雷帕霉素抑制内皮细胞增殖和迁移:PI3K/Akt/mTOR/p70S6K信号通路的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     冠状动脉介入治疗发展到今天,药物洗脱支架已经取得令人瞩目的效果。相对于金属裸支架治疗而言,药物洗脱支架在减少血管成形术后再狭窄方面有着不可比拟的优势。但随着其大规模的临床应用,药物洗脱支架术后支架内血栓又引起了人们的关注。与裸支架相比,药物洗脱支架降低了术后再狭窄率却没有改变甚至增加了支架内血栓的发生。尤其是晚期支架内血栓形成更加导致人们对药物洗脱支架应用的疑虑。
     随着研究的不断深入,人们发现,支架内血栓形成与支架表面的内皮化程度密切相关,即内皮化越完全,支架内血栓发生的机率越低。实验中发现,祼支架术后28天内可完全内皮化,而药物洗脱支架在6个月时还显示内膜愈合不完全,表面有纤维蛋白沉积及炎症细胞附着,易发生支架内血栓。而多数研究认为,引起药物支架表面内皮化不完全的主要原因是支架表面的涂层药物。
     雷帕霉素(西罗莫司)是一种大环内酯类免疫抑制剂。由于该药有免疫抑制、抗炎和抗细胞增殖作用,所以人们将其涂层于金属支架表面,通过支架植入后药物在病变部位的局部释放,抑制血管平滑肌细胞(Vascular smooth muscle cells, VSMCs)的迁移和增殖,最终减少术后再狭窄率。雷帕霉素主要是与胞浆蛋白--FK506结合蛋白12(FKBP-12)结合形成FKBP12/雷帕霉素复合物,再与胞内特定的细胞周期调节蛋白--哺乳动物雷帕霉素靶分子(Mammalian target of rapamycin, mTOR)结合,并抑制其活性,从而干预多个G1期向S期过渡的周期调控蛋白,最终诱导细胞周期停滞于G1期的晚期。鉴于细胞普遍表达细胞周期调控蛋白,可以想象,雷帕霉素不但影响VSMCs的增殖和迁移,同样影响内皮细胞的增殖和迁移及内皮祖细胞在局部的定位及附着,而这两种细胞对内皮修复是至关重要。这也可能是药物洗脱支架术后,支架表面内皮化延迟的原因。
     研究目的
     1.动物在体实验观察植入祼金属支架和药物洗脱支架28天后,局部血管段内皮愈合和血小板黏附情况。
     2.体外细胞实验观察雷帕霉素对内皮细胞增殖和迁移的影响;对内皮祖细胞凋亡的影响。同时在体实验观察雷帕霉素对循环中VEGF表达的影响。
     3.研究PI3K/Akt及mTOR/p70S6K信号通路是否参与雷帕霉素对内皮细胞增殖和迁移的抑制作用,并明确PI3K/Akt与mTOR/p70S6K信号蛋白在其中的作用和两者的相互关系。
     实验方法
     1.六只18-22 kg雄性杂种犬在左胸廓内动脉远端及近端分别植入Cypher雷帕霉素药物洗脱支架和Bx sonic裸金属支架。术前及术后给予双联抗血小板治疗;术后1个月,处死杂种犬,解剖离取支架植入处血管段并固定;纵切后电镜扫描观察支架表面血管覆盖情况及是否有血小板黏附或微血栓形成。
     2.原代培养大鼠心肌微血管内皮细胞及内皮祖细胞,加入不同浓度的雷帕霉素(0.1、1、10和100 ng/ml)或等体积的10%甲醇孵育24、48或72小时。MTT法检测内皮细胞及内皮祖细胞增殖;划痕法及Tranwell小室法观察内皮细胞迁移;流式细胞术检查内皮细胞及内皮祖细胞凋亡。
     3. SD雄性大鼠(100-150 g)给予雷帕霉素(0.05、0.10、0.15和0.20 mg/kg/d)或者10%甲醇(0.1 ml/kg/d)连续腹腔注射5天,尾静脉采血,ELISA法检测大鼠血循环中VEGF水平。
     4.雷帕霉素(10 ng/ml)孵育微血管内皮细胞24小时后,Western blot法观察FKBP-12、mTOR及p70 S6激酶磷酸化水平,并与用同等浓度甲醇孵育的对照组进行比较。
     5.原代培养的微血管内皮细胞分组为:对照组;VEGF (20 ng/ml)组;VEGF (20 ng/ml)+Wortmannin (100 nM)组及VEGF (20 ng/ml)+LY294002 (20μM)组。各组细胞培养24小时后,观察内皮细胞的增殖和迁移。同时Western blot法检测mTOR和p70 S激酶的表达水平和磷酸化水平。
     6.原代培养的微血管内皮细胞分组为:对照组;VEGF (20 ng/ml)组;VEGF (20 ng/ml)+Wortmannin (100 nM);VEGF (20 ng/ml)+LY294002 (20μM)组;雷帕霉素(10 ng/ml)组。各组内皮细胞培养4小时后,裂解细胞,Western blot法观察Akt和p-Akt表达水平。
     实验结果
     1.犬胸廓内动脉金属裸支架及药物支架植入30天后的电镜扫描发现:与金属裸支架相比,药物支架表面内皮化不完全;部分药物支架暴露于管腔;局部表面有血小板黏附形成。
     2.孵育24小时后,10 ng/ml及100 ng/ml的雷帕霉素明显抑制内皮细胞增殖(71.5%±6.4% vs. Control, P < 0.01;57.0%±9.0% vs. Control, P < 0.001);48小时后,1 ng/ml的雷帕霉素也明显抑制内皮细胞增殖(55.3%±13.4% vs. Control,P < 0.01);0.1 ng/ml组于72小时后明显抑制内皮细胞增殖(26.3%±11.9 % vs. Control,P < 0.01)。孵育24小时后,雷帕霉素明显抑制内皮细胞的迁移,1 ng/ml组是对照组的75.5%±7.0%(P < 0.05);10 ng/ml组是对照组的65.2%±4.3%(P < 0.001);而100 ng/ml组是对照组的39.5%±8.0%(P < 0.001)。和对照组相比,0.1、1、10和100 ng/ml的雷帕霉素组中内皮祖细胞的增殖分别为98.7%±8.9%(P > 0.05)、84.9%±6.7%(P < 0.001)、77.2%±6.1%(P < 0.001)及69.0%±4.1% (P < 0.001)。雷帕霉素也诱导内皮祖细胞的凋亡,正常内皮祖细胞组的凋亡率为4.2‰±0.5‰,而1、10和100 ng/ml的雷帕霉素组中,内皮祖细胞的凋亡率分别为:10.8‰±0.8‰、14.4‰±1.0‰及18.6‰±1.2‰(P < 0.001)。
     3. SD大鼠腹腔给药5天后与对照组相比,高浓度的雷帕霉素(0.15和0.2 mg/kg/d)明显抑制循环中VEGF的表达(P < 0.05及P < 0.01),但较低浓度的雷帕霉素(0.05和0.10 mg/kg/d)没有抑制作用。
     4. Western blot法分析见雷帕霉素(10 ng/ml)孵育24小时后抑制内皮细胞中mTOR的磷酸化水平,但FKBP-12磷酸化水平未有改变,而且内皮细胞中p70 S6激酶的磷酸化也被雷帕霉素抑制。
     5. VEGF作用4小时后,内皮细胞中mTOR和p70 S6K蛋白磷酸化水平明显增加,但PI3K/Akt的特异性抑制剂Wortmannin或LY294002可完全阻断VEGF的这一作用。
     6. VEGF明显促进内皮细胞迁移(188.0%±5.5% vs.对照组, P < 0.001);而VEGF+LY294002或者VEGF+Wortmannin组与对照组比较,内皮细胞的迁移无差别(89.3%±11.3%及83.7%±6.8% vs.对照组, P > 0.05)。同样观察到VEGF明显促进内皮细胞增殖(175.7%±8.9% vs.对照组, P < 0.001);而VEGF+LY294002或者VEGF+Wortmannin组与对照组比较则无变化(82.8%±10.9%及99.0%±5.9% vs.对照组, P > 0.05)。
     7. Wortmannin和LY294002都可抑制内皮细胞中Akt蛋白的磷酸化。但雷帕霉素孵育4小时后,Akt的磷酸化水平增高。
     结论
     1.雷帕霉素洗脱支架植入术后28天,支架表面内皮化不完全。其原因可能为雷帕霉素抑制内皮细胞的增殖和迁移、诱导内皮祖细胞的凋亡、并且减少局部血管中VEGF的表达,从而延缓药物洗脱支架后再内皮化进程。
     2.雷帕霉素通过抑制mTOR/p70 S6K蛋白的激活进而抑制内皮细胞的增殖和迁移;PI3K /Akt信号蛋白是激活mTOR/p70 S6K蛋白所必需的,并且是上游信号蛋白。
     3. PI3K /Akt信号蛋白和mTOR/p70 S6K信号蛋白并非是单纯的线性关系,在雷帕霉素抑制mTOR/p70 S6K蛋白的过程中,PI3K和mTOR之间存在反馈调节,Akt可能是反馈调节的中间分子。
Background
     Nowadays, with rapid development of the percutaneous coronary intervention, drug-eluting stents have already achieved a remarkable success. Compared with bare-metal stents, the drug-eluting stents has unparalleled advantages in preventing restenosis after angioplasty. However, with the large-scale clinical application of drug-eluting stents, in-stent thrombosis has attracted more attention. Compared with the bare-metal stents, drug-eluting stent has not changed, or even increased the incidence of stent thrombosis. In particular, late stent thrombosis even led to concerns of the application of drug-eluting stent.
