可降解载药聚羟基丁酸—羟基乙酸酯涂层的生物性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,冠状动脉内支架植入术在国内外被广泛应用于治疗心血管疾病领域中,但其术后血管再狭窄严重影响其治疗效果,亟待解决。为此,本文设计一种以可应用于血管支架表面上的以可生物降解的羟基丁酸-羟基乙酸酯的共聚物(PHBHHx)为药物载体、以中国传统中药当归的有效提取物阿魏酸为药物的可降解载药涂层。本文首先采用体外检测方法研究了不同分子量PHBHHx的血液相容性和体外生物降解性能。其次,采用NaOH表面处理对材料表面进行改性,并研究了表面改性及其时效性对PHBHHx生物相容性的影响。最后,本文还研究了载药PHBHHx的体外生物降解性能及释药性能,探讨了阿魏酸及NaOH处理对加速载药PHBHHx表面内皮化和抑制血管平滑肌细胞(VESCs)在其表面过度增殖所起到的作用。得到如下结果:
     通过溶血实验、血浆复钙时间实验、凝血酶原时间实验、动态凝血时间实验以及体外血小板粘附实验评价了三种不同分子量PHBHHx的血液相容性,并与PLLA相比较。结果表明:PHBHHx的血液相容性随着材料分子量的增加而降低,三种不同分子量PHBHHx的血液相容性都比PLLA好。
     研究PHBHHx的细胞粘附和细胞增殖性能可知:由于PHBHHx的表面较为疏水,其细胞粘附和增殖性能较差。采用NaOH处理可以有效地提高PHBHHx的亲水性进而提高PHBHHx的抗凝血性能、细胞粘附及细胞增殖性能。究其原因,主要是由于NaOH对PHBHHx表面的蚀刻作用以及大量的亲水性极性基团引入到PHBHHx表面,使得PHBHHx的亲水性有了较大提高。
     进一步的研究发现:NaOH处理存在时效性的问题。产生时效性的根本原因是由于材料表面极性基团的部分减少。影响表面改性时效性的主要因素包括材料结晶度、材料的存储环境以及存储温度。通过适当提高材料的结晶度、在常规生物医用材料存储条件下将NaOH处理后的材料存储到4℃、亲水性环境中可有效降低时效性带来的不良影响,保持PHBHHx膜表面良好的亲水性进而保持NaOH处理后材料良好的抗凝血性和细胞相容性。
     通过比较不同载药PHBHHx的宏观、微观形貌及体外静态降解速度,确定了阿魏酸与PHBHHx重量比为5%和10%为研究范围内载药涂层中较为合适的载药量。研究了PHBHHx (5%)及PHBHHx (10%)膜的体外药物释放性能,结果表明:载药膜的体外药物释放存在快速释放期和稳定释放期两个释药阶段。快速释放期的药物释放以药物扩散为主,稳定释放期的药物释放与载药膜的降解行为有着紧密的关联性。
     正交实验结果表明:影响载药涂层与镁合金基体间结合强度最大的因素是镁合金表面预处理工艺,其次是载药量,再次是涂层制备温度。研究范围内载药涂层与镁合金基体之间达到最高结合强度的制备工艺是:使用磷酸对镁合金基体进行表面预处理,载药涂层中的阿魏酸与PHBHHx重量比为5%,制备温度为40℃。此工艺下镁合金与载药涂层之间的结合强度为4.08±0.45MPa。
     体外生物相容性实验表明:载药PHBHHx中阿魏酸的释放对血小板聚集及血栓形成有明显的抑制作用,可以有效地提高载药PHBHHx的抗溶血性能以及抗内源、外源凝血性能。而且阿魏酸的释放可以显著地促进内皮细胞在载药膜表面的粘附和增殖,达到加快内皮化的目的,同时,可以有效地抑制平滑肌细胞在其表面的过度增殖。
     对载药PHBHHx表面进行NaOH处理后发现:一方面,NaOH处理提高载药膜表面的亲水性进而提高了载药膜表面内皮细胞的粘附和增殖,加速了内皮化进程;另一方面,NaOH蚀刻作用使得表面阿魏酸含量大幅减少,减少了阿魏酸在随后的释放,减弱了其对平滑肌细胞过度增殖的抑制作用。但是,总体来说,NaOH处理仍然有望通过加快内皮化进程来抑制平滑肌细胞的过度增殖,达到防治血管再狭窄的目的。
Recently, coronary artery stent implantation techniques are widely applied to the treatment of cardiovascular disease at home and abroad. However, some problems such as cardiovascular restenosis are crying out for solution. For this reason, a bioabsorbable drug-loaded coating which can be applied on the surface of blood vessel stents was designed in this work. The coating includes biodegradable poly (hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) as drug-loaded material and extract (ferulic acid) from Chinese angelica as drug. First, blood compatibilities and degradation properties of PHBHHx with different molecular weights were studied by in vitro test methods. Second, PHBHHx was surface-modified by a NaOH treatment, and the influence of the surface modification and its aging effect on the biocompatibility of PHBHHx were studied. Furthermore, the in vitro degradation property and the drug release property of the drug-loaded PHBHHx films were studied in this work. The function of the ferulic acid and the NaOH treatment on the endothelialization and inhibition of the blood vessel smooth muscle cell (VMSCs) proliferation was also discussed. The results are summarized as follows:
     The blood compatibility of PHBHHx with different molecular weights was evaluated in comparison with poly (L-lactic acid) (PLLA) by a haemolysis assay, plasma recalcification time (PRT), plasma prothrombin time (PT), kinetic clotting time and in vitro platelet adhesion test. The results showed that the blood compatibility of PHBHHx decreased with the increasing of molecular weight of PHBHHx. All PHBHHx films exhibited better blood compatibility than PLLA.
     It was thought that the cell adhesion and proliferation of PHBHHx were both worse than those of PLLA, due to the bad surface hydrophilic property of PHBHHx. The hydrophilic property of PHBHHx was effectively improved by a NaOH treatment, and thus the anticoagulation property, the cell adhesion and proliferation of the PHBHHx after the NaOH treatment also had a significant improvement.
