawamoto A, Gwon H-C, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103:634–637.
    112. Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells as novel biological determinants of vascular function and risk. N Engl J Med. 2003;348:593– 600.
    113. Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, Losordo DW. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via "imported" nitric oxide synthase activity. Circulation. 2005 Mar 8; 111(9): 1114-20.
    1. Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy?[J] Arterioscler Thromb Vasc Biol,2006, 26:257–26.
    2. Wu Y, Ip JE, Huang J, et al. Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium[J]. Circ Res, 2006, 99:315–322.
    3. Fontaine V, Filipe C, Werner N, et al. Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization[J]. Am J Pathol, 2006, 169:1855–1862.
    4. Oliveras A, Soler MJ, Martínez-Estrada OM, et al. Endothelial progenitor cells are reduced in refractory hypertension[J]. J Hum Hypertens, 2008, 22:183-190.
    5. Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension[J]. J Hypertens, 2005, 23:1831–1837.
    6. Fadini GP, Coracina A, Baesso I, et al. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population[J]. Stroke, 2006, 37:2277–2282.
    7. Imanishi T, Hano T, Nishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress[J].J Hypertens, 2005, 23:97–104.
    8. Loomans CJM, deKoening EJP, Staal FJT, et al. Endothelial progenitor cell dysfunction. A novel concept in the pathogenesis of vascular complications of type Idiabetes[J]. Diabetes, 2004, 53:195–199.
    9. Pirro M, Schillaci G,Menecali C,et al.Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients[J]. J Hypertens, 2008, 25:2093-2099.
    10. Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetes exhibit impaired proliferation,adhesion, and incorporation into vascular structures[J]. Circulation, 2002, 106:2781–2786.
    11. Waltenberger J. Impaired collateral vessel development in diabetes:potential cellular mechanisms and therapeutic implications[J]. Cardiovasc Res, 2001, 49:554–560.
    12. Krankel N, Adams V, Linke A, et al. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells[J]. Arterioscler Thromb Vasc Biol, 2005, 25:698–703.
    13. Scheubel RJ, Kahrstedt S, Weber H, et al. Depression of progenitor cell function by advanced glycation endproducts (AGEs):potential relevance for impaired angiogenesis in advanced age and diabetes[J]. Exp Gerontol , 2006, 41:540–548.
    14. Krankel N, Adams V, Linke A, et al. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells[J].Arterioscler Thromb Vasc Biol, 2005, 25:698–703.
    15. Cubbon RM, Rajwani A, Wheatcroft SB. The impact of insulin resistance on endothelial function, progenitor cells and repair[J]. Diab Vasc Dis Res, 2007,4: 103-111.
    16. Kondo T, Hayashi M, Takeshita K, et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers[J]. Arterioscler Thromb Vasc Biol, 2004, 24:1442–1447.
    17. Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities[J]. Atherosclerosis, 2006, 187:423-432.
    18. Palange P, Testa U, Huertas A, et al. Circulating haemopoietic and endothelial progenitor cells are decreased in COPD[J]. Eur Respir J, 2006, 27:529–541.
    19. Fadini GP, Schiavon M, Cantini M, et al. Circulating progenitor cells are reduced in patients with severe lung disease[J]. Stem Cells, 2006, 24:1806–1813.
    20. Avogaro A, Fadini GP. The janus face of nicotinic angiogenesis[J]. J Am Coll Cardiol, 2006, 48:2561–2563.
    21. Wang X, Zhu J, Chen J, Shang Y. Effects of nicotine on the number and activity of circulating endothelial progenitor cells[J]. J Clin Pharmacol, 2004, 44:881–889.
    22. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. N Engl J Med, 2003, 348:593– 600.
    23. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia[J]. Clin Sci (Lond), 2004, 107:273–280.
    24. Tso C, Martinic G, FanWH, et al. High-density lipoproteins enhance progenitor- mediated endothelium repair in mice [J]. Arterioscler Thromb Vasc Biol, 2006, 26:1144-1149.
    25. Imanishi T, Hano T, Sawamura T, Nishio I. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction[J]. Clin Exp Pharmacol Physiol, 2004, 31:407–413.
    26. Wang X, Chen J, Tao Q, Zhu J, Shang Y. Effects of ox-LDL on number and activity of circulating endothelial progenitor cells[J]. Drug Chem Toxicol, 2004, 27:243–255.
