缺血性脑卒中易感基因与环境因素交互作用的分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     缺血性脑卒中是受遗传与环境因素共同作用的多因子疾病,基因-基因、基因-环境交互作用在缺血性脑卒中的发病中具有重要影响。随着人类基因组计划的完成,从基因水平阐明缺血性脑卒中的发病机制成为医学界关注的热点。近年来研究表明eNOS、GH1、IGF-1R基因多态性能显著影响基因的表达,这可能与缺血性脑卒中、冠心病的发生密切相关。但是关于eNOS、GH1、IGF-1R多态性与缺血性脑卒中之间的关系,以及该多态性与环境因素之间交互作用对缺血性脑卒中的影响,国内外罕见报道。
     研究目的
     1.探讨eNOS基因-922A/G、T-786C及G894T基因多态性与缺血性脑卒中的关系。
     2.探讨eNOS基因多态性与环境因素之间的交互作用在缺血性脑卒中发病中的地位与作用。
     3.探讨GH1基因T1663A多态性与缺血性脑卒中的关系,同时研究其与相关环境暴露因素之间的交互作用在缺血性脑卒中发病中的作用。
     4.探讨IGF-1R基因G/A(rs2229765)、A/G(rs951715)、A/G(rs2593053)多态性与缺血性脑卒中之间的关系。
     5.探讨IGF-1R基因多态性与相关环境暴露因素之间交互作用与缺血性脑卒中的关系。
     6.采用分类树统计分析方法初步构建缺血性脑卒中发病风险的预测模型。
     研究方法
     本研究采用候选基因和病例对照的研究方法,收集深圳市两家大型综合性医院的309名缺血性脑卒中新发病例,按年龄相差小于5岁、性别、民族相同的匹配条件选取对照,开展以医院为基础的1︰1配对病例-对照研究。采用统一的调查问卷对病例和对照进行调查,并按相同的条件和标准采集病例和对照的血液样本。用Taqman MGB荧光定量PCR技术分析基因多态性的基因型。运用单因素及多因素logistic回归分析基因多态性与缺血性脑卒中之间的关系,运用PHASE2.0软件进行单体型分析,用相加模型分析基因与环境相关危险因素之间的潜在交互作用,最后运用分类树分析方法初步构建缺血性脑卒中发病风险的预测模型。
     主要研究结果
     1.单因素Logistic回归分析结果表明:文化程度、体质指数、腰臀比、吸烟、高血压、糖尿病、负性生活事件、甘油三酯等是缺血性脑卒中发病的危险因素。在多变量Logistic回归模型中,吸烟(OR=5.42;95%CI:2.00~14.63)和高血压(OR=3.51;95%CI:1.83~6.71)是缺血性脑卒中发病的正关联因素;而体育锻炼(OR=0.10;95%CI:0.05~0.22)、饮茶史(OR=0.25;95%CI:0.12~0.55)是缺血性脑卒中发病的负关联因素。
     2. eNOS基因T-786C多态性基因型分布差异没有统计学意义(P=0.132),按性别进行分层后,男性病例组与对照组基因型分布差异处于临界值水平(P=0.053);在未调整混杂因素时,携带CC基因型的个体患缺血性脑卒中风险为TT 3.819倍,P=0.029;在调整上述因素的影响后,携带CC基因型的个体患缺血性脑卒中风险为TT的4.533倍,P=0.047。eNOS基因A-922G多态性病例组的G等位基因频率高于对照组,差异有统计学意义(P=0.018),基因型分布进行线性趋势检验,χ2=4.886, P=0.027,可见随着等位基因G的增加,发生缺血性脑卒中的危险性也增高;在调整上述因素影响后,A-922G多态性仍是缺血性脑卒中发病的危险因素, OR值为2.156,P=0.029。
     3. GH1基因T1663A多态性等位基因频率及基因型频率分布差异无统计学意义,P值分别为0.124和0.358;多因素Logistic回归分析发现,GH1基因多态性与缺血性脑卒中发病无关联。
     4. IGF-1R基因G→A多态性,病例组A等位基因频率(50.00%)高于对照组(31.93%),等位基因频率分布差异有统计学意义(P=0.001);以GG基因型为参考基因型,在调整其他混杂因素的影响后,携带AA基因型的个体缺血性脑卒中发病风险增加,OR=1.992,P=0.015。对于A/G(rs951715)多态性,病例组G等位基因频率(56.15%)高于对照组(43.85%),P=0.001,以AA基因型为参照,携带AG基因型的个体缺血性脑卒中的发病风险增加,OR值为2.201,P=0.000;当调整其他因素影响后,AG基因型仍是缺血性脑卒中发病的危险因素,OR值为2.381,P=0.000。
     5. T-786C多态性与高血压家族史、糖尿病、糖尿病家族史及吸烟存在正相加交互作用,S为3.76、3.10、4.22和1.63;A-922G基因多态性与饮酒存在负相加交互作用,S为0.43,与高血压家族史,糖尿病家族史和吸烟存在正相加交互效应,S分别为2.46、3.24、1.99;调整混杂因素后,GH1 AT基因型与超重存在交互效应,P为0.025,OR值为4.06。未发现IGF-1R基因多态性与环境因素存在明显的交互作用。
     6.采用分类树构建脑卒中发病风险模型,分类树模型共包括4层,共筛选出6个解释变量。采用筛检试验评价指标对模型的灵敏度和特异度进行评价,结果发现灵敏度为76.70%,特异度为81.88%,约登指数为58.58%。
     研究结论
     1.传统的危险因素仍是目前深圳市汉族人群中缺血性脑卒中发生的主要原因,因此在人群中培养健康的生活方式,早期、及时地控制高血压、糖尿病、血脂和体重是预防缺血性脑卒中的主要措施。
     2. eNOS基因T-786C、A-922G多态性和IGF-1R基因G/A(rs2229765)、A/G(rs951715)多态性均于缺血性脑卒中遗传易感性显著相关。
     3. eNOS基因T-786C、A-922G、GH1基因T1663A多态性与环境因素如吸烟、高血压、家族史等之间在缺血性脑卒中患病中存在不同程度的交互作用。
     4.分类树模型能够较好地拟合缺血性脑卒中发病风险的预测模型。
     5.缺血性脑卒中是由许多微效基因协调作用并与环境因素共同作用的结果,研究它们之间的相互关系对阐明缺血性脑卒中的病因及发病机理有重要意义。
Background
     Ischemic stroke (IS) is a multi-factorial disease, which is related to both the genetic and environmental factors. Gene-gene and gene-environmental interaction makes great contribution to the risk of IS. With the advance of Human Genome Project, it has become more and more popular in medical fields to clarify the pathogenesis of IS at genetic level, especially IS. In recent years, studies have suggested that endothelial nitric oxide synthase (eNOS), growth hormone(GH) and insulin-like growth factor-I receptor (IGF-1R) gene, which can significantly affect gene expression, have been associated with IS and coronary heart disease (CHD). However, reports are extremely rare presently on the association between the above-mentioned genes and IS in the Han nationality of China, and the interaction between the gene polymorphisms and environmental factors.