     With the continuous deepening of the study, it was found that stent thrombosis is closely related to re-endothelialization in local impaired blood vessels, that is, the more complete re-endothelialization, the lower the probability of in-stent thrombosis. Previous experiments found that, impaired vessel was completely re-endothelialized within 28 days after bare-metal stent implantation. However, in the drug-eluting stents, endothelium healing was not completed after more than 6 months, and local impaired vessel showed fibrin deposition and inflammatory cells attachment in the surface of the vessel, thus high incidence of stent thrombosis.
     Rapamycin (sirolimus) is a macrolide immunosuppressant. With potent property of immune suppression, anti-inflammatory and anti-cell proliferation, it was coated on the metal surface, released into local lesion after stent implantation. It was presumed to inhibit vascular smooth muscle cells (VSMCs) migration and proliferation, to impede the formation of neo-endothelium, thereby reducing the restenosis rate. Rapamycin mainly combines with the cytoplasmic protein-FK506 binding protein 12 (FKBP-12), and with binding a specific intracellular cell cycle regulatory proteins, mammalian target of rapamycin (mTOR). The FKBP12/rapamycin complex inhibits mTOR activity, thereby interferes with multiple cycle regulatory proteins involving in G1 to S phases, and ultimately induces cell cycle arrested in late G1 phase. In view of the universal expression of cellular cell cycle regulatory proteins, it is conceivable that rapamycin not only inhibits VSMCs proliferation and migration, but also acts on endothelial cells (ECs) proliferation and migration, and even impedes the endothelial progenitor cells (EPCs) positioning and attaching in local lesion. This may induces delayed re-endothelialization in drug-eluting stent.
     Objectives
     1. Dogs were chosen and DES and BMS were implantated in order to evaluate the effects of rapamycin on re-endothelialization.
     2. To determine the effects of rapamycin on endothelial cells proliferation and migration, and the effects on endothelial progenitor cells growth in vitro; In vivo, observe of rapamycin on VEGF expression in circulation.
     3. To investigate whether PI3K/Akt and mTOR/p70 S6 kinase signaling pathway are involved in rapamycin inhibiting endothelial cells proliferation and migration and to identify proteins’role in the inhibiting process; to determine the relationship between PI3K/Akt and mTOR/p70 S6K signaling protein in rapamycin inhibiting endothelial cells proliferation and migration.
     Methods
     1. Six 18-22 kg male mongrel dogs were given percutaneous coronary intervention. Bare metal stent and drug-eluting stent were implanted in the left distal and proximal internal thoracic artery respectively. Electron microscopy was used to evaluate the endothelial coverage and adheresion of platelets on the surface of the stents.
     2. Endothelial cells or endothelial progenitor cells were treated with Rapa (0.1, 1, 10 and 100 ng/ml) or carrier (0.1% methanol) in reduced-serum media (DMEM containing 5% FBS). After incubation for 24 h, 48 h or 72 h, cells proliferation was quantified by MTT assay. Cell migration was investigated by scratch assay and counted by using Transwell chamber; and cells apoptosis was detected by flow cytometry.
     3. SD rats, weighing 100 to 150 g, were administered Rapa (0.05, 0.10, 0.15 and 0.20 mg/kg/d) or 10% methanol (0.1 ml/kg/d) intraperitoneally for 5 days. VEGF levels in plasma were measured in triplicate or quadruplicate with an ELISA test.
     4. Pretreating endothelial cells with rapamycin (10 ng/ml) or carrier (0.1% methanol) for 24 h. Phosphorylation levels of FKBP-12, mTOR and p70 S6 kinase was investigated by Western blot analysis.