     Further research found that the NaOH treatment exhibited an aging effect, which was caused by the partial reduction of polar groups on the sample surface. The main influence factors on the aging effect included the crystallinity of PHBHHx, the storage environment and the storage temperature. The aging effect speed could be effectively decreased by increasing the surface crystallinity of the samples, decreasing the storage temperature and laying the samples at 4℃in a hydrophilic environment under the normal biomaterials storage conditions. The good anticoagulation property and cell compatibility of PHBHHx after the NaOH treatment could be maintained by the above methods.
     By comparing macro-morphologies, micro-morphologies and in vitro static degradation speeds of the different drug-loaded PHBHHx films, it was confirmed that the appropriate weight ratios of ferulic acid to PHBHHx in the drug-loaded coating beyond the scope of our study were 5% and 10%. In vitro drug release properties of PHHBHx (5%) and PHBHHx (10%) films were studied and the result showed that the drug release from the drug-loaded PHBHHx films exhibited two stages: burst release and stabilization release. Primary mechanism of the drug release in the burst release stage was drug diffusion while the drug release in the stabilization release stage had a close relevancy and regularity to the degradation behaviors of the drug-loaded films.
     The results of the orthogonal test showed that the surface pretreatment of a magnesium alloy plays the most important role on the bonding strength between the drug-loaded coating and the magnesium alloy, closely followed by the drug charge and the preparation temperature. The preparation process which could lead to the highest bonding strength was that the magnesium alloy was surface pretreated by H3PO4 solution, the weight ratio of ferulic acid and PHBHHx was 5% and the preparation temperature was 40℃, corresponding to a bonding strength of 4.08±0.45MPa.
     In vitro biocompatibility test results showed that the ferulic acid release of the drug-loaded films had an obviously inhibition on the platelet aggregation and thrombosis and an effective improvement on the antihemolytic property and the anti-intrinsic and extrinsic coagulation properties of the drug-loaded films. Moreover, the human umbilical vein endothelial cells (HUVECs) adhesion and proliferation on the drug-loaded films could be significantly promoted and the VMSCs excessive proliferation could be effectively inhibited by the ferulic acid release.
     It was found that the NaOH treatment could improve the hydrophilic property of the drug-loaded films, further improve the HUVECs adhesion and proliferation properties, and accelerate the endothelialization process. On the other hand, NaOH treatment could sharply reduce the content of ferulic acid on the sample surface due to the etching action of NaOH, and then weakened the inhibition on VMSCs excessive proliferation on the drug-loaded films. In general, NaOH treatment was expected to control the cardiovascular restenosis by speeding up the endothelialization.
引文
1 S. T. Rab, S. B. KiHg, G. S. Roubin. Coronary Aneurysms after Stent Placement: A Suggestion of Altered Vessel Wall Healing in the Presence of Anti-inflammatory Agents. J Am Coll Cardiol. 1991,18:1524
    2 G. Q. Chen, Q. Wu. The Application of Polyhydroxyalkanoates as Tissue Engineering Materials. Biomaterials. 2005,26:6565~6578
    3 R. Jabara, N. Chronos, Y. Otsuka, P. Rivelli, K. Robinson. Assessment of a Novel Anti-inflammatory Salicylic-acid-based Polymer for Use in Fully Biodegradable Coronary Stents. Cardiovascular Revascularization Medicine. 2006,7:2116~2200
    4 C. J. Pan, J. J. Tang, Y. J. Weng, J. Wang, N. Huang. Preparation, Characterization and Anticoagulation of Curcumin-eluting Controlled Biodegradable Coating Stents. Journal of Controlled Release. 2006,116:42~49
    5 B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich. Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology?. Heart. 2003,651~656
    6张津,章宗和.镁合金及应用.北京化学工业出版社. 2004:78~82
    7 C. M. Bunger, N. Grabow, K. Sternberg, C. Kroger, L. Ketner, K. P. Schmitz, H. J. Kreutzer, H. Ince, C. A. Nienaber, E. Klar, W. Schareck. Sirolimus-Eluting Biodegradable Poly-l-Lactide Stent for Peripheral Vascular Application: A Preliminary Study in Porcine Carotid Arteries. Journal of Surgical Research. 2007,139:77~82
    8 A. Mahapatro, D. M. Johnson, D. N. Patel, M. D. Feldman, A. A. Ayon, C. M. Agrawal. The Use of Alkanethiol Self-assembled Monolayers on 316L Stainless Steel for Coronary Artery Stent Nanomedicine Applications: An Oxidative and In vitro Stability Study. Nanomedicine: Nanotechnology, Biology and Medicine. 2006,2:182~190