    27. Imanishi T, Hano T, Matsuo Y, Nishio I. Oxidized low-density lipoprotein inhibits vascular endothelial growth factor-induced endothelial progenitor cell differentiation[J]. Clin Exp Pharmacol Physiol, 2003, 30:665–670.
    28. Fadini G, Avogaro A. Endothelial progenitor cells and physical exercise. From the bench to the clinic[J]. J Sports Cardiol, 2005, 2:92–101.
    29. Fadini GP, de Kreutzenberg SV, Coracina A, et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk[J]. Eur Heart J, 2006, 27:2247–2255.
    30. Humpert PM, Neuwirth R, Battista MJ, et al. SDF-1 genotype influences insulin-dependent mobilization of adult progenitor cells in type2 diabetes[J]. Diabetes Care, 2005, 28:934–936.
    31. Whittaker A, Moore JS, Vasa-Nicotera M, et al. Evidence for genetic regulation of endothelial progenitor cells and their role as biological markers of atherosclerotic susceptibility[J].Eur Heart J, 2008,29:332-338.
    32. Chen JZ, Zhu JH, Wang XX, et al. Effects of homocysteine on number and activity ofendothelial progenitor cells from peripheral blood[J]. J Mol Cell Cardiol, 2004, 36:233–239.
    33. Schnabel R, Blankenberg S, Lubos E, et al. Asymmetric dimethylarginineand the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study[J].Circ Res, 2005, 97:e53–59.
    34. Thum T, Tsikas D, Stein S, et al. Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine[J]. J Am Coll Cardiol, 2005, 46:1693–1701.
    35. Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction[J]. Circulation, 2006, 114:2261–2270.
    36. Landmesser U, Bahlmann F, Mueller M, et al. Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans [J]. Circulation, 2005, 111:2356–2363.
    37. Fontaine V, Filipe C, Werner N, et al. Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization[J]. Am J Pathol, 2006, 169:1855–1862.
    38. Foresta C, Caretta N, Lana A, et al. Circulating endothelial progenitor cells in subjects with erectile dysfunction[J]. Int J Impot Res, 2005, 17:288–290.
    39. Kunz GA, Liang G, Cuculi F, et al. Circulating endothelial progenitor cells predict coronary artery disease severity[J]. Am Heart J, 2006, 152:190–195.
    40. Chironi G, Walch L, Pernollet MG, et al. Decreased number of circulating CD34(+)KDR(+) cells in asymptomatic subjects with preclinical atherosclerosis[J]. Atherosclerosis, 2007, 191: 115–120.
    41. Fadini GP, Sartore S, Albiero M, et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy[J]. Arterioscler Thromb Vasc Biol, 2006, 26:2140–2146.
    42. Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease[J]. Circulation, 2004, 109:1615–1622.
    43. Lambiase PD, Edwards RJ, Anthopoulos P, et al. Circulating humoral factors andendothelial progenitor cells in patients with differing coronary collateral support[J]. Circulation, 2004, 109:2986–2992.
    44. Iwakura A, Shastry S, Luedemann C, et al. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9[J]. Circulation., 2006, 113:1605–1614.
    45. Schober A, Karshovska E, Zernecke A, Weber C. SDF-1alphamediated tissue repair by stem cells: a promising tool in cardiovascular medicine? [J]Trends Cardiovasc Med, 2006, 16:103–108.
    46. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes[J]. Nat Med., 2006, 12:557–567.
    47. Leone AM, Rutella S, Bonanno G, et al. Endogenous G-CSF and CD34+ cell mobilization after acute myocardial infarction[J]. Int J Cardiol, 2006, 111:202–208.
    48. Banerjee S, Brilakis E, Zhang S, et al. Endothelial progenitor cell mobilization after percutaneous coronary intervention[J]. Atherosclerosis, 2006, 189:70–75.
    49. LeoneAM,Rutella S, Bonanno G, et al. Mobilization of bone marrowderived stem cells after myocardial infarction and left ventricular function[J] Eur Heart J, 2005, 26:1196–1204.
    50. Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler[J].Thromb Vasc Biol, 2006, 26:257–266.
    51. Fadini GP, Sartore S, Schiavon M, et al. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats[J].Diabetologia, 2006, 49:3075–3084.
    52. Arai M, Misao Y, Nagai H, et al. Granulocyte colony-stimulating factor: a noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease[J]. Circ J, 2006, 70:1093–1098.