     5. Endothelial cells were randomly divided into following groups: Control; VEGF (20 ng/ml); VEGF (20 ng/ml) + Wortmannin (100 nM); VEGF (20 ng/ml) + LY294002 (20μM). After incubated in different groups for 24 h, endothelial cells proliferation and migration were observed respectively. Meanwhile, Phosphorylation levels of mTOR and p70 S kinase were detected by Western blot analysis.
     6. Endothelial cells were randomly divided into following groups: Control; VEGF (20 ng/ml); VEGF (20 ng/ml) + Wortmannin (100 nM); VEGF (20 ng/ml) + LY294002 (20μM). After incubated in different groups for 4 h, endothelial cells were lysised and the changes of Akt and p-Akt were recorded by Western blot analysis.
     Results
     1. All dogs survived stent implantation. Electron microscopy showed endothelium complete covering the BMS stent. However, poor endothelial cells junction formation was observed on the DES stent and part of stent exposed to the vessel lumen. Platelets were adhered to the surface of stent.
     2. ECs were incubated with rapamycin for 24 h, and cells proliferation was reduced by 10 ng/ml and 100 ng/ml Rapa to 71.5%±6.4% (P < 0.01) and 57.0%±9.0% (P < 0.001) of controls, respectively. Low concentration of Rapa (1 ng/ml) also decreased ECs proliferation after 48 h (55.3%±13.4% of control, P < 0.01). After 72 h, Rapa of 0.1 ng/ml caused clear reductions in cells proliferation (26.3%±11.9% vs. Control, P < 0.01). Rapamycin inhibited cells migration to 75.5%±7.0% at 1 ng/ml (P < 0.05), 65.2%±4.3% at 10 ng/ml (P < 0.001), and 39.5%±8.0% at 100 ng/ml (P < 0.001).
     3. Rapamycin dose- and time-dependently inhibited ECs proliferation, with 0.1 ng/ml showing 98.7%±8.9% (P > 0.05), 1 ng/ml showing 84.9%±6.7% (P < 0.001), 10 ng/ml showing 77.2%±6.1% (P < 0.001) and 100 ng/ml showing 69.0%±4.1% (P < 0.001) of control cells growth, respectively. Rapamycin also induced EPCs apoptosis. The normal apoptotic index in EPCs was 4.2‰±0.5‰, and all higher rapamycin levels increased this index, with 1, 10 and 100 ng/ml showing apoptotic levels of 10.8‰±0.8‰, 14.4‰±1.0‰, and 18.6‰±1.2‰respectively (all P < 0.001).
     4. A 5-day treatment with rapamycin decreased VEGF expression at higher doses (0.15 and 0.2 mg/kg/d; P < 0.05 and P < 0.01) but not lower doses (0.05 and 0.10 mg/kg/d).
     5. Western blot analysis showed that rapamycin inhibited mTOR phosphorylation but not FKBP12 phosphorylation after endothelial cells were incubated with rapamycin (10ng/ml) for 24 h. Similarly, rapamycin (10ng/ml) also inhibited the phosphorylation of p70 S6K, the downstream target of mTOR.
     6. The phosphorylation mTOR and p70 S6K were enhanced after endothelial cells were incubated with VEGF for 4 h. However, both Wortmannin (100 nM) and LY294002 (20μM) completely abolished mTOR and p70 S6K activation in response to VEGF. VEGF-induced endothelial cells proliferation (175.7%±8.9% vs. control, P < 0.001) and migration (188.0%±5.5% vs. control, P < 0.001) were abolished by LY294002 and Wortmannin (89.3%±11.3% and 83.7%±6.8% vs. control, P > 0.05; 82.8%±10.9% and 99.0%±5.9% vs. control, P > 0.05; respectively), consistent with the suppression of mTOR and p70 S6K.
     7. Endothelial cells were treated with 100 nM Wortmannin or 20μM LY294002 for 4 h and Western blot analysis showed that both LY294002 and Wortmannin inhibited Akt phosphorylation. However, rapamycin increased Akt phosphorylation after endothelial cells were incubated with rapamycin for 4 h.
     Conclusions
     1. Rapamycin impedes re-endothelialization after drug eluting stent (DES) implantation and the mechanism may involves with inhibiting proliferation and migration of ECs, inducing EPCs apoptosis, and decreasing VEGF expression in the circulation.
     2. Our data demonstrated that rapamycin inhibits ECs proliferation and migration through PI3K-mediated mTOR/p70 S6K activation. As the upstream proteins, PI3K/Akt signaling proteins are needed for the activation of mTOR/p70.
     3. The relationship of PI3K/Akt and mTOR/p70 S6 kinase is not just a line signaling pathway. Akt may centers a negative feedback between PI3K and mTOR in ECs during rapamycin inhibiting the activation of mTOR/p70 S6 kinase.
引文
[1] Balaguer VI. [Control and prevention of cardiovascular disease around the world]. Rev Esp Cardiol. 2004. 57(6): 487-94.
    [2] Bairey MCN, Alberts MJ, Balady GJ, et al. ACCF/AHA/ACP 2009 competence and training statement: a curriculum on prevention of cardiovascular disease: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Competence and Training (Writing Committee to Develop a Competence and Training Statement on Prevention of Cardiovascular Disease): developed in collaboration with the American Academy of Neurology; American Association of Cardiovascular and Pulmonary Rehabilitation; American College of Preventive Medicine; American College of Sports Medicine; American Diabetes Association; American Society of Hypertension; Association of Black Cardiologists; Centers for Disease Control and Prevention; National Heart, Lung, and Blood Institute; National Lipid Association; and Preventive Cardiovascular Nurses Association. Circulation. 2009. 120(13): e100-26.
    [3]贾国良,李成祥,郭文怡等.西京医院冠心病介入治疗537例.第四军医大学学报. 2000. 21(10): 1259-1261.
    [4] Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978. 1(8058): 263.
    [5] Gruntzig AR, Senning A, Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med. 1979. 301(2): 61-8.
    [6] Bentivoglio LG. Immediate and long-term results of percutaneous transluminal coronary angioplasty. Comparison of the National Heart, Lung and Blood Institute Registry experience with current experience. Herz. 1985. 10(5): 275-80.
    [7] Seung KB, Park DW, Kim YH, et al. Stents versus coronary-artery bypass grafting for left main coronary artery disease. N Engl J Med. 2008. 358(17): 1781-92.
    [8] Narins CR, Holmes DR Jr, Topol EJ. A call for provisional stenting: the balloon is back. Circulation. 1998. 97(13): 1298-305.
    [9] Holmes DR Jr, Holubkov R, Vlietstra RE, et al. Comparison of complications during percutaneous transluminal coronary angioplastyfrom 1977 to 1981 and from 1985 to 1986: the National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry. J Am Coll Cardiol. 1988. 12(5): 1149-55.