    9 C. L. Liu, P. K. Chu, G. Q. Lin, M. Qi. Anti-corrosion Characteristics of Nitride-coated AISI 316L Stainless Steel Coronary Stents. Surface and Coatings Technology. 2006,201:2802~2806
    10 C. C. Shih, C. M. Shih, Y. Y. Su, M. S. Chang, S. J. Lin. Characterization of the Thrombogenic Potential of Surface Oxides on Stainless Steel for Implant Purposes.Applied Surface Science. 2003,219:347~362
    11郑玉峰,赵连城.生物医用镍钛合金.科学出版社. 2004:107~111
    12 V. Imbeni, C. Martini. Preliminary Study of Micro-scale Abrasive Wear of a NiTi Shape Memory Alloy. Wear. 2003,254:1299~1306
    13蔡伟,赵连城,郑玉峰.合金的形状记忆效应与超弹性.国防工业出版社. 2002:87~93
    14 C. Dumoulin, B. Cochelin. Mechanical Behavior Modeling of Balloon Expandable Stents. Journal of Biomechanics. 2000,33:1461~1470
    15 J. Ryh?nen, M. Kallioinen, W. Serlo, P. Per?m?ki, J. Junila, P. Sandvik, E. Niemel?, J. Tuukkanen. Bone Healing and Mineralization, Implant Corrosion, and Trace Metals after Nickel-titanium Shape Memory Metal Intramedullary Fixation. J Biomed Mater Res. 1999,47:472~480
    16 J. Ryh?nen, M. Kallioinen, J. Tuukkanen, P. Lehenkarip, J. Junila, E. Niemel?, P. Sandvik, W. Serlo. Bone Modeling and Cell-material Interface Responses Induced by Nickel-titanium Shape Memory Alloy after Periosteal Implantation. Biomaterials. 1999,20:1309~1317
    17 C. T. Dotter. Transluminal Expandable Nitinol Coil Stem Grafting: Pre-liminary Report Radiology. 1983,147:259~260
    18 C. D. Mario, H. Griffiths, O. Goktekin. Drug-Eluting Bioabsorbable Magnesium Stent. Intervene Cardiol. 2004,17:391~394
    19 S. Modi, J. P. Jain, A. J. Domb, N. Kumar. Copolymers of Pharmaceutical Grade Lactic Acid and Sebacic Acid: Drug Release Behavior and Biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics. 2006,64:277~286
    20 H. Sthulinger. Magnesium in Cardiovascular Disease. J Clin Basic Cardiol. 2002,5:55~57
    21 H. Li, J. Chang. pH-compensation Effect of Bioactive Inorganic Fillers on the Degradation of PLGA. Composites Science and Technology. 2005,65:2226~2232
    22 J. Yang, A. R. Webb, S. J. Pickerill, G. Hageman, G. A. Ameer. Synthesis and Evaluation of Poly (diol citrate) biodegradable elastomers. Biomaterials. 2006,27:1889~1898
    23 P. Matthias, H. Carola, S. Tirza, F. Christoph, B. Philipp, S. Christian von. Long-term Biocompatibility of a Corrodible Peripheral Iron Stent in the Porcine Descending Aorta. Biomaterials. 2006,27:4955~4962
    24 G. H. Borschel, Y. C. Huang, S. Calve. Tissue Engineering of Recellularized Small-diameter Vascular Grafts. Tissue Eng. 2005,11:778~786
    25张幼珠,尹桂波,鲍韡韡,等.一种细胞培养支架材料及其制备方法.中国专利. 2006,CN1887362
    26 C. Y. Xu, R. Inai, M. Kotaki. Aligned Biodegradable Nanofibrous Structure: A Potential Scaffold for Blood Vessel Engineering. Biomaterials. 2004,25:877~886
    27 C. M. Vaz, V. S. Tuigl, C. V. C. Bouten. Design of Scaffolds for Blood Vessel Tissue Engineering Using a Multi-layering Electrospinning Technique. Acta Biomaterialia. 2005,1:575~582
    28俞耀庭.二十一世纪新材料丛书-生物医用材料.天津大学出版社. 2000:144~155
    29李世普.生物医用材料导论.武汉工业大学出版社. 2000:54~56
    30李玉宝.生物医学材料.化学工业出版社. 2003:111~120
    31崔福斋,冯庆玲.生物材料学.清华大学出版社. 2004:64~65
    32刘敬肖,杨大智,王伟强,等.管腔内支架用金属材料的生物相容性及其表面改性.功能材料. 2000,31:584~587
    33 A. S. Richard. A View of Vascular Stents. Circulation. 1989,70:445~457
    34 F. Migliavacca, L. Petrini, M. Colombo. Mechanical Behavior of Coronary Stents Investigated Through the Finite Element Method. Journal of Biomechanies Volume. 2002,35:803~811
    35刘强,程晓农,徐红星,等. 316L不锈钢和NITi合金血管支架的血液相容性.中国组织工程研究与临床康复. 2008,12:735~737
    36 P. Baurschmidt, M. Schaldach. Electrochemical Aspects of the Thrombogenicity of Materials. Jounal of Bioengineering. 1997,1:261~267
    37 J. B. K. Michael, W. S. Patrick. Coronary Stenting: Current perspective.
    38徐温崇,常芬,孙福玉,等.第二代血管内支架的研制及临床应用基础研究.临床心血管病杂志. 1999,123:464~467
    39 C. J. McKenna, A. R. Camrud, G. Sangiorgi, H. M. Kwon, W. D. Edwards, D. R. Holmes Jr, R. S. Schwartz. Fibrin-film Stenting in a Porcine Coronary Injury Model: Efficacy and Safety Compared with Uncoated Stents. J Am Coil Cardiol. 1998,31:1434~1438
    40黄楠,俞耀庭,张兴栋.生物医用材料.天津人学出版社, 2000:122~125
    41 M. Y. Flugelman, J. J. Rome, R. Virmani, K. D. Neuman, D. A. Dichek. Detection ofGenetically Engineered Endothelial Cells Seeded on Endovascular Prosthesis Ten Days after In vivo Deployment. J Mol Cell Cardiol. 1993,25:83
    42 I. K. De Schdereer, K. L. Wiczek, E. V. Verbeken. Biocompatibility of Polymer-coated Oversized Metallic Stents Implanted in Normal Porcine Coronary Arteries. Atherosclerosis. 1995,114:105~114