     Objectives
     1. To explore the association between the T-786C, A-922G and G894T polymorphism in eNOS gene and IS.
     2. To explore and assess the possible interaction effects between eNOS gene polymorphisms and environmental factors.
     3. To explore the association between GH1 T1663A gene polymorphism and IS, in addition, to assess the interaction between GH1 T1663A gene polymorphism and IS.
     4. To explore the possible association between IGF-1R gene G/A (rs2229765), A/G (rs951715) and A/G (rs2593053) polymorphisms and IS.
     5. To explore and assess the possible interaction effects between the IGF-1R gene polymorphisms and environmental factors.
     6. Classification tree model was applied to build the risk model for IS.
     Methods
     Candidate genes and case-control study were used to determine the possible the association between gene and IS. A 1:1 matched case-control study was performed. 309 cases were those onset IS patients registered in two general hospitals in Shenzhen. The controls were selected by the same gender and ethnic group, and each pair’s ages were permitted to differ within 5 years. The cases and controls were interviewed using the same questionnaire, and the blood samples were drawn in terms of the same conditions and standards. Gene polymorphisms were determined by using Taqman MGB genotyping assay. Univariate test and multiple logistic regression models were used to explore the association between the above-mentioned genes polymorphisms and IS. Haplotype analyses of these polymorphisms were performed using PHASE2.0 software. Additionally, the interaction between genes and environmental risk factors were assessed by multivariate logistic regression model. The odds ratio values (OR) was calculated by using regression model to determine the addition effects among different factors and measure the interaction. Finally, Classification tree model was applied to build up the risk model for IS.
     Results
     1. Univariate logistic regression demonstrated that risk factors of IS included income, education, body mass index (BMI), WHR, smoking, hypertension, diabetes mellitus (DM), negative events and TG levels (triglyceride). In multivariate logistic model, smoking and hypertension were positively associated with IS, with OR=5.42 (95%CI: 2.00~14.63) and OR=3.51 (95%CI: 1.83~6.71) respectively, while moderate physical training and history of tea-drinking were inversely associated with IS, with OR=0.10 (95%CI: 0.05~0.22) and OR=0.25 (95%CI: 0.12~0.55), respectively.
     2. For eNOS T-786c polymorphism, there were no significant difference in the distributions of genotypes between two groups (P=0.132). Stratified by sex, the p values for the genotypes of the above mentioned polymorphism was 0.053 in male. Conditional logistic regression revealed that the CC genotype of eNOS was associated with IS (OR=3.819, P=0.029). After adjustment for confounding factors, eNOS CC genotype was still significant associated with IS (OR=4.533, P=0.047). For eNOS A-922G polymorphism, the frequency of eNOS -922 G allele was significant higher in the patients than the controls (12.14% vs 8.09%, P=0.018). Linear tendency test showed the risk for development of IS raised with increasing G allele (chi-square value=4.886, P=0.027). After adjustment for confounding factors, eNOS A-922G polymorphism was significant associated with IS (OR=2.156, P=0.029).
     3. There were no significant difference in the distributions of allele and genotypes in GH1 gene T1663A polymorphism between two groups (P=0.124 and 0.358, respectively.). Multiple logistic regressions revealed that the GH T1663A polymorphism may not be an additional risk factor for the development of IS.
     4. For IGF-R G/A (rs2229765) polymorphism, the frequency of IGF-1R A allele was significant higher in the patients than the controls (50.00% vs 31.93%, P=0.001). After adjustment for confounding factors, AA genotype was significant associated with an increased risk of developing IS with the GG genotype as reference genotype (OR=1.992, P=0.015). For IGF-R A/G (rs951715) polymorphism, the frequency of IGF-1R G allele was significant higher in the patients than the controls (56.15% vs 43.85%, P=0.000). Compared with AA genotype, AG genotype was significant associated with an increased risk of developing IS without adjusting for other confounding factors (OR=2.201, P=0.000). After adjustment for confounding factors, AG genotype was significant associated with an increased risk of developing IS (OR=2.381, P=0.000).
     5. The positive additive interactions were found between eNOS gene T-786C polymorphism and family history of hypertension, DM, family history of DM and smoking, synergy Index (S) were 3.76, 3.10, 4.22 and 1.63, respectively. The interactions analysis between A-922G polymorphism and environmental factors indicated that a negative additive interaction was found between A-922G and alcohol drinking (S=0.43), and the S for family history of hypertension, family history of DM and smoking were 2.46, 3.24 and 1.99, respectively. No interactions between IGF-1R and environmental factors were found.
     6. Classification tree model was applied to build up the risk model for IS, and the model had four stratum. Six explanatory variations were screened out in our model. The indexes of the screening test were used to evaluate the fitness of the model. The results revealed that sensitivity and specificity and Youden index were 76.70%, 81.88% and 58.58%, respectively.
     Conclusions:
     1. The classical risk factors are still main reasons of patients with IS in the Han population of Shenzhen city. Therefore it is an important measure to prevent IS in community population to propose healthy life style including proper exercise, control of high blood pressure, high blood fat and weight.