    [10] Kuntz RE, Piana R, Pomerantz RM, et al. Changing incidence and management of abrupt closure following coronary intervention in the new device era. Cathet Cardiovasc Diagn. 1992. 27(3): 183-90.
    [11] McBride W, Lange RA, Hillis LD. Restenosis after successful coronary angioplasty. Pathophysiology and prevention. N Engl J Med. 1988. 318(26): 1734-7.
    [12] Birkenhauer P, Yang Z, Gander B. Preventing restenosis in early drug-eluting stent era: recent developments and future perspectives. J Pharm Pharmacol. 2004. 56(11): 1339-56.
    [13] Castaneda-Zuniga WR, Formanek A, Tadavarthy M, et al. The mechanism of balloon angioplasty. Radiology. 1980. 135(3): 565-71.
    [14] Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology: drug-eluting stents: Part II. Circulation. 2003. 107(18): 2383-9.
    [15] Ross R, Glomset JA. The pathogenesis of atherosclerosis (first of two parts). N Engl J Med. 1976. 295(7): 369-77.
    [16] Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology: drug-eluting stents: Part I. Circulation. 2003. 107(17): 2274-9.
    [17] Hirshfeld JW Jr, Schwartz JS, Jugo R, et al. Restenosis after coronary angioplasty: a multivariate statistical model to relate lesion and procedure variables to restenosis. The M-HEART Investigators. J Am Coll Cardiol. 1991. 18(3): 647-56.
    [18] 3rd KSB. The development of interventional cardiology. J Am Coll Cardiol. 1998. 31(4 Suppl B): 64B-88B.
    [19] Nobel’s Lectures. Physiology or Medicine 1901–1921. Amsterdam: Elsevier Publishing Company, 1967 .
    [20] DOTTER CT, JUDKINS MP. TRANSLUMINAL TREATMENT OF ARTERIOSCLEROTIC OBSTRUCTION. DESCRIPTION OF A NEW TECHNIC AND A PRELIMINARY REPORT OF ITS APPLICATION. Circulation. 1964. 30: 654-70.
    [21] Dotter CT, Buschmann RW, McKinney MK, Rosch J. Transluminal expandable nitinol coil stent grafting: preliminary report. Radiology. 1983. 147(1): 259-60.
    [22] Rousseau H, Puel J, Joffre F, et al. Self-expanding endovascular prosthesis: an experimental study. Radiology. 1987. 164(3): 709-14.
    [23] Palmaz JC, Sibbitt RR, Reuter SR, Tio FO, Rice WJ. Expandable intraluminal graft: a preliminary study. Work in progress. Radiology.1985. 156(1): 73-7.
    [24] Schatz RA, Palmaz JC, Tio FO, Garcia F, Garcia O, Reuter SR. Balloon-expandable intracoronary stents in the adult dog. Circulation. 1987. 76(2): 450-7.
    [25] Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987. 316(12): 701-6.
    [26] de Feyter PJ, de Jaegere PP, Serruys PW. Incidence, predictors, and management of acute coronary occlusion after coronary angioplasty. Am Heart J. 1994. 127(3): 643-51.
    [27] Ruygrok PN, Serruys PW. Intracoronary stenting. From concept to custom. Circulation. 1996. 94(5): 882-90.
    [28] Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med. 1994. 331(8): 489-95.
    [29] Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med. 1994. 331(8): 496-501.
    [30] Moliterno DJ. Healing Achilles--sirolimus versus paclitaxel. N Engl J Med. 2005. 353(7): 724-7.
    [31] Versaci F, Gaspardone A, Tomai F, Crea F, Chiariello L, Gioffre PA. A comparison of coronary-artery stenting with angioplasty for isolated stenosis of the proximal left anterior descending coronary artery. N Engl J Med. 1997. 336(12): 817-22.
    [32] Coolong A, Mauri L. Clopidogrel treatment surrounding percutaneous coronary intervention: when should it be started and stopped. Curr Cardiol Rep. 2006. 8(4): 267-71.
    [33] Serruys PW, Strauss BH, Beatt KJ, et al. Angiographic follow-up after placement of a self-expanding coronary-artery stent. N Engl J Med. 1991. 324(1): 13-7.
    [34] Holmes DR Jr, Savage M, LaBlanche JM, et al. Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation. 2002. 106(10): 1243-50.
    [35] Arjomand H, Turi ZG, McCormick D, Goldberg S. Percutaneous coronary intervention: historical perspectives, current status, and future directions. Am Heart J. 2003. 146(5): 787-96.
    [36] Cutlip DE, Baim DS, Ho KK, et al. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation. 2001. 103(15): 1967-71.
    [37] Colombo A, Hall P, Nakamura S, et al. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation. 1995. 91(6): 1676-88.
    [38] Barragan P, Sainsous J, Silvestri M, et al. Ticlopidine and subcutaneous heparin as an alternative regimen following coronary stenting. Cathet Cardiovasc Diagn. 1994. 32(2): 133-8.
    [39] Bertrand ME, Legrand V, Boland J, et al. Randomized multicenter comparison of conventional anticoagulation versus antiplatelet therapy in unplanned and elective coronary stenting. The full anticoagulation versus aspirin and ticlopidine (fantastic) study. Circulation. 1998. 98(16): 1597-603.
    [40] Schomig A, Neumann FJ, Kastrati A, et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N Engl J Med. 1996. 334(17): 1084-9.
    [41] Bertrand ME, Rupprecht HJ, Urban P, Gershlick AH. Double-blind study of the safety of clopidogrel with and without a loading dose in combination with aspirin compared with ticlopidine in combination with aspirin after coronary stenting : the clopidogrel aspirin stent international cooperative study (CLASSICS). Circulation. 2000. 102(6): 624-9.
    [42] Wenaweser P, Rey C, Eberli FR, et al. Stent thrombosis following bare-metal stent implantation: success of emergency percutaneous coronary intervention and predictors of adverse outcome. Eur Heart J. 2005. 26(12): 1180-7.
    [43] Kereiakes DJ, Choo JK, Young JJ, Broderick TM. Thrombosis and drug-eluting stents: a critical appraisal. Rev Cardiovasc Med. 2004. 5(1): 9-15.
    [44] Savi P, Herbert JM. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost. 2005. 31(2): 174-83.
    [45] de Feyter PJ, Vos J, Rensing BJ. Anti-restenosis Trials. Curr Interv Cardiol Rep. 2000. 2(4): 326-331.
    [46] Kobayashi Y, De Gregorio J, Kobayashi N, et al. Stented segment length as an independent predictor of restenosis. J Am Coll Cardiol. 1999. 34(3): 651-9.