    43吴隐雄, J. Thomas, H. Christian.植入携带有治疗性腺病毒的包裹支架对猪冠状动脉再狭窄的预防作用.第一军医大学学报. 2003,23:33~35
    44 A. J. Mclarty, M. R. Phillips, D. R. J. Holmes. Aortocoronary Bypass Grafting with Expanded Polytetrafluoroethylene: 12-year Patency. Ann Thorac Surg. 1998,65:1442~1444
    45 J. C. Palmaz. Review of Polymeric Graft Materials for Endovascular Applications. J Vasc Intery Radiol. 1998,9:7~13
    46 M. L. Marin, F. J. Veith, J. Cynamon. Effect of Polytetrafluoroethylene Covering of Palmaz Stents on the Development of Intimal Hyperplasia in Human Iliac Arteries. J Vasc Intery Radiol. 1996,7:651~656
    47 M. Elsner, W. A. Schwelk, M. Britten. Coronary Stent Grafts Covered by a Polytetrafluoroethylene Membrane. The American Journal of Cardiology. 1999,84:335~338
    48 B. L. Dolmatch, F. O. Tio, X. D. Li. Patency and Tissue Response Related to Two Types of Polytetrafluoroethylene-covered Stents in the Dog. J Vasc Intery Radiol. 1996,7:641~649
    49 L. E. Freed, G. Vunjak-Novakovic, R. J. Biron. Biodegradable Polymer Scaffolds for Tissue Engineering. Bio/Technology. 1994,12:689~693
    50 C. E. Holy, S. M. Dang, J. E. Davies. In vitro Degradation of Novel Poly (lactide- glycolide)75/25 foam. Biomaterials 1999,20:1177~1185
    51 L. Pang, Y. Hu, Y. Yan, L. Liu, Z. Xiong, Y. Wei, J. Bai. Surface Modification of PLGA/[beta]-TCP Scaffold for Bone Tissue Engineering: Hybridization with Collagen and Apatite. Surface and Coatings Technology. 2007,201:9549~9557
    52 X. Miao, D. M. Tan, J. Li, Y. Xiao, R. Crawford. Mechanical and Biological Properties of Hydroxyapatite/tricalcium Phosphate Scaffolds Coated with Poly (lactic-co-glycolic acid). Acta Biomaterialia. 2007,4(3):638~645
    53 D. Motlagh, J. Yang, K. Y. Lui, A. R. Webb, G. A. Ameer. Hemocompatibility Evaluation of Poly (glycerol-sebacate) In vitro for Vascular Tissue Engineering.Biomaterials. 2006,27:4315~4324
    54刘彦春,王炜,曹谊林.卵磷脂、多聚赖氨酸和PLA包埋PGA与软骨细胞体外培养的实验研究.实用美容整形外科杂志. 1997,8 225~227
    55 S. M. Cannizzaro, R. F. Padera, R. Langer. A Novel Biotinylated Degradable Polymer for Cell-interactive Applications. Biotechnol&Bioengeng. 1998,58:529~535
    56 A. G. Mikos, M. D. Lyman, L. E. Freed. Wetting of Poly (L-lactic acid) and Poly (DL-lactic-co glycolic acid) Foams for Tissue Culture. Biomaterials. 1994,15:55~58
    57 M. T. Khorasani, H. Mirzadeh, S. Irani. Plasma Surface Modification of Poly (l-lactic acid) and Poly (lactic-co-glycolic acid) Films for Improvement of Nerve Cells Adhesion. Radiation Physics and Chemistry. 2007,77(3):280~287
    58杨健,贝建中,王身国.改进高分子材料细胞亲和性的研究-聚(D, L-乳酸)的等离子体处理改性.中国修复重建外科杂志. 2001,15:269~272
    59 C. Chen, C. H. Yu, Y. C. Cheng, P. H. F. Yu, M. K. Cheung. Biodegradable Nanoparticles of Amphiphilic Triblock Copolymers Based on Poly (3-hydroxybutyrate) and Poly(ethylene glycol) as Drug Carriers. . Biomaterials. 2006,27:4804~4814
    60 L. J. Chen, M. Wang. Production and Evaluation of Biodegradable Composites Based on PHB-PHV Copolymer. Biomaterials. 2002,23:2631~2639
    61 J. M. L. Dias, P. C. Lemos, L. S. Serafim, C. Oliveira, M. Eiroa, M. G. E. Albuquerque. Recent Advances in Polyhydeoxyalkanoate Production by Mixed Aerobic Cultures: From the Substrate to the Final Product. Macromol Biosci. 2006,6:885~906
    62 J. N. Baptist. Augmentation of the Rat Mandible Using Guided Tissue Regeneration. Clin Oral Implants Res. 1994,5:75
    63 Z. B. Luklinska, H. Schluckwerder. In vivo Response to HA-polyhydroxybutyrate-polyhydroxyvalerate Composite. J Microsc-Oxford. 2003,211:121~129
    64 Y. Tesema, D. Raghavan, J. Stubbs. Bone Cell Viability on Collagen Immobilized Poly (3-hydroxybutrate-co-3-hydroxyvalerate) Membrane: Effect of Surface Chemistry. J Appl Polym Sci. 2004,93:2445~2453
    65 X. Y. Chen, X. F. Zhang, Y. Zhu, J. Z. Zhang, P. Hu. Surface Modification of Polyhydroxyalkanoates by Ion Implantation. Characterization andCytocompatibility improvement. Polym J. 2003,35:148~154
    66 T. Malm, S. Bowald, A. Bylock. Prevention of Postoperative Pericardial Adhesions by Closure of the Pericardium with Absorbable Polymer Patches.An Experimental Study. J Thorac Cardiovasc Surg. 1992,104:600~607
    67 U. A. Stock, T. Sakamoto, S. Hatsuoka. Patch Augmentation of the Pulmonary Artery with Bioabsorbable Polymers and Autologous Cell Seeding. J Thorac Cardiovasc Surg. 2000,120:1158~1168
    68袁文周,艾玉峰,熊猛.兔血管平滑肌细胞和PHB的细胞相容性实验研究.中国美容医学. 2003,12(1):7~9
    69 T. D. Shum, U. Stock, J. Hrkach. Tissue Engineering of Autologous Aorta Using a New Biodegradable Polymer. Ann Thorac Surg. 1999,68:2298~2305
    70李玉宝.生物医学材料.化学工业出版社, 2003:21~27