     2. The T-786C, A-922G polymorphism in eNOS gene and G/A (rs2229765) and A/G (rs951715) polymorphisms in IGF-1R are all significant associated with the hereditary susceptibility of IS in the Han population of Shenzhen city.
     3. There are obvious interactions between T-786C and A-922G polymorphisms in eNOS gene and environmental factors such as smoking, alcohol drinking, hypertension, diabetes and family history vascular diseases.
     4. Classification tree model can properly predict the occurrences of IS.
     5. IS is caused by the interactions between many minor genes and environmental risk factors. It is very important to study their correlation to classify the cause and pathogenesis of IS.
引文
[1]聂绍发,孙圣刚,朱桂宝,等.脑卒中危险因素的流行病学研究[J].中国慢性病预防与控制, 1995, 3(5): 225.
    [2]刘丽玲.缺血性脑卒中的危险因素分析[J].实用临床医学, 2001, 2(1): 34-35.
    [3] Heitsch L, Jauch EC. Management of Hypertension in the Setting of Acute Ischemic Stroke. Curr Hypertens Rep, 2007, 9 (6): 506-511.
    [4] Matsui T, Arai H, Yuzuriha J, et al. Elevated plasma homocysteine levels and risk of silent brain infarction in elderly people. Stroke, 2001, 32 (5): 1116-1119.
    [5] Coca A, Messerli FH, Benetos A, et al. Predicting stroke risk in hypertensive patients with coronary artery disease: a report from the INVEST. Stroke, 2008, 39(2): 343-348.
    [6]韩宗超,张苏明.高血压与脑血管疾病[J].中国实用内科杂志, 1999, 19(3): 179-180.
    [7] Mikdashi J, Handwerger B, Langenberg P, et al. Baseline disease activity, hyperlipidemia, and hypertension are predictive factors for ischemic stroke and stroke severity in systemic lupus erythematosus. Stroke, 2007, 38(2): 281-285.
    [8] Stepniakowski K, Egan BM. Additive effects of obesity and hypertension to limit venous volume. Am J Physiol, 1995, 268(2Pt2): R562-R568.
    [9] van der Sande MA, Walraven GE, Milligan PJ, et al. Family history: an opportunity for early interventions and improved control of hypertension, obesity and diabetes. Bull World Health Organ, 2001, 79(4): 321-328.
    [10]刘建平,解瑞谦,程锦泉,等.中国居民吸烟、饮酒等行为因素与脑卒中的关系[J].中国行为医学科学. 2005, 14(7): 613-615.
    [11]常青,何耀,倪彬,等.老年人吸烟、饮酒与脑卒中的流行病学研究[J].中国公共卫生,2004, 20(5): 550-551.
    [12] Fisher M.The smoking-thrombolysis paradox and acute ischemic stroke. Neurology, 2006, 66(3): 458
    [13] Qureshi AI, Suri MF, Kirmani JF, et al. Cigarette smoking among spouses: another risk factor for stroke in women. Stroke, 2005, 36(9): e74-e76.
    [14] Zhang X, Shu XO, Yang G, et al. Association of passive smoking by husbandswith prevalence of stroke among Chinese women nonsmokers. Am J Epidemiol, 2005, 161(3): 213-218.
    [15] Gill JS, Zezulka AV, Shipley MJ, et al. Stroke and alcohol consumption. N Engl J Med, 1986, 315(17): 1041-1046.
    [16] Palom?ki H, Kaste M. Regular light-to-moderate intake of alcohol and the risk of ischemic stroke. Is there a beneficial effect? Stroke, 1993, 24(12): 1828-1832.
    [17] Berger K,Ajani UA,Kase CS, et al. Light-to-moderate alcohol consumption and risk of stroke among U.S. male physicians. N Engl J Med, 1999, 341(21): 1557-1564.
    [18] Iso H, Baba S, Mannami T, et al. Alcohol consumption and risk of stroke among middle-aged men: the JPHC Study Cohort I. Stroke, 2004, 35(5): 1124-1129.
    [19] Mukamal KJ, Ascherio A, Mittleman MA,et al. Alcohol and risk for ischemic stroke in men: the role of drinking patterns and usual beverage. Ann Intern Med. 2005, 142(1): 11-19.
    [20] Kono S, Ikeda M, Tokudome S, et al. Alcohol and mortality: a cohort study of male Japanese physicians.Int J Epidemiol, 1986, 15(4): 527-532.
    [21]Yuan JM, Ross RK, Gao YT, et al. Follow up study of moderate alcohol intake and mortality among middle aged men in Shanghai, China. BMJ, 1997, 314(7073): 18-23.
    [22]张林峰,赵连成,周北凡,等.男性饮酒与缺血性脑卒中发病关系的研究.中华流行病学杂志, 2004, 25(11): 954-957.
    [23] Stampfer MJ, Colditz GA, Willett WC, et al.A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women. N Engl J Med, 1988, 319(5): 267-273.
    [24] MacMahon B. Alcohol consumption and hypertension. Hypertension, 1987, 9: 111-121.
    [25] Albano E. Alcohol, oxidative stress and free radical damage. Proc Nutr Soc, 2006, 65(3): 278-290.
    [26] Gorelick PB. Alcohol and stroke. Curr Concepts Cardiovasc DIS Stroke, 1986, 21: 21-25.
    [27] Altura BM, Gebrewold A, Zhang A, et al. Ethanol induces rapid lipid peroxidation and activation of nuclear factor-kappa B in cerebral vascular smooth muscle: relation to alcohol-induced brain injury in rats. Neurosci Lett, 2002, 325(2): 95-98.
    [28] Hier DB, Foulkes MA, Swiontoniowski M, et al. Stroke recurrence with in two years after ischemic infarction. Stroke, 1991, 22:155-161.
    [29] Gunarathne A, Patel JV, Potluri R, et al.Increased 5-year mortality in the migrant South Asian stroke patients with diabetes mellitus in the United Kingdom: The West Birmingham Stroke Project. Int J Clin Pract, 2008, 62(2):197-201.