    [47] Hoffmann R, Mintz GS. Coronary in-stent restenosis - predictors, treatment and prevention. Eur Heart J. 2000. 21(21): 1739-49.
    [48] Wilson JM. Stents or surgery: the case for stents. Tex Heart Inst J 2005;32:331-8 .
    [49] Sawada Y NH, Kimura T. Initial and six months outcome of Palmaz-Schatz stent implantations: STRESS/BENESTENT equivalent vs non-equivalent lesions. 1996. 27((suppl A)): 252A.
    [50] Chen MS JJM, Chew DP LDS, Ellis SG BDL. Bare metal stent restenosis is not a benign clinical entity. 2006. 151: 1260–4.
    [51] Woods TC, Marks AR. Drug-eluting stents. Annu Rev Med. 2004. 55: 169-78.
    [52] Paal P, Putz G, Gruber E, Le GT, Lemberger P. Subarachnoid hemorrhage after lumbar puncture in a patient receiving aspirin and clopidrogel. Anesth Analg. 2006. 102(2): 644-5.
    [53]李成祥,郭文怡,王小燕.冠状动脉支架再狭窄的介入治疗及疗效观察.中国介入心脏病学杂志. 2000. (04): 7-9.
    [54] Lemos PA, Serruys PW, Sousa JE. Drug-eluting stents: cost versus clinical benefit. Circulation. 2003. 107(24): 3003-7.
    [55] Schofer J, Schluter M, Gershlick AH, et al. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled trial (E-SIRIUS). Lancet. 2003. 362(9390): 1093-9.
    [56] Schampaert E, Cohen EA, Schluter M, et al. The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries (C-SIRIUS). J Am Coll Cardiol. 2004. 43(6): 1110-5.
    [57] Grube E, Buellesfeld L. Paclitaxel-eluting stents: current clinical experience. Am J Cardiovasc Drugs. 2004. 4(6): 355-60.
    [58]郭文怡,贾国良,栾荣华,李成祥,吕安林,王晓燕.雷帕霉素洗脱支架治疗支架术后的再狭窄.临床内科杂志. 2005. (09): 631-632.
    [59] Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med. 2007. 356(10): 998-1008.
    [60] Kastrati A, Dibra A, Eberle S, et al. Sirolimus-eluting stents vs paclitaxel-eluting stents in patients with coronary artery disease: meta-analysis of randomized trials. JAMA. 2005. 294(7): 819-25.
    [61] Kandzari DE, Roe MT, Ohman EM, et al. Frequency, predictors, and outcomes of drug-eluting stent utilization in patients with high-risk non-ST-segment elevation acute coronary syndromes. Am J Cardiol. 2005.96(6): 750-5.
    [62] Rodriguez AE, Mieres J, Fernandez-Pereira C, et al. Coronary stent thrombosis in the current drug-eluting stent era: insights from the ERACI III trial. J Am Coll Cardiol. 2006. 47(1): 205-7.
    [63] Ong AT, Serruys PW. Drug-eluting stents: current issues. Tex Heart Inst J. 2005. 32(3): 372-7.
    [64] Ong AT, Hoye A, Aoki J, et al. Thirty-day incidence and six-month clinical outcome of thrombotic stent occlusion after bare-metal, sirolimus, or paclitaxel stent implantation. J Am Coll Cardiol. 2005. 45(6): 947-53.
    [65] Lagerqvist B, James SK, Stenestrand U, Lindback J, Nilsson T, Wallentin L. Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N Engl J Med. 2007. 356(10): 1009-19.
    [66] Iakovou I, Schmidt T, Bonizzoni E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA. 2005. 293(17): 2126-30.
    [67] Bavry AA, Kumbhani DJ, Helton TJ, Bhatt DL. What is the risk of stent thrombosis associated with the use of paclitaxel-eluting stents for percutaneous coronary intervention?: a meta-analysis. J Am Coll Cardiol. 2005. 45(6): 941-6.
    [68] Mauri L, Hsieh WH, Massaro JM, Ho KK, D'Agostino R, Cutlip DE. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med. 2007. 356(10): 1020-9.
    [69] Luscher TF, Steffel J, Eberli FR, et al. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation. 2007. 115(8): 1051-8.
    [70] Jaffe R, Strauss BH. Late and very late thrombosis of drug-eluting stents: evolving concepts and perspectives. J Am Coll Cardiol. 2007. 50(2): 119-27.
    [71] Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 2007. 115(18): 2435-41.
    [72] Serruys PW, Daemen J. Are drug-eluting stents associated with a higher rate of late thrombosis than bare metal stents? Late stent thrombosis: a nuisance in both bare metal and drug-eluting stents. Circulation. 2007. 115(11): 1433-9; discussion 1439.
    [73] Jeremias A, Sylvia B, Bridges J, et al. Stent thrombosis after successful sirolimus-eluting stent implantation. Circulation. 2004. 109(16):1930-2.
    [74] Kerner A, Gruberg L, Kapeliovich M, Grenadier E. Late stent thrombosis after implantation of a sirolimus-eluting stent. Catheter Cardiovasc Interv. 2003. 60(4): 505-8.
    [75] McFadden EP, Stabile E, Regar E, et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet. 2004. 364(9444): 1519-21.
    [76] Karvouni E, Korovesis S, Katritsis DG. Very late thrombosis after implantation of sirolimus eluting stent. Heart. 2005. 91(6): e45.
    [77] Waters RE, Kandzari DE, Phillips HR, Crawford LE, Sketch MH Jr. Late thrombosis following treatment of in-stent restenosis with drug-eluting stents after discontinuation of antiplatelet therapy. Catheter Cardiovasc Interv. 2005. 65(4): 520-4.
    [78] Tsimikas S. Drug-eluting stents and late adverse clinical outcomes lessons learned, lessons awaited. J Am Coll Cardiol. 2006. 47(10): 2112-5.
    [79] Farb A, Burke AP, Kolodgie FD, Virmani R. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation. 2003. 108(14): 1701-6.
    [80] Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006. 48(1): 193-202.
    [81] van BHM, Saia F, Zindler JD, et al. Drug-eluting stents show delayed healing: paclitaxel more pronounced than sirolimus. Eur Heart J. 2007. 28(8): 974-9.
    [82] Nebeker JR, Virmani R, Bennett CL, et al. Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. J Am Coll Cardiol. 2006. 47(1): 175-81.
    [83] Gurbel PA, DiChiara J, Tantry US. Antiplatelet therapy after implantation of drug-eluting stents: duration, resistance, alternatives, and management of surgical patients. Am J Cardiol. 2007. 100(8B): 18M-25M.