    53. Engelmann MG, Theiss HD, Hennig-Theiss C, et al. Autologous bone marrow stem cell mobilization induced by granulocyte colonystimulating factor after subacuteST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (granulocyte colony-stimulating factor Stsegment elevation myocardial infarction) trial[J]. J Am Coll Cardiol, 2006, 48:1712–1721.
    54. Huang P, Li S, Han M, et al. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes[J]. Diabetes Care, 2005, 28:2155–2160.
    55. Honold J, Lehmann R, Heeschen C, et al. Effects of granulocyte colony simulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease[J]. Arterioscler Thromb Vasc Biol, 2006, 26:2238–2243.
    56. Sch¨achinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction final one-year results of the TOPCARE-AMI trial[J]. J Am Coll Cardiol, 2004, 44:1690–1699.
    57. Rosenzweig A. Cardiac cell therapy-mixed results from mixed cell[J]s. N Engl J Med, 2006, 355:1127–1274.
    58. Assmus B, Honold J, Sch¨achinger V, et al. Transcoronary transplantation of progenitor cells after myocardial infarction[J]. N Engl J Med, 2006, 355:1222–1232.
    59. Imanishi T, Hano T, Nishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress[J]. J Hypertens, 2005, 23:97–104.
    60. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes[J]. N Engl J Med, 2005, 353:999–1007.
    61. Hughes AD, Coady E, Raynor S, et al. Reduced endothelial progenitor cells in European and South Asian men with atherosclerosis[J]. Eur J Clin Invest, 2007, 37: 35-41.
    62. Werner N, Wassmann S, Ahlers P, et al. Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease[J].Basic Res Cardiol, 2007, 102:565-571.
    63. Leor J, Marber M. Endothelial progenitors. A new tower of Babel? [J] J Am Coll Cardiol, 2006, 48:1588–1590.
    64. Schatteman GC, Dunnwald M, Jiao C. Biology of bone marrowderived endothelial cell precursors[J]. Am J Physiol Heart Circ Physiol, 2007, 292:1–18.
    1. Forrest ST, Barringhaus KG, Perlegras D, et al. Intron retention generates a novel Id3 isoform that inhibits vascular lesion formation. J Biol Chem. 2004;279:32897–32903.
    2. Matsumura ME, Lobe DR, McNamara CA. Contribution of the helixloop-helix factor Id2 to regulation of vascular smooth muscle cell proliferation.J Biol Chem. 2001.
    3. de Candia P, Solit DB, Giri D, et. Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc Natl Acad Sci U S A. 2003; 100: 12337–12342.
    4. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med.2001;7:1194–1201.
    5. Ruzinova MB, Schoer RA, GeraldW, et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell, 2003;4:277-289.
    6. Santos SC, Miguel C, Domingues I, et al. VEGFR-2 (KDR)internalization is required for endothelial recovery during wound healing. Exp Cell Res. 2007; 313: 1561–74.
    7. Nowak G, Karrar A, Holmen C, et al. Expression of vascular endothelial growth factor receptor-2 or Tie-2 on peripheral blood cells defines functionally competent cell populations capable of reendothelialization. Circulation.2004; 24: 3699–707.
    8. Kellouche S, Mourah S, Bonnefoy A, et al.S Platelets, thrombospondin-1 and human dermal fibroblasts cooperate for stimulation of endothelial cell tubulogenesis through VEGF and PAI-1 regulation. Exp Cell Res.2007; 3: 486–99.
    9. Lee TK, Poon RT, Yuen AP, et al. Regulation of angiogenesis by Id-1 through hypoxia-inducible factor-1alpha-mediated vascular endothelial growth factor up-regulation in hepatocellular carcinoma. Clin Cancer Res,2006 Dec 1;12:6910-9.
    10. Daisuke S, Naoyuki T, Akihiro Y, et al. Crucial Role of Inhibitor of DNA Binding/Differentiation in the Vascular Endothelial Growth Factor-Induced Activation and Angiogenic Processes of Human Endothelial Cells. J of Immun, 2004, 173: 5801-5809.
    11. Lee TK, Poon RT, Yuen AP, et al. Regulation of angiogenesis by Id-1 through hypoxia-inducible factor-1alpha-mediated vascular endothelial growth factor up-regulation in hepatocellular carcinoma. Clin Cancer Res,2006 Dec 1;12:6910-9.
    12. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth . Nat Med. 2001,: 1194-1201.
    13. Alessia C , Vladimir J., Yuval S, et al. Id1 Restrains p21 expression to control endothelial progenitor cell formation. PLoS ONE. 2007 Dec 19;2:e1338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700