    [30] Jeerakathil T, Johnson JA, Simpson SH, et al. Short-term risk for stroke is doubled in persons with newly treated type 2 diabetes compared with persons without diabetes: a population-based cohort study. Stroke, 2007, 38(6): 1739-1743.
    [31] Lin M, Chen Y, Sigal RJ, et al. Stroke associated with diabetes among Canadians: sex and age differences. Neuroepidemiology, 2007, 28(1): 46-49.
    [32] Fox CS, Coady S, Sorlie PD, et al. Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation, 2007, 115(12): 1544-1550.
    [33] Najarian RM, Sullivan LM, Kannel WB, et al. Metabolic syndrome compared with type 2 diabetes mellitus as a risk factor for stroke: the Framingham Offspring Study. Arch Intern Med, 2006, 166(1):106-111.
    [34] Ferretti G, Bacchetti T, Masciangelo S, et al. Lipid peroxidation in stroke patients. Clin Chem Lab Med, 2008, 46(1):113-117
    [35] Sanossian N, Saver JL, Navab M, et al. High-density lipoprotein cholesterol: an emerging target for stroke treatment. Stroke, 2007, 38(3): 1104-1109.
    [36]乔木,王文.血脂调整与脑卒中的预防[J].高血压, 2002 , 10(1):15.
    [37]李莹,陈志红.我国中年人群血清TC/HDL-C比值与缺血性和出血性脑卒中发病危险性[J] .中华神经科杂志, 2005, 38 (5): 305-308.
    [38] Shintani S, Kikuchi S, Hamaguchi H, et al. High Serum liprotein (α) levels are an independent risk factor for Cerebral infarction. Stroke, 1993, 24: 965-969.
    [39] Hubert HB, Feinleib M, McNamara PM, et al. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation, 1983, 67: 968-977.
    [40] Rexrode KM, Hennekens CH, Willett WC, et al. A prospective study of body mass index, weight change, and risk of stroke in women. JAMA, 1997, 277: 1539-1545.
    [41]张红叶,杨军,周北凡,等.我国十组人群脑卒中危险因素的前瞻性研究.中国慢性病预防与控制, 1996, 4: 150-152.
    [42]赵连成,武阳丰,周北凡,等.体质指数与冠心病、脑卒中发病的前瞻性研究.中华心血管病杂志,200230(7):430-433.
    [43]王杰.脑卒中危险因素151例调查.陕西医学杂志, 2005, 34(4): 492-493.
    [44]叶辉,张苏明,洪茂林,等.武汉地区脑卒中相关危险因素研究.中国医师杂志,2006, 8(10):1436-1437.
    [45] Ramas J, Courbon A, Roche F, et al. Effect of training programs and exercise in adult stroke patients: literature review. Ann Readapt Med Phys, 2007, 50(6): 438-444
    [46] Endres M, Gertz K, Lindauer U, et al. Mechanisms of stroke protection by physical activity. Ann Neurol, 2003, 54(5): 582-590
    [47]林水仙.中青年脑卒中患者发病的主要危险因素及自护行为[J].职业与健康,2007,23(7):530-532.
    [48] Hackam DG, Spence JD. Combining multiple approaches for the secondary prevention of vascular events after stroke: a quantitative modeling study. Stroke, 2007, 38(6): 1881-1885.
    [49] Sauerbeck LR. Primary stroke prevention. Am J Nurs, 2006, 106(11): 40-41.
    [50]孙璐,邱勇,王爱军.脑卒中危险因素的探讨及防治[J].中国初级卫生保健, 2004, 18(2): 72-73.
    [1] Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial sm ooth muscle by acetylcholine. Nature, 1980, 288 (5789): 373-376.
    [2] Furchgot RF. The discovery of endothelium-dependent relaxation. Circulation, 1993, 87(Suppl V): V3-V8.
    [3] Plamer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived releasing factor. Nature, 1987, 327 (6122): 524-526.
    [4] Furchgott RF, Cherry PD, Zawadzki JV, et al. Endothelial cells as mediators of vasodilation of arteries.J Cardiovasc Pharmacol,1984,6(Suppl 2):S336-343.
    [5] Nadaud S, Bonnardeaux A, Lathrop M, et al. Gene structure, polymorphism and mapping of the human endothelial nitric oxide synthase gene. Biochem Biophys Res Commun, 1994, 198(3):1027-1033.
    [6] Miyahara K, Kawamoto T, Sase K, et al. Cloning and structural characterization of the human endothelial nitric-oxide-synthase gene. Eur J Biochem, 1994, 223(3): 719-726.
    [7] Nakayama M, Yasue H, Yoshimura M, et al. T-786C mutation in the 59-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation, 1999, 99: 2864–2870.
    [8] Sim AS, Wang J, Wilcken D, et al. MspI polymorphism in the promoter of the human endothelial constitutive NO synthase gene in Australian Caucasian population. Mol Genet Metab, 1998, 65:62.
    [9] Poirier O, Mao C, Mallet C, et al. Polymorphisms of the endothelial nitric oxide synthase gene—No consistent association with myocardial infarction in the ECTIM study. Eur J Clin Invest, 1999, 29: 284–290.
    [10] Marsden PA, Heng HH, Scherer SW, et al. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. JBiol Chem, 1993, 268:17478–17488.
    [11] Tang W, Yang Y, Wang B, et al. Association between a G894T polymorphism of eNOS gene and essential hypertension in Hani and Yi minority groups of China.Arch Med Res, 2008, 39(2): 222-225.
    [12] Khawaja MR, Taj F, Ahmad U, et al. Association of endothelial nitric oxide synthase gene G894T polymorphism with essential hypertension in an adult Pakistani Pathan population.Int J Cardiol, 2007, 116(1):113-115.
    [13] Ghazali DM, Rehman A, Rahman AR.Candidate gene polymorphisms and their association with hypertension in Malays.Clin Chim Acta, 2008, 388(1-2): 46-50.