    [84] Babinska A, Markell MS, Salifu MO, Akoad M, Ehrlich YH, Kornecki E. Enhancement of human platelet aggregation and secretion induced by rapamycin. Nephrol Dial Transplant. 1998. 13(12): 3153-9.
    [85] Kotani J, Awata M, Nanto S, et al. Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings. J Am Coll Cardiol. 2006.47(10): 2108-11.
    [86] Lijnen HR, Collen D. Endothelium in hemostasis and thrombosis. Prog Cardiovasc Dis. 1997. 39(4): 343-50.
    [87] Vanhoutte PM, Mombouli JV. Vascular endothelium: vasoactive mediators. Prog Cardiovasc Dis. 1996. 39(3): 229-38.
    [88] Schwartz SM, Campbell GR, Campbell JH. Replication of smooth muscle cells in vascular disease. Circ Res. 1986. 58(4): 427-44.
    [89] Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res. 1991. 68(2): 450-6.
    [90] Fishman JA, Ryan GB, Karnovsky MJ. Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab Invest. 1975. 32(3): 339-51.
    [91] Schwartz SM, Heimark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev. 1990. 70(4): 1177-209.
    [92] Scott-Burden T, Buhler FR. Regulation of smooth muscle proliferative phenotype by heparinoid--matrix interactions. Trends Pharmacol Sci. 1988. 9(3): 94-8.
    [93] Hoover RL, Rosenberg R, Haering W, Karnovsky MJ. Inhibition of rat arterial smooth muscle cell proliferation by heparin. II. In vitro studies. Circ Res. 1980. 47(4): 578-83.
    [94] Clowes AW, Karnowsky MJ. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature. 1977. 265(5595): 625-6.
    [95] Reilly CF, Kindy MS, Brown KE, Rosenberg RD, Sonenshein GE. Heparin prevents vascular smooth muscle cell progression through the G1 phase of the cell cycle. J Biol Chem. 1989. 264(12): 6990-5.
    [96] Ofosu FA, Modi GJ, Smith LM, Cerskus AL, Hirsh J, Blajchman MA. Heparan sulfate and dermatan sulfate inhibit the generation of thrombin activity in plasma by complementary pathways. Blood. 1984. 64(3): 742-7.
    [97] Stern D, Brett J, Harris K, Nawroth P. Participation of endothelial cells in the protein C-protein S anticoagulant pathway: the synthesis and release of protein S. J Cell Biol. 1986. 102(5): 1971-8.
    [98] Loskutoff DJ, Edgington TE. Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc Natl Acad Sci U S A. 1977. 74(9): 3903-7.
    [99] Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987. 2(8567): 1057-8.
    [100] Radomski MW, Palmer RM, Moncada S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol. 1987. 92(3): 639-46.
    [101] Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest. 1983. 49(3): 327-33.
    [102] Post MJ, Borst C, Kuntz RE. The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig. Circulation. 1994. 89(6): 2816-21.
    [103] Lafont A, Guzman LA, Whitlow PL, Goormastic M, Cornhill JF, Chisolm GM. Restenosis after experimental angioplasty. Intimal, medial, and adventitial changes associated with constrictive remodeling. Circ Res. 1995. 76(6): 996-1002.
    [104] Steele PM, Chesebro JH, Stanson AW, et al. Balloon angioplasty. Natural history of the pathophysiological response to injury in a pig model. Circ Res. 1985. 57(1): 105-12.
    [105] Schwartz RS, Holmes DR Jr, Topol EJ. The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J Am Coll Cardiol. 1992. 20(5): 1284-93.
    [106] Fingerle J, Johnson R, Clowes AW, Majesky MW, Reidy MA. Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc Natl Acad Sci U S A. 1989. 86(21): 8412-6.
    [107] Lindner V, Reidy MA, Fingerle J. Regrowth of arterial endothelium. Denudation with minimal trauma leads to complete endothelial cell regrowth. Lab Invest. 1989. 61(5): 556-63.
    [108] Reidy MA, Schwartz SM. Endothelial regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium. Lab Invest. 1981. 44(4): 301-8.
    [109] Haudenschild CC, Schwartz SM. Endothelial regeneration. II. Restitution of endothelial continuity. Lab Invest. 1979. 41(5): 407-18.
    [110] Walker LN, Ramsay MM, Bowyer DE. Endothelial healing following defined injury to rabbit aorta. Depth of injury and mode of repair. Atherosclerosis. 1983. 47(2): 123-30.
    [111] Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994. 330(20): 1431-8.
    [112] Langille BL, O'Donnell F. Reductions in arterial diameter produced bychronic decreases in blood flow are endothelium-dependent. Science. 1986. 231(4736): 405-7.
    [113] Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol. 1996. 16(10): 1256-62.
    [114] Clowes AW, Collazzo RE, Karnovsky MJ. A morphologic and permeability study of luminal smooth muscle cells after arterial injury in the rat. Lab Invest. 1978. 39(2): 141-50.
    [115] Reidy MA, Clowes AW, Schwartz SM. Endothelial regeneration. V. Inhibition of endothelial regrowth in arteries of rat and rabbit. Lab Invest. 1983. 49(5): 569-75.
    [116] Weidinger FF, McLenachan JM, Cybulsky MI, et al. Persistent dysfunction of regenerated endothelium after balloon angioplasty of rabbit iliac artery. Circulation. 1990. 81(5): 1667-79.
    [117] Reidy MA, Standaert D, Schwartz SM. Inhibition of endothelial cell regrowth. Cessation of aortic endothelial cell replication after balloon catheter denudation. Arteriosclerosis. 1982. 2(3): 216-20.
    [118] Spagnoli LG, Pietra GG, Villaschi S, Johns LW. Morphometric analysis of gap junctions in regenerating arterial endothelium. Lab Invest. 1982. 46(2): 139-48.
    [119] Hughes SE, Crossman D, Hall PA. Expression of basic and acidic fibroblast growth factors and their receptor in normal and atherosclerotic human arteries. Cardiovasc Res. 1993. 27(7): 1214-9.
    [120] Brogi E, Winkles JA, Underwood R, Clinton SK, Alberts GF, Libby P. Distinct patterns of expression of fibroblast growth factors and their receptors in human atheroma and nonatherosclerotic arteries. Association of acidic FGF with plaque microvessels and macrophages. J Clin Invest. 1993. 92(5): 2408-18.
    [121] Lindner V, Olson NE, Clowes AW, Reidy MA. Inhibition of smooth muscle cell proliferation in injured rat arteries. Interaction of heparin with basic fibroblast growth factor. J Clin Invest. 1992. 90(5): 2044-9.
    [122] Lindner V, Reidy MA. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1991. 88(9): 3739-43.