    71 M. Zakliczynski, A. Lekston, M. Osuch, M. Swierad, P. Nadziakiewicz, R. Przybylski, M. Zembala. Comparison of Long-Term Results of Drug-Eluting Stent and Bare Metal Stent Implantation in Heart Transplant Recipients With Coronary Artery Disease. Transplantation Proceedings. 2007,39(9):2859~2861
    72 B. Balakrishnan, J. F. Dooley, G. Kopia, E. R. Edelman. Intravascular Drug Release Kinetics Dictate Arterial Drug Deposition, Retention, and Distribution. Journal of Controlled Release. 2007,123(2):100~108
    73 J. D. Abbott, M. R. Voss, M. Nakamura, H. A. Cohen, F. Selzer, K. E. Kip, H. A. Vlachos, R. L. Wilensky, D. O. Williams. Unrestricted Use of Drug-Eluting Stents Compared With Bare-Metal Stents in Routine Clinical Practice: Findings From the National Heart, Lung, and Blood Institute Dynamic Registry. Journal of the American College of Cardiology. 2007,50(21):2029~2036
    74 G. Pontrelli, F. de Monte. Drug Dynamics in Eluting Stents: Modelling, Simulation and Design. Journal of Biomechanics. 2006,39(Supplement 1):S378~343
    75 T. J. Parry, R. Thyagarajan, D. Argentieri, R. Falotico, J. Siekierka, R. J. Tallarida. Effects of Drug Combinations on Smooth Muscle Cell Proliferation: An Isobolographic Analysis. European Journal of Pharmacology. 2006,532(1-2):38~43
    76 M. Joner, A. V. Finn, A. Farb, E. K. Mont, F. D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H. K. Gold, R. Virmani. Pathology of Drug-Eluting Stents in Humans: Delayed Healing and Late Thrombotic Risk. Journal of the American College of Cardiology. 2006,48(1):193~202
    77 R. Moreno. Drug-Eluting Stents and Other Anti-Restenosis Devices. Revista Espanola de Cardiologia. 2005,58(7):842~862
    78傅杰,李世普.生物可降解高分子材料在医学领域的应用(I)一生物可降解高分子材料.武汉工业大学学报. 1999,21:1~4
    79 K. J. Lewis, W. J. Irwin. Biodegradable Poly (L-lactic acid) Matrices for the Sustained Delivery of Antisense Oligonucleotides. J. Controlled Release. 1995,37:173~183
    80王永亮,易国斌,康正,等.聚己内酯的合成与应用研究进展.化学与生物工程. 2006,23(3):1~4
    81 X. S. Yang, K. Zhao, G. Q. Chen. Effect of Surface Treatment on the Biocompatibility of Microbial Polyhydroxyalkanoates. Biomaterials. 2002,23(5): 1391~1397
    82 Y. W. Wang, Q. Wu, G. Q. Chen. Reduced Mouse Fibroblast Cell Growth by Increased Hydrophilicity of Microbial Polyhydroxyalkanoates Via Hyaluronan Coating. Biomaterials. 2003,24(25):4621~4629
    83 Y. W. Wang, F. Yang, Q. Wu, Y. C. Cheng, P. H. F. Yu, J. C. Chen, G. Q. Chen. Effect of Composition of Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) on Growth of Fibroblast and Osteoblast. Biomaterials. 2005,26(7):755~761
    84 Y. Deng, K. Zhao, X. F. Zhang, P. Hu, G. Q. Chen. Study on the Three-dimensional Proliferation of Rabbit Articular Cartilage-derived Chondrocytes on Polyhydroxyalkanoate scaffolds. Biomaterials. 2002,23(20):4049~4056
    85 Y. Wang, Y. Z. Bian, Q. Wu, G. Q. Chen. Evaluation of Three-dimensional Scaffolds Prepared from Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for Growth of Allogeneic Chondrocytes for Cartilage Repair in Rabbits. Biomaterials. 2008,29(19):2858~2868
    86 M. Yang, S. S. Zhu, Y. Chen, Z. J. Chang, G. Q. Chen, Y. D. Gong, N. M. Zhao, X. F. Zhang. Studies on Bone Marrow Stromal Cells Affinity of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).Biomaterials.2004,25(7):1365~1373
    87 Y. Deng, X. S. Lin, Z. Zheng, J. G. Deng, J. C. Chen, H. Ma, G. Q. Chen. Poly (hydroxybutyrate-co-hydroxyhexanoate) Promoted Production of Extracellular Matrix of Articular Cartilage Chondrocytes In vitro. Biomaterials. 2003,24(23):4273~4281
    88 K. Zhao, X. Yang, G. Q. Chen. Effect of Lipase Treatment on the Biocompatibility of Microbial Polyhydroxyalkanoates. J Mater Sci-Mater M. 2002,13:849~854
    89 X. H. Qu, Q. Wu, J. Liang, X. Qu, S. G. Wang, G. Q. Chen. Enhanced Vascular-related Cellular Affinity on Surface Modified Copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials. 2005,26(34):6991~7001
    90 X. H. Qu, Q. Wu, K. Y. Zhang, G. Q. Chen. In vivo Studies of Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) Based Polymers: Biodegradation and Tissue Reactions. Biomaterials. 2006,27(19):3540~3548
    91 Y. W. Wang, W. Mo, H. Yao, Q. Wu, J. Chen, G. Q. Chen. Biodegradation Studies of Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Polymer Degradation and Stability. 2004,85(2):815~821
    92 Y. Y. Shangguan, Y. W. Wang, Q. Wu, G. Q. Chen. The Mechanical Properties and In vitro Biodegradation and Biocompatibility of UV-treated Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).Biomaterials.2006,27(11):2349~2357
    93 M. G. Samer, H. Philip, A. S. Neal. Overview of Therapies for Prevention of Restenosis after Coronary Interventions. Prarmacology and Therapeutics. 2001, 92: 165~178