    [14] Hassan A, Gormley K, O'Sullivan M,et al. Endothelial nitric oxide gene haplotypes and risk of cerebral small-vessel disease.Stroke, 2004, 35(3): 654-659.
    [15]张成,刘焯霖.重视脑血管病的遗传学研究[J].中华神经科杂志, 1999, 32: 262-264.
    [16] Kalaria RN. Advances in molecular genetics and pathology of cerebrovascular disorders. Trends Neurosci, 2001, 24: 392-400.
    [17] Dutra AV, Lin HF, Juo SH, et al. Analysis of the endothelial nitric oxide synthase gene as a modifier of the cerebral response to ischemia.J Stroke Cerebrovasc Dis, 2006, 15(3):128-131.
    [18]李婧,潘玉春,李亦学,等.人类基因组单核苷酸多态性和单体型的分析及应用[J].遗传学学报, 2005, 32(8): 879-889.
    [19] Morris AP. Direct analysis of unphased SNP genotype data in population-based association studies via Bayesian partition modelling of haplotypes.Genet Epidemiol, 2005, 29(2): 91-107.
    [20] Rebbeck TR, Spitz M, Wu X. Assessing the function of genetic variants in candidate gene association studies. Nat Rev Genet, 2004, 5(8): 589-597.
    [21] Quyyumi AA, Dakak N, Andrews NP, et al. Nitric oxide activity in the human coronary circulation: Impact of risk factors for coronary atherosclerosis. J Clin Invest, 1995, 95: 1747–1755.
    [22] Rudic RD, Sessa WC. Nitric oxide in endothelial dysfunction and vascular remodeling: Clinical correlates and experimental. Am J Hum Genet, 1999, 64: 673–677.
    [23] Aizawa T, Wei H, Miano JM, et al. Role of phosphodiesterase 3 in NO/cGMP mediated antiinflammatory effects in vascular smooth muscle cells. Circ Res, 2003, 93(5): 406-413.
    [24] Lloyd-Jones DM, Bloch KD. The vascular biology of nitric oxide and its role in atherogenesis.Annu Rev Med, 1996, 47: 365-375.
    [25] Melichar VO, Behr-Roussel D, Zabel U, et al. Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. Proc Natl Acad Sci U S A, 2004, 101(47):16671-16676.
    [26] Wang XL, Sim AS, Wang MX, et al. Genotype dependent and cigarette specific effects on endothelial nitric oxide synthase gene expression and enzyme activity. FEBS Lett, 2000, 471(1): 45-50.
    [27] Wang XL, Mahaney MC, Sim AS, et al. Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasmaa nitric oxide levels. Arterioscler Thromb Vasc Bio1, 1997, 17(11): 3147-3153.
    [28] Senthil D, Raveendran M, Shen YH, et al. Genotype-dependent expression of endothelial nitric oxide synthase (eNOS) and its regulatory proteins in cultured endothelial cells. DNA Cell Biol, 2005, 24(4): 218-224.
    [29] Song J, Yoon Y, Park KU, et al. Genotype-specific influence on nitric oxide synthase gene expression, protein concentrations, and enzyme activity in cultured human endothelial cells. Clin Chem, 2003 J, 49(6 Pt 1):847-852.
    [30] Yoshimura M, Yasue H, Nakayama M, et al. A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Hum Genet, 1998,103(1): 65-69.
    [31] Wang XL, Sim AS, Badenhop RF, et al. A smoking dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nat Med, 1996, 2(1): 41-45.
    [32] Nakayama M, Yasue H, Yoshimura M, et al. T786C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation, 1999, 99(22): 2864– 2670.
    [33] Leeson CP, Hingorani AD, Mullen MJ, et al. Glu298Asp endothelial nitric oxide synthase gene polymorphism interacts with environmental and dietary factors to influence endothelial function. Circ Res, 2002, 90(11):1153-1158.
    [34] Sofowora G, Dishy V, Xie HG, et al. In-vivo effects of Glu298Asp endothelial nitric oxide synthase polymorphism. Pharmacogenetics, 2001, 11(9): 809-814.
    [35] Schneider MP, Erdmann J, Delles C, et al. Functional gene testing of the Glu298Asp polymorphism of the endothelial NO synthase.J Hypertens, 2000, 18(12):1767-1773.
    [36] Miyamoto Y, Saito Y, Kajiyama N, et al. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension, 1998, 32:3-8.
    [37] Markus HS, Ruigrok Y, Ali N, et al.Endothelial nitric oxide synthase exon 7 polymorphism, ischemic cerebrovascular disease, and carotid atheroma. Stroke, 1998, 29(9):1908-1911.
    [38] Hassan A, Gormley K, O'Sullivan M, et al. Endothelial nitric oxide gene haplotypes and risk of cerebral small-vessel disease. Stroke, 2004, 35(3):654-659.
    [39] Howard TD, Giles WH, Xu J, et al. Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women. Stroke, 2005, 36(9):1848-1851.
    [40] Kerkeni M, Addad F, Chauffert M, et al. Hyperhomocysteinemia, endothelial nitric oxide synthase polymorphism, and risk of coronary artery disease.Clin Chem 2006; 52(1): 53-58.
    [41] Elbaz A, Amarenco P. Genetic susceptibility and ischaemic stroke. Curr Opin Neurol, 1999, 12: 47-55.
    [42]吕浩,雷霆,赵琳.脑梗死与一氧化氮合酶基因多态性的关系[J].中国临床康复, 2004, 8(22): 4469-4471.
    [43] Hibi K, Ishigami T, Tamura K, et al.Endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction. Hypertension, 1998, 32(3):521-526.
    [44] Srivastava K, Narang R, Sreenivas V, et al. Association of eNOS Glu298Asp gene polymorphism with essential hypertension in Asian Indians. Clin Chim Acta, 2008, 387(1-2): 80-83.
    [45] Karvonen J,Kauma H ,Kervinen K,et al. Endothelial nitric oxide synthase gene Glu298Asp polymorphism and blood pressure, left ventricular mass and carotid artery atherosclerosis in a population-based cohort. J Intern Med, 2002, 251(2): 102-110.