    [123] Lindner V, Reidy MA. Expression of basic fibroblast growth factor and its receptor by smooth muscle cells and endothelium in injured rat arteries. An en face study. Circ Res. 1993. 73(3): 589-95.
    [124] Vlodavsky I, Folkman J, Sullivan R, et al. Endothelial cell-derivedbasic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci U S A. 1987. 84(8): 2292-6.
    [125] Shweiki D, Itin A, Neufeld G, Gitay-Goren H, Keshet E. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J Clin Invest. 1993. 91(5): 2235-43.
    [126] Shimokawa H, Aarhus LL, Vanhoutte PM. Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res. 1987. 61(2): 256-70.
    [127] Shimokawa H, Flavahan NA, Vanhoutte PM. Natural course of the impairment of endothelium-dependent relaxations after balloon endothelium removal in porcine coronary arteries. Possible dysfunction of a pertussis toxin-sensitive G protein. Circ Res. 1989. 65(3): 740-53.
    [128] Mc FEP, Bauters C, Lablanche JM, Quandalle P, Leroy F, Bertrand ME. Response of human coronary arteries to serotonin after injury by coronary angioplasty. Circulation. 1993. 88(5 Pt 1): 2076-85.
    [129] Saroyan RM, Roberts MP, Light JT Jr, et al. Differential recovery of prostacyclin and endothelium-derived relaxing factor after vascular injury. Am J Physiol. 1992. 262(5 Pt 2): H1449-57.
    [130] Rubanyi GM. The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol. 1993. 22 Suppl 4: S1-14.
    [131] Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res. 1995. 76(3): 412-7.
    [132] Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A. 1994. 91(26): 12574-8.
    [133] Sabers CJ, Martin MM, Brunn GJ, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995. 270(2): 815-22.
    [134] Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994. 369(6483): 756-8.
    [135] Morris RE, Meiser BM, Wu J, Shorthouse R, Wang J. Use of rapamycin for the suppression of alloimmune reactions in vivo: schedule dependence, tolerance induction, synergy with cyclosporine and FK 506, and effecton host-versus-graft and graft-versus-host reactions. Transplant Proc. 1991. 23(1 Pt 1): 521-4.
    [136] Sehgal SN, Molnar-Kimber K, Ocain TD, Weichman BM. Rapamycin: a novel immunosuppressive macrolide. Med Res Rev. 1994. 14(1): 1-22.
    [137] Dumont FJ, Su Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci. 1996. 58(5): 373-95.
    [138] Calne RY, Collier DS, Lim S, et al. Rapamycin for immunosuppression in organ allografting. Lancet. 1989. 2(8656): 227.
    [139] Blazquez-Domingo M, Grech G, von LM. Translation initiation factor 4E inhibits differentiation of erythroid progenitors. Mol Cell Biol. 2005. 25(19): 8496-506.
    [140] Sousa JE, Costa MA, Sousa AG, et al. Two-year angiographic and intravascular ultrasound follow-up after implantation of sirolimus-eluting stents in human coronary arteries. Circulation. 2003. 107(3): 381-3.
    [141] Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002. 346(23): 1773-80.
    [142] Luo Y, Marx SO, Kiyokawa H, Koff A, Massague J, Marks AR. Rapamycin resistance tied to defective regulation of p27Kip1. Mol Cell Biol. 1996. 16(12): 6744-51.
    [143] Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res. 1995. 76(3): 412-7.
    [144] Sun J, Marx SO, Chen HJ, Poon M, Marks AR, Rabbani LE. Role for p27(Kip1) in Vascular Smooth Muscle Cell Migration. Circulation. 2001. 103(24): 2967-72.
    [145] Gallo R, Padurean A, Jayaraman T, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation. 1999. 99(16): 2164-70.
    [146] Roque M, Reis ED, Cordon-Cardo C, et al. Effect of p27 deficiency and rapamycin on intimal hyperplasia: in vivo and in vitro studies using a p27 knockout mouse model. Lab Invest. 2001. 81(6): 895-903.
    [147] Braun-Dullaeus RC, Mann MJ, Seay U, et al. Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin. Arterioscler Thromb Vasc Biol. 2001. 21(7): 1152-8.
    [148] Rodriguez AE, Mieres J, Fernandez-Pereira C, et al. Coronary stentthrombosis in the current drug-eluting stent era: insights from the ERACI III trial. J Am Coll Cardiol. 2006. 47(1): 205-7.
    [149] Garcia-Touchard A, Burke SE, Toner JL, Cromack K, Schwartz RS. Zotarolimus-eluting stents reduce experimental coronary artery neointimal hyperplasia after 4 weeks. Eur Heart J. 2006. 27(8): 988-93.
    [150] Parry TJ, Brosius R, Thyagarajan R, et al. Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries. Eur J Pharmacol. 2005. 524(1-3): 19-29.
    [151] Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003. 349(14): 1315-23.
    [152] Babapulle MN, Joseph L, Belisle P, Brophy JM, Eisenberg MJ. A hierarchical Bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet. 2004. 364(9434): 583-91.
    [153] Kereiakes DJ, Choo JK, Young JJ, Broderick TM. Thrombosis and drug-eluting stents: a critical appraisal. Rev Cardiovasc Med. 2004. 5(1): 9-15.
    [154] Bavry AA, Kumbhani DJ, Helton TJ, Bhatt DL. Risk of thrombosis with the use of sirolimus-eluting stents for percutaneous coronary intervention (from registry and clinical trial data). Am J Cardiol. 2005. 95(12): 1469-72.
    [155] McFadden EP, Stabile E, Regar E, et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet. 2004. 364(9444): 1519-21.
    [156] Bavry AA, Kumbhani DJ, Helton TJ, Bhatt DL. What is the risk of stent thrombosis associated with the use of paclitaxel-eluting stents for percutaneous coronary intervention?: a meta-analysis. J Am Coll Cardiol. 2005. 45(6): 941-6.
    [157] Honda Y, Fitzgerald PJ. Stent thrombosis: an issue revisited in a changing world. Circulation. 2003. 108(1): 2-5.
    [158] Rukshin V, Shah PK, Cercek B, Finkelstein A, Tsang V, Kaul S. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and eptifibatide in a canine model of stent thrombosis. Circulation. 2002. 105(16): 1970-5.
    [159] Gallo R, Padurean A, Toschi V, et al. Prolonged thrombin inhibition reduces restenosis after balloon angioplasty in porcine coronary arteries. Circulation. 1998. 97(6): 581-8.
    [160] Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versusstandard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003. 349(14): 1315-23.
    [161] Nishida M, Carley WW, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW. Isolation and characterization of human and rat cardiac microvascular endothelial cells. Am J Physiol. 1993. 264(2 Pt 2): H639-52.