    94尤蓓,于金德.低分子肝素与心血管疾病.国外医学,心血管疾病分册. 1997,24(5):19~21
    95 K. Christensen, R. Larsson, H. Emanuelsson. Heparin Coating of the Stent Graft-effects on Platelets, Coagulation and Complement Activation. Biomaterials. 2001,22:349~355
    96 K. A. Young, H. J. Myung. Preventive Effects of the Heparin-coated Stent on Restenoesis in the Porcine Model. Catheterization and Cardiovascular Interventions. 1999,48:324~331
    97 P. A. Havdhammar, H. M. van Beusekom, H. U. Emanuelsson. Reduction in Thrombitic Events with Heparin-coated Palmaz-Sehatz Stent in Normal Porcine Coronary Artery. Circulation. 1996,93(3):423~430
    98 A. A. Stratienko, K. Zhu, C. R. Lambert. Improved Thromboresistance of Heparin-coated Palamaz-Schztz TM Coronary Stents in Animal Model. Circulation. 1993,88(4):591~596
    99 W. J. Van der Giessen, P. A. Hardhammer, H. M. M. van Bensekom. Prevention of Subacute Thrombosis Using Heparin Coated Stents. Circulating. 1991,80(4):641~650
    100 F. J. Dumont, Q. X. Su. Mechanism of Action of the Immunosuppressant Rapamycin. Life science. 1996,58(5):373~395
    101 B. D. Klugherz, G. Llanos, W. Lieuallen. Twenty-eight-day Efficacy and Pharmacokinetics of the Sirolimus-eluting Stent. Coron Artery Dis. 2002,13:183~188
    102 J. E. Sousa, M. A. Costa, A. Abizaid. Two Year Angiographic and Intravascular Ultrasound Follow-up after Implantation of Sirolimus-eluting Stents in Human Coronary Arteries. Circulation. 2003,107:381~383
    103 A. B. Dhanikula, R. Panchagnula. Localized Pacliaxel Delivery. International Journal of Pharmaceutica. 1999,183:85~100
    104 E. K. Rowinsky, R. C. Donehower. Paclitaxel(taxol). N. Eng. J. Med. 1995,332(15):1004~1014
    105田文,程颖,赵卫华,等.雷帕霉素和紫杉醇对血管内皮细胞的增生抑制作用及细胞毒性的比较.中国医科大学学报. 2008,37(6):770~772
    106 K. T. Nguyen, S. H. Su, A. Sheng. In vitro Hemocompatibility Studies of Drug-loaded Poly (l-lactic acid) Fiber. Biomaterials. 2003,24:5191~5201
    107尹春琳,徐成斌.大黄素对血管平滑肌细胞增生抑制作用的机制.北京医科大学学报. 1998,30(6):515~517
    108周保国,李红梅.黄连素在心血管疾病中的应用研究进展.实用中西医结合杂志. 1997,10(7):609
    109潘华珍,冯立明,许彩民.阿魏酸钠抗红细胞膜脂质过氧化的作用.中西医结合杂志. 1985,5:678
    110 G. W. Barone, J. M. Conerly, P. C. Farley. Endothelial Injury and Vascula Dysfunction Associated with the Fogarty Balloon Catheter. J Vasc Surg. 1989,9(3):422~425
    111 M. Laitinen, J. Hartikainen, M. O. Hiltunen. Catheter-mediated Vascular Endothelial Growth Factor Gene Transfer to Human Coronary Arteries after Angioplasty. Human Gene Ther. 2000,11(2):263~270
    112 S. Neil, H. Kai, J. Qamar, H. G. Anthony. In vitro Evaluation of Vascular Endothelial Growth Factor (VEGF)-eluting Stents. International Journal ofCardiology. 2003,92:265~269
    113 R. A. Qurik, W. C. Chan, M. C. Davies, S. J. B. Tendler, K. M. Shakesheff. Poly (L-lysine)-GRGDS As a Biomimetic Surface Modified for Poly (lactic acid). Biomaterials. 2001,22:865~872
    114 R. A. Quirk, M. C. Davies, S. J. B. Tendler, W. C. Chan, K. M. Shakeshef. Controlling Biological Interactions with Poly (lactic acid) by Surface Entrapment Modification. Langmuir. 2001,17:2817~2820
    115 M. R. Sanchis, V. Blanes, M. Blanes, D. Garcia, R. Balart. Surface Modification of Low Density Polyethylene (LDPE) Film by Low Pressure O2 Plasma Treatment. European Polymer Journal. 2006,42(7):1558~1568
    116 T. Pompe, K. Keller, G. Mothes, M. Nitschke, M. Teese, R. Zimmermann, C. Werner. Surface Modification of Poly (hydroxybutyrate) Films to Control Cell-matrix Adhesion. Biomaterials. 2007,28(1):28~37
    117 R. Sanchis, O. Fenollar, D. García, L. Sánchez, R. Balart. Improved Adhesion of LDPE Films to Polyolefin Foams for Automotive Industry Using Low-pressure Plasma. International Journal of Adhesion and Adhesives. 2008,28(8):445~451
    118 M. Yan, L. Liu, Z. Tang, L. Huang, W. Li, J. Zhou, J. Gu, X. Wei, H. Yu. Plasma Surface Modification of Polypropylene Microfiltration Membranes and Fouling by BSA dispersion. Chemical Engineering Journal. 2008,145(2):218~224
    119 Y. Kim, B. J. Yoo, R. Vittal, Y. Lee, N. G. Park, K. J. Kim. Low-temperature Oxygen Plasma Treatment of TiO2 Film for Enhanced Performance of Dye-sensitized Solar Cells. Journal of Power Sources. 2008,175(2):914~919
    120 A. Baltazar-y-Jimenez, M. Bistritz, E. Schulz, A. Bismarck. Atmospheric Air Pressure Plasma Treatment of Lignocellulosic Fibres: Impact on Mechanical Properties and Adhesion to Cellulose Acetate Butyrate. Composites Science and Technology. 2008,68(1):215~227
    121 N. Anagreh, L. Dorn, C. Bilke-Krause. Low-pressure Plasma Pretreatment of Polyphenylene sulfide (PPS) Surfaces for Adhesive Bonding. International Journal of Adhesion and Adhesives. 2008,28(1-2):16~22