    [46] Tsujita Y, Baba S,Yamauchi R, et al. Association analyses between genetic polymorphisms of endothelial nitric oxide synthase gene and hypertension in Japanese: The Suita Study. J Hypertens, 2001, 19(11): 1941-1948.
    [47] Dosenko VE, Zagoriy VY, Haytovich NV, et al. Allelic polymorphism of endothelial NO-synthase gene and its functional manifestations. Acta Biochim Pol, 2006, 53(2): 299-302.
    [48] Hyndman ME, Parsons HG, Verma S, et al. The T-7863C Mutation in endothelial nitric oxide synthase is associated with hypertension. Hypertension, 2002, 39(4): 919-922.
    [49] Nasreen S, Nabika T, Shibata H, et al. T-786C polymorphism in endothelial NO synthase gene affects cerebral circulation in smokers: possible gene environmental interaction. Arterioscler Thromb Vasc Biol, 2002, 22(4): 605-610.
    [50] Colombo MG, Paradossi U, Andreassi MG, et al. Endothelial nitric oxide synthase gene polymorphisms and risk of coronary artery disease. Clin Chem, 2003, 49(3): 389-395.
    [51] Woodward ER, Clifford SC, Astuti D, et al. Familial clear cell renal cell carcinoma (FCRC): clinical features and mutation analysis of the VHL, Met, and CUL2 candidate genes. J Med Genet, 2000, 37(5): 348-353.
    [52]华琦,李东宝,皮林等.内皮型一氧化氮合酶基因T786C多态性与几沙坦降压疗效的关系.高血压杂志, 2004: 12(4): 331-334.
    [53] Ma HX, Xie ZX, Niu YH, Li ZY, Zhou P. Single nucleotide polymorphisms in NOS3 A-922G, T-786C and G894T: a correlation study of the distribution of their allelic combinations with hypertension in Chinese Han population.Yi Chuan 2006;28: 3-10.
    [54] Miyamoto Y, Saito Y, Nakayama M,et al.Replication protein A1 reduces transcription of the endothelial nitric oxide synthase gene containing a -786T-->C mutation associated with coronary spastic angina.Hum Mol Genet, 2000, 9(18): 2629-2637.
    [1] Franco C, Bengtsson BA, Johannsson G. The GH/IGF-1 Axis in Obesity: Physiological and Pathological Aspects. Metab Syndr Relat Disord, 2006, 4(1):51-56.
    [2] Lee J, Menon RK. Molecular defects in the growth hormone-IGF axis. Indian J Pediatr, 2005, 72(2):145-148.
    [3] Blair JC, Savage MO. The GH-IGF-I axis in children with idiopathic short stature. Trends Endocrinol Metab, 2002, 13(8): 325-330.
    [4] Wickman A, Jonsdottir IH, Bergstrom G, et al. GH and IGF-I regulate the expression of endothelial nitric oxide synthase (eNOS) in cardiovascular tissues of hypophysectomized female rats. Eur J Endocrinol, 2002, 147(4): 523-533.
    [5] Kelley KW, Weigent DA, Kooijman R. Protein hormones and immunity.Brain Behav Immun, 2007, 21(4): 384-392.
    [6] Horan M, Newsway V, Yasmin, et al.Genetic variation at the growth hormone (GH1 ) and growth hormone receptor (GHR ) loci as a risk factor for hypertension and stroke. Hum Genet, 2006, 119: 527–540.
    [7] Denti L, Annoni V, Cattadori E, et al. Insulin-like growth factor 1 as a predictor of ischaemic stroke outcome in the elderly. Am J Med, 2004, 117(5):312–317.
    [8]孙玉衡.脑梗死患者血浆胰岛素样生长因子-1的含量变化及其意义[J].中华老年心血管疾病杂志, 2001, 4 (3): 93-95.
    [9] Endres M, Piriz J, Gertz K, et al. Serum insulin-like growth factor I and ischemic brain injury. Brain Res, 2007, 1185:328-335.
    [10] Rizk NN, Myatt-Jones J, Rafols J, et al. Insulin like growth factor-1 (IGF-1) decreases ischemia-reperfusion induced apoptosis and necrosis in diabetic rats.Endocrine, 2007, 31(1):66-71
    [11] Kavurma MM, Figg N, Bennett MR, et al. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment.Biochem J, 2007, 407(1):79-87.
    [12] Wiltrout C, Lang B, Yan Y, et al. Repairing brain after stroke: a review onpost-ischemic neurogenesis.Neurochem Int, 2007, 50(7-8):1028-41.
    [13] Bondanelli M, Ambrosio MR, degli Uberti EC. Pathogenesis and prevalence of hypertension in acromegaly. Pituitary, 2001, 4(4): 239–249.
    [14] Bohlooly-Y M, Olsson B, Gritli-Linde A, et al. Enhanced spontaneous locomotor activity in bovine GH transgenic mice involves peripheral mechanisms. Endocrinology, 2001, 142 (10): 4560–4567.
    [15] Smith JC, Evans LM, Wilkinson I, et al. Effects of GH replacement on endothelial function and large-artery stiffness in GH-deficient adults: a randomized, double-blind, placebo controlled study. Clin Endocrinol, 2002, 56(4): 493–501.
    [16] Bayes-Genis A, Conover CA, Schwartz RS. The insulin-like growth factor axis:a review of atherosclerosis and restenosis. Circ Res, 2000, 86(2):125–130.
    [17] Juul A, Scheike T, Davidsen M, et al. Low serum insulin-like growth factor I is associated with increased risk of ischaemic heart disease: a population-based case-control study. Circulation, 2002, 106(8): 939–944.
    [18] Conti E, Carrozza C, Capoluongo E, et al. Insulin-like growth factor-1 as a vascular protective factor. Circulation, 2004:110 (15): 2260-2265.