    [162] Yin T, Ma X, Zhao L, Cheng K, Wang H. Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res. 2008. 18(7): 792-9.
    [163] Napoli KL, Wang ME, Stepkowski SM, Kahan BD. Distribution of sirolimus in rat tissue. Clin Biochem. 1997. 30(2): 135-42.
    [164] Kwon YS, Hong HS, Kim JC, Shin JS, Son Y. Inhibitory effect of rapamycin on corneal neovascularization in vitro and in vivo. Invest Ophthalmol Vis Sci. 2005. 46(2): 454-60.
    [165] Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med. 2003. 9(6): 702-12.
    [166] Steffel J, Latini RA, Akhmedov A, et al. Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design. Circulation. 2005. 112(13): 2002-11.
    [167] Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation. 2001. 104(10): 1188-93.
    [168] Klugherz BD, Llanos G, Lieuallen W, et al. Twenty-eight-day efficacy and phamacokinetics of the sirolimus-eluting stent. Coron Artery Dis. 2002. 13(3): 183-8.
    [169] Carter AJ, Aggarwal M, Kopia GA, et al. Long-term effects of polymer-based, slow-release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc Res. 2004. 63(4): 617-24.
    [170] Farb A, John M, Acampado E, Kolodgie FD, Prescott MF, Virmani R. Oral everolimus inhibits in-stent neointimal growth. Circulation. 2002. 106(18): 2379-84.
    [171] Kolodgie FD, John M, Khurana C, et al. Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation. 2002. 106(10): 1195-8.
    [172] Boos CJ, Lip GY, Blann AD. Circulating endothelial cells in cardiovascular disease. J Am Coll Cardiol. 2006. 48(8): 1538-47.
    [173] Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels andprosthetic grafts: implications for cell-based vascular therapy. Circulation. 2003. 108(21): 2710-5.
    [174] Urao N, Okigaki M, Yamada H, et al. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res. 2006. 98(11): 1405-13.
    [175]崔斌,黄岚,武晓静等.内皮祖细胞移植对血管内膜修复的影响.中国病理生理杂志. 2007. 23(4): 625-628.
    [176] Inoue T, Sata M, Hikichi Y, et al. Mobilization of CD34-positive bone marrow-derived cells after coronary stent implantation: impact on restenosis. Circulation. 2007. 115(5): 553-61.
    [177] Butzal M, Loges S, Schweizer M, et al. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Exp Cell Res. 2004. 300(1): 65-71.
    [178] Chen TG, Chen JZ, Wang XX. Effects of rapamycin on number activity and eNOS of endothelial progenitor cells from peripheral blood. Cell Prolif. 2006. 39(2): 117-25.
    [179] Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999. 18(14): 3964-72.
    [180] Guba M, von BP, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002. 8(2): 128-35.
    [181] Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000. 60(6): 1541-5.
    [182] Ilan N, Mahooti S, Madri JA. Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. J Cell Sci. 1998. 111 ( Pt 24): 3621-31.
    [183] Iakovou I, Schmidt T, Bonizzoni E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA. 2005. 293(17): 2126-30.
    [184] Park DW, Park SW, Lee SW, et al. Frequency of coronary arterial late angiographic stent thrombosis (LAST) in the first six months: outcomes with drug-eluting stents versus bare metal stents. Am J Cardiol. 2007. 99(6): 774-8.
    [185] Eisenberg MJ. Drug-eluting stents: some bare facts. Lancet. 2004. 364(9444): 1466-7.
    [186] Liu MW, Roubin GS, 3rd KSB. Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation. 1989. 79(6): 1374-87.
    [187] Thyberg J, Hedin U, Sjolund M, Palmberg L, Bottger BA. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis. 1990. 10(6): 966-90.
    [188]郭琳. PI3K/Akt/mTOR信号传导通路与恶性肿瘤浸润和转移的研究进展.现代肿瘤医学. 2009. 17(8): 1585-89.
    [189] Morris RE, Meiser BM, Wu J, Shorthouse R, Wang J. Use of rapamycin for the suppression of alloimmune reactions in vivo: schedule dependence, tolerance induction, synergy with cyclosporine and FK 506, and effect on host-versus-graft and graft-versus-host reactions. Transplant Proc. 1991. 23(1 Pt 1): 521-4.
    [190] Powis G, Bonjouklian R, Berggren MM, et al. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res. 1994. 54(9): 2419-23.
    [191] Zhang KR, Liu HT, Zhang HF, et al. Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism. Apoptosis. 2007. 12(9): 1579-88.
    [192] Liu HT, Zhang HF, Si R, et al. Insulin protects isolated hearts from ischemia/reperfusion injury: cross-talk between PI3-K/Akt and JNKs. Sheng Li Xue Bao. 2007. 59(5): 651-9.
    [193] Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003. 9(6): 653-60.
    [194] Fujio Y, Walsh K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem. 1999. 274(23): 16349-54.
    [195] Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996. 87(7): 1171-80.
    [196] Qi JH, Matsumoto T, Huang K, Olausson K, Christofferson R, Claesson-Welsh L. Phosphoinositide 3 kinase is critical for survival, mitogenesis and migration but not for differentiation of endothelial cells. Angiogenesis. 1999. 3(4): 371-80.
    [197] Yu Y, Sato JD. MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells tovascular endothelial growth factor. J Cell Physiol. 1999. 178(2): 235-46.
    [198] Suhara T, Mano T, Oliveira BE, Walsh K. Phosphatidylinositol 3-kinase/Akt signaling controls endothelial cell sensitivity to Fas-mediated apoptosis via regulation of FLICE-inhibitory protein (FLIP). Circ Res. 2001. 89(1): 13-9.
    [199] Gratton JP, Morales-Ruiz M, Kureishi Y, Fulton D, Walsh K, Sessa WC. Akt down-regulation of p38 signaling provides a novel mechanism of vascular endothelial growth factor-mediated cytoprotection in endothelial cells. J Biol Chem. 2001. 276(32): 30359-65.
    [200] Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002. 4(9): 648-57.
    [201] Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991. 253(5022): 905-9.
    [202] Keith CT, Schreiber SL. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science. 1995. 270(5233): 50-1.
    [203] Hosoi H, Dilling MB, Shikata T, et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res. 1999. 59(4): 886-94.
    [204] Dufner A, Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res. 1999. 253(1): 100-9.
    [205] Li W, Petrimpol M, Molle KD, Hall MN, Battegay EJ, Humar R. Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2. Circ Res. 2007. 100(1): 79-87.
    [206] Vinals F, Chambard JC, Pouyssegur J. p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation. J Biol Chem. 1999. 274(38): 26776-82.
    [207] Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005. 17(6): 596-603.
    [208] Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004. 18(16): 1926-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700