    122 J. Yang, J. Bei, S. Wang. Enhanced Cell Affinity of Poly (D,L-lactide) by Combining Plasma Treatment with Collagen Anchorage. Biomaterials. 2002,23:2607~ 2614
    123 J. H. Lee, S. K. Lee, G. Khang, H. B. Lee. The Effect of Fluids Heerst RessonEndothelial Cell Adhesiveness to Polymer Surfaces with Wettability Gradient. Journal of Colloid and Interface Science. 2000,230:84~90
    124 G. Khang, S. J. Lee, J. H. Lee, Y. S. Kim, H. B. Lee. Interaction of Fibroblast Cells on Poly (lactide-co-glycolide) Surface with Wettability Chemogradient. Bio-medical Materials and Engineering. 1999,9:179~187
    125 D. Klee, R. V. Villari, H. Hocker, B. Dekker, C. Mitermayer. Surface Modification of a New Flexible Polymer with Improved Cell Adhesion. Journal of Material Science:Materials in Medicine. 1995,5:592~595
    126 J. Guan, C. Gao, L. Feng, J. Shen. Surface Photo-grafting of Polyurethane with 2-hydroxyethyl Acrylate for Promotion of Human Endothelial Cell Adhesion and Growth. Biomater.Sci.Polymer Edn. 2000,11(5):523
    127 S. H. Hsu, W. C. Chen. Improved Cell Adhesion by Plasma-induced Grafting of L-lactide onto Polyurethane Surface. Biomaterials. 2000,21:359~367
    128 J. Lahann, D. Klee, H. Thelen, H. Bienert, D. Vorwerk, H. Hocker. Improvement of Haemocompatibility of Metallic Stents by Polymer Coating. Journal of Material Science: Materials in Medicine. 1999,10:443~448
    129 H. Sato, H. Tsuji, S. Ikeda, N. Ikemoto, J. Ishikawa, S. Nishimoto. Enhanced Growth of Human Vascular Endothelial Cells on Negative Ion (Ag-)-Implanted Hydrophobic Surfaces. J Biomed Mater Res. 1999,44:22~30
    130 J. S. Lee, M. Kaibara, M. Iwaki, H. Sasabe, Y. Suzuki, M. Kusakabe. Selective Adhension and Proliferation of Cells on Ion-implanted Polymer Domains. Biomaterials. 1993,14:958~960
    131 A. Z. Okkema, T. A. Girous, T. G. Grasel, S. L. Cooper. Mat. Res. Soc. Symp. Proc. 1989,110:91
    132 G. Khang, S. J. Lee, J. H. Jeon, J. H. Lee, H. B. Lee. Interaction of Fibroblast Cell onto Physicochemically Treated PLGA Surfaces. Polymer Korea. 2000,24:869~876
    133 C. G. Vonk. Computerization of Ruland's X-ray Method for Determination of the Crystallinity in Polymers. J. Appl. Crystallogr. 1973,6:148~152
    134 M. Lemoigne. Products of Dehydration and Polymerization of P-hydroxybutyric Acid. Bull Soc Chem Biol. 1926,8:770~782
    135 M. F. Harmand. In vitro Study of Biodegradation of Co-Cr Alloy Using a Human Cell Culture Mode. Journal of Biomaterial Science, Polymer Edition.1995,6(9):809
    136 B. Y. Yu, P. Y. Chen, Y. M. Sun, Y. T. Lee, T. H. Young. The Behaviors of Human Mesenchymal Stem Cells on the Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) Membranes. Desalination. 2008,234(1-3):204~211
    137 Y. Z. Bian, Y. Wang, G. Aibaidoula, G. Q. Chen, Q. Wu. Evaluation of Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) Conduits for Peripheral Nerve Regeneration. Biomaterials. 2009,30(2):217~225
    138 H. Tsuji, S. Miyauchi. Enzymatic Hydrolysis of Poly (lactide): Effect of Molecular Weight L-lactide Content, and Enantiomeric and Diastereoisomeric Polymer Blending. Biomacromolecules. 2001,2:597~604
    139 J. Xu, J. Bao, B. H. Guo, H. Ma, T. L. Yun, L. Gao, G. Q. Chen, T. Iwata. Imaging of Nonlinear Optical Response in Biopolyesters Via Second Harmonic Generation Microscopy and Its Dependence on the Crystalline Structures. Polymer. 2007,48:348~355
    140郝和平.医疗器械生物学评价标准实施指南.标准出版社. 2000:114
    141余贯华,计剑,王东安,等.两种新型聚氨酯涂层材料的血液相容性研究.生物医学工程学杂志. 2004,21(2):184
    142胡国栋.聚氨酯的血液相容性评价.国际生物医学工程杂志. 2002,25(6):271
    143易树,尹光福.生物材料表面界面特性与其血液相容性的关系.中国口腔种植学杂志. 2003,6(8):83~86
    144 D. R. Lu, K. Park. Effect of Surface Hydrophobicity on the Conformational Changes of Adsorbed Fibrinogen. Journal of Colloid and Interface Science. 1991,144(1):271
    145 T. L. Bonfied, E. Colton, J. M. Anderson. J Biomed Mater Res. 1989,23:535
    146 O. Sangen, K. Aikawa, H. Nakano. Interaction of Tissue Cells with Polymer Surfaces. Hokolou HkmJi Koguo Daigaku. 1984,37(A):27
    147 V. Doyle, R. Pearson, D. Lee. An Investigation of the Growth of Human Dermal Fibroblasts on Poly-L-lactic Acid In vitro. Journal of Materials Science: Materials in Medicine. 1996,7:381~385
    148梁卫东,石应康.细胞培养法评价生物材料生物相容性研究进展.生物医学工程学杂志. 1989,16(1):86~90
    149 M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Gouglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, D. R. Marshak. Multilineage Potentialof Adult Human Mesenchymal Stem Cells. Science. 1999,284:143~147
    150 P. Bianco, P. Gehron Robey. Marrow Stromal Stem Cells. J Clin Invest. 2000,105:1663~1668