    [19] Yan YP, Sailor KA, Vemuganti R, et al. Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur J Neurosci, 2006, 24 (1): 45-54
    [20] Kido Y, Nakae J, Hribal ML, et al. Effects of mutations in the insulin-like growth factor signaling system on embryonic pancreas development and beta-cell compensation to insulin resistance. J Biol Chem, 2002, 277(39): 36740-36747.
    [21] Morimoto LM, Newcomb PA, White E, et al. Variation in plasma insulin-like growth factor-1 and insulin-like growth factor binding protein-3: genetic factors. Cancer Epidemiol Biomarkers rev, 2005, 14(6): 1394-1401.
    [22] Schernhammer ES, Hankinson SE, Hunter DJ, et al. Polymorphic variation at the -202 locus in IGFBP3: Influence on serum levels of insulin-like growth factors, interaction with plasma retinol and vitamin D and breast cancer risk.Int J Cancer,2003, 107(1): 60-64.
    [23] Twickler TB, Bruckert E, Cramer MJ,et al.The growth hormone/insulin-like growth factor axis. What is its role in the atherosclerotic process? Presse Med, 2003, 32(26): 1238-1243.
    [24] Davis ME, Grumbach IM, Fukai T, et al. Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem, 2004, 279(1): 163-168.
    [25] Kawachi S, Takeda N, Sasaki A, et al. Circulating insulin-like growth factor-1 and insulin-like growth factor binding protein-3 are associated with early carotid atherosclerosis.Arterioscler Thromb Vasc Biol. 2005, 25(3): 617-621.
    [26] Horan M, Millar DS, Hedderich J, et al.Human growth hormone 1 (GH1) gene expression is influenced in a complex haplotype-dependent fashion by polymorphic variation in both the proximal promoter and the locus control region. Hum Mutat, 2003, 21: 408–423.
    [27] Hasegawa Y, Fujii K, Yamada M, et al. Identification of novel human GH-1 gene polymorphisms that are associated with growth hormone secretion and height. J Clin Endocrinol Metab, 2000, 85:1290-1295.
    [28] Le Marchand L, Donlon T, Seifried A, et al. Association of a common polymorphism in the human GH1 gene with colorectal neoplasia. J Natl Cancer Inst, 2002, 94:454-60.
    [29] Holly J M, Gunnell DJ, Devey Smith G. Growth hormone, IGF-1 and cancer. Less intervention to avoid cancer? More intervention to prevent cancer. J Endocrinol, 1999, 162(3): 321-330.
    [30] Canzian F, McKay JD, Cleveland RJ, et al. Genetic variation in the growth hormone synthesis pathway in relation to circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3, and breast cancer risk: results from the European prospective investigation into cancer and nutrition study. Cancer Epidemiol Biomarkers Prev, 2005, 14:2316-2325.
    [31]龚建平,高长明, Takezaki Toshiro,等.生长激素1基因多态性和烟酒习惯与结直肠癌易感性的关系[J].中华肿瘤防治杂志, 2006, 13(15):1135-1137.
    [32] Moschos SJ, Mantzoros CS. The role of the IGF system in cancer: from basic to clinical studies and clinical applications. Oncology, 2002, 63: 317–332.
    [33] Wu Y, Zhao W, Zhao J, et al. Identification of androgen response elements in the insulin-like growth factor I upstream promoter.Endocrinology, 2007, 148(6): 2984-2993.
    [34] Garcia J, Ahmadi A, Wonnacott A, et al. Association of insulin-like growth factor-1 receptor polymorphism in dementia.Dement Geriatr Cogn Disord, 2006, 22(5-6): 439-444.
    [35] Burchardt P, Gozdzicka-Jozefiak A, Siminiak T, et al. IGF-1-a new risk factor for coronary atherosclerosis. Kardiol Pol, 2006, 64:1297-1302.
    [36] Yazdanpanah M, Sayed-Tabatabaei FA, Janssen JA, et al.IGF-I gene promoter polymorphism is a predictor of survival after myocardial infarction in patients with type 2 diabetes. Eur J Endocrinol, 2006, 155: 751-756.
    [37] Mustafa A, Lannfelt L, Lilius L, et al. Decreased plasma insulin-like growth factor-I level in familial Alzheimer’s disease patients carrying the Swedish APP 670/671 mutation. Dement Geriatr Cogn Disord, 1999, 10: 446-451.
    [38] Vella A, Bouatia-Naji N, Heude B, et al.Association analysis of the IGF1 gene with childhood growth, IGF-1 concentrations and type 1 diabetes.Diabetologia, 2008, 51(5): 811-815.
    [39] Yakar S, Liu JL, Stannard B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor 1. Proc Natl Acad Sci USA, 1999, 96: 7324–7329.
    [40] Jafferali S, Dumont Y, Sotty F et al. Insulin-like growth factor-I and its receptor in the frontal cortex, hippocampus, and cerebellum of normal human and Alzheimer disease brains. Synapse, 2000, 38: 450-459.
    [41] Rasmussen SK, Lautier C, Hansen L, et al. Studies of the variability of genes encoding the Insulin-like Growth Factor 1 receptor and its ligand in relation to type diabetes mellitus. J Clin Endocrinol Metab, 2000, 85:1606–1610.
    [42] Bonafe M, Barbieri M, Marchegiani F, et al. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab, 2003, 88: 3299–3304.
    [43] Deming SL, Ren Z, Wen W, et al. Genetic variation in IGF1, IGF-1R, IGFALS, and IGFBP3 in breast cancer survival among Chinese women: a report from the Shanghai Breast Cancer Study. Breast Cancer Res Treat, 2007, 104: 309-319.
    [44] Laukkanen O, Pihlajamaki J, Lindstrom J, et al. Common polymorphisms in the genes regulating the early insulin signalling pathway: effects on weight change and the conversion from impaired glucose tolerance to Type 2 diabetes. The Finnish Diabetes Prevention Study. Diabetologia, 2004, 47: 871-877.
    [45] Balogh A, Treszl A, Vannay A, et al. A Prevalent Functional Polymorphism of Insulin-Like Growth Factor System Is Not Associated With Perinatal Complications in Preterm Infants. Pediatrics, 2006, 117(2): 591-592.