    151 S. Kern, H. Eichler, J. Stoeve, H. Kluter, K. Bieback. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells. 2006,24:1294~1301
    152 D. J. Prockop. Marrow Stromal Cells As Stem Cells for Nonhematopoietic Tissues. Science. 1997,276:71~74
    153 R. Morent, N. De Geyter, C. Leys, L. Gengembre, E. Payen. Study of the Ageing Behaviour of Polymer Films Treated with a Dielectric Barrier Discharge in Air, Helium and Argon at Medium Pressure. Surface and Coatings Technology. 2007, 201(18): 7847~7854
    154 J. Nakamatsu, F. Luis, A. Delgado, D. S. Rafael, S. Felipe. Ageing of Plasma-treated Poly (tetrafluoroethylene) Surfaces. Journal of Adhesion Science and Technology. 1999,13:753~761
    155 M. Pyk?nen, H. Sundqvist, O. V. Kaukoniemi, M. Tuominen, J. Lahti, P. Fardim, M. Toivakka. Ageing Effect in Atmospheric Plasma Activation of Paper Substrates. Surface and Coatings Technology. 2008,202(16):3777~3786
    156 Y. Ren, C. X. Wang, Y. P. Qiu. Aging of Surface Properties of Ultra High Modulus Polyethylene Fibers Treated with He/O2 Atmospheric Pressure Plasma Jet. Surface and Coatings Technology. 2008,202:2670~2676
    157 M. R. Sanchis, O. Calvo, O. Fenollar, D. Garcia, R. Balart. Characterization of the Surface Changes and the Aging Effects of Low-pressure Nitrogen Plasma Treatment in a Polyurethane Film. Polymer Testing. 2008,27(1):75~83
    158 Y. I. Yun, K. S. Kim, S. J. Uhm, B. B. Khatua, K. Cho, J. K. Kim, C. E. Park. Aging Behavior of Oxygen Plasma-treated Polypropylene with Different Crystallinities. Journal of Adhesion Science and Technology. 2004,18(11):1279~1291
    159 F. Shen, E. L. Zhang, Z. J. Wei. Surface Bio-modification of Poly (hydroxybutyrate-co-hydroxyhexanoate) and Its Aging Effect. Colloids and Surfaces B: Biointerfaces. 2009,73:302~307
    160 J. Li, H. Yun, Y. Gong, N. Zhao, X. Zhang. Effects of surface modification of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) on physicochemicalproperties and on interactions with MC3T3-E1 cells. Journal of biomedical materials research. Part A 2005,75:985~998
    161马庆杰,李路平. PTCA术后再狭窄预防方法的研究进展.中国老年医学. 2000,1:60~62
    162高其铭.中国当归的研究概况.甘肃医药. 1985,4(3):61~64
    163林茂.当归化学成分的研究.药学学报. 1979,14:529
    164沈正荣,朱家蕙,吴兰亭. DL-PLA微球大鼠体内的降解.生物医学工程学杂志. 1994,11(2):98
    165王万中.试验的设计与分析.高等教育出版社. 2004:37~41
    166谭丽丽.心血管支架的表面改性研究.中国科学院研究生院博士学位论文. 2005,64~65
    167 L. K. Chiu, W. J. Chiu, Y. L. Cheng. Effects of Polymer Degradation on Drug Release-a Mechanistic Study of Morphology and Transport Properties in 50:50 Poly (dl-lactide-co-glycolide). Int.J.Pharm. 1995,126:169~178
    168 P. Sansdrap, A. J. Moe¨s. In vitro Evaluation of the Hydrolytic Degradation of Dispersed and Aggregated Poly (DL-lactide-co-glycolide) Microspheres. J Control Rel. 1997,43:47~58
    169 M. Joner, A. V. Finn, A. Farb. Pathology of Drug-eluting Stents in Human: Delayed Healing and Late Thrombotic Risk. J Am Coll Cardiol. 2006,48(1):193~202
    170 N. N. Kipshidze, M. V. Tsapenko, M. B. Leon. Update on Drug-eluting Coronary Stents. Expert Rev Cardiovasc Ther. 2005,3(5):953~968
    171 T. Suzuki, G. Kopia, S. Hayashi. Stent Based Delivery of Sirolimus Reduces Neointimal Formation in a Porcine Coronary Mode. Circulation. 2001,104:1188~1193
    172 K. E. Bornfeldt. Intraceilular Signaling in Arterial Smooth Muscle Migration Versus Proliferation. Trends Cardiovasc Med. 1996,6:143~151
    173张敏州,李新梅,李松.中医药防治冠状动脉成形术后再狭窄研究进展.广州中医学报. 2001,18:178~180
    174 Z. Zhouen, Y. Side, L. Weizhen. Mechanism of Reaction of Nitrogen Dioxide Radicalwith Hydroxycinnamic Acid Derivatives: a Pulse Radiolysis Study. Free Radic Res. 1998,29:13
    175周慧君,杨积武.氧自由基与冠心病及其中医药研究.辽宁中医学院学报. 1999,1(2):139~142
    176欧仕益,包惠燕.阿魏酸及其衍生物的药理作用研究进展.中药材. 2001,24(3):220~222
    177张明发,沈雅琴.咖啡酸和阿魏酸的抗缺氧作用.西北药学杂志. 1994,9(3):118~119
    178尹钟诛,张凌云,徐理钠.当归及其成分阿魏酸对大鼠血小板聚集和5-HT释放的影响.药学学茂. 1980,15:321~324
    179高树伟,陈石嘉,陶寿淇.阿魏酸钠对冠心病患者血小板聚集及血小板TAX2的影响.中西医结合杂志. 1988,8:263
    180汪钟,高友鹤,黄如松.阿魏酸钠是一种血栓素TAX2合成酶抑制剂.中国药理学学报. 1988,9:430~432
    181张军,许澎淮,朱广瑾,等..阿魏酸抗花生四烯酸肺栓塞的作用.基础医学与临床. 1993,13:300~303
    182王汝涛,熊晓云,刘莉,等.阿魏酸乙酯抗ADP诱导的血小板聚集及其机制.第四军医大学学报. 2002,23(6):537~538
    183 J. Oswald, S. Boxberger, B. Jorgensen. Mesenchymal Stem Cells Can be Differentiated into Endothelial Cells In vitro. Stem Cells. 2004,22(3):377~384
    184苗莉,何国祥,景涛,等.体外诱导骨髓间充质干细胞向血管平滑肌细胞分化的实验研究.重庆医学. 2007,36(13):1278~1282
    185 H. M. Lander. An Essential Role for Free Radicals and Derived Species in Signal Tranduction. FASEB J. 1997,11:118~124
    186任德成.内皮细胞损伤的机制及保护药物的筛选研究.中国协和医科大学博士学位论文.2002:44~47
    187 H. H. Schmidt, U. Walter. NO at Work. Cell. 1994,78(6):919~92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700