    [46] http://www.jmdbase.jp/snp_info.asp?targetkey=imcj-snp&keyword=JMDBase_003286.
    [1] Schmidt S, Schmidt MA, Qin X et al. Linkage analysis with gene-environment interaction: model illustration and performance of ordered subset analysis. Genet Epidemiol, 2006, 30(5): 409-422
    [2] Talmud PJ. Gene-environment interaction and its impact on coronary heart disease risk.Nutr Metab Cardiovasc Dis, 2007, 17(2):148-152
    [3] Kraft P, Yen YC, Stram DO et al. Exploiting gene-environment interaction to detect genetic associations. Hum Hered, 2007, 63(2):111-119.
    [4]Lagercrantz H. Gene-environment interaction is now hype. Acta Paediatr, 2007, 96(9): 1253.
    [5] Szolnoki Z, Melegh B. Gene-gene and gene-environment interplay represent specific susceptibility for different types of ischaemic stroke and leukoaraiosis. Curr Med Chem, 2006, 13(14):1627-1634.
    [6] Lin HJ, Yeh PS, Tsai TC et al. Differential risks of subsequent vascular events for transient ischaemic attack and minor ischaemic stroke. J Clin Neurosci, 2007, 14(1): 17-21.
    [7] Saeed SA, Shad KF, Saleem T, et al. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res, 2007, 182(1): 1-10.
    [8]陈大方,陈常中,主编.医学科研数据的处理与分析方法.北京:北京大学医学出版社, 2006: 92-97.
    [9]向惠云,余松林,孙奕,等.疾病资料多元分析中交互作用指标及可信区间的估计.中国卫生统计, 1999, 16: 130-132.
    [10]宁艳,贾崇奇,刘同涛,等.内皮性一氧化氮合酶基因与年龄、吸烟的交互作用.中国公共卫生, 2006, 22(2): 188-189.
    [11] Rossi GP, Maiolino G, Zanchetta M, et al. The T(-786)C endothelial nitric oxide synthase genotype predicts cardiovascular mortality in high-risk patients. J Am Coll Cardiol, 2006, 48(6): 1166-1174.
    [12] Rossi GP, Cesari M, Zanchetta M, et al. The T-786C endothelial nitric oxide synthase genotype is a novel risk factor for coronary artery disease in Caucasian patients of the GENICA study. J Am Coll Cardiol, 2003, 41(6): 930-937.
    [13] Granath B, Taylor RR, van Bockxmeer FM, et al. Lack of evidence for association between endothelial nitric oxide synthase gene polymorphisms and coronary artery disease in the Australian Caucasian population. J Cardiovasc Risk, 2001, 8(4): 235-241.
    [14] Wang XL, Sim AS, Wang MX, et al. Genotype dependent and cigarette specific effects on endothelial nitric oxide synthase gene expression and enzyme activity. FEBS Lett, 2000, 471(1): 45-50.
    [15] Nasreen S, Nabika T, Shibata H, et al. T-786C polymorphism in endothelial NO synthase gene affects cerebral circulation in smokers: possible gene environmental interaction. Arterioscler Thromb Vasc Biol, 2002, 22(4): 605-610.
    [16] Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update.J Am Coll Cardiol, 2004, 43(10):1731-1737.
    [17]华琦,李东宝,皮林.内皮型一氧化氮合酶基因T-786C多态性与血压变化的关系[J].中国循环杂志, 2005, 20(1): 69-69.
    [18] Colombo MG, Paradossi U, Andreassi MG, et al. Endothelial nitric oxide synthase gene polymorphisms and risk of coronary artery disease. Clin Chem, 2003, 49(3): 389-395.
    [19] Derosa G, Cicero AF, D'Angelo A, et al. Effect of doxazosin on C-reactive protein plasma levels and on nitric oxide in patients with hypertension. J Cardiovasc Pharmacol, 2006, 47(4): 508-512.
    [20] Jeerooburkhan N, Jones LC, Bujac S, et al.Genetic and environmental determinants of plasma nitrogen oxides and risk of ischemic heart disease. Hypertension, 2001, 38(5):1054-1061.
    [21] Sandrim VC, de Syllos RW, Lisboa HR, et al. Influence of eNOS haplotypes on the plasma nitric oxide products concentrations in hypertensive and type 2 diabetes mellitus patients. Nitric Oxide, 2006, 15(4):417-422.
    [22] Chen Y, Huang H, Zhou J, et al. Polymorphism of the endothelial nitric oxide synthase gene is associated with diabetic retinopathy in a cohort of West Africans.Mol Vis, 2007, 13:2142-2147.
    [23] Singhania N, Puri D, Madhu SV, et al. Assessment of oxidative stress and endothelial dysfunction in Asian Indians with type 2 diabetes mellitus with and without macroangiopathy. QJM, 2008, Epub ahead of print.
    [24] Bhatia S, Shukla R, Venkata Madhu S, et al. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin Biochem, 2003, 36(7): 557-562.
    [25] Ballerini MG, Ropelato MG, DomenéHM, et al. Differential impact of simple childhood obesity on the components of the growth hormone-insulin-like growth factor (IGF)-IGF binding proteins axis. J Pediatr Endocrinol Metab, 2004, 17(5): 749-757.
    [26] Nam SY, Lee EJ, Kim KR, et al. Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes Relat Metab Disord, 1997, 21(5): 355-359.
    [27] Saitoh H, Kamoda T, Nakahara S, et al. Serum concentrations of insulin, insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-1 and -3 and growth hormone binding protein in obese children: fasting IGFBP-1 is suppressed in normoinsulinaemic obese children. Clin Endocrinol (Oxf), 1998, 48(4): 487-92.
    [28] Hasegawa Y, Fujii K, Yamada M, et al. Identification of novel human GH21 gene polymorphisms that are associated with growth hormone secretion and height. J Clin Endocrinol Metab, 2000, 85(3): 1290- 1295.
    [29]武光林,张安玉.混杂因素和相互作用对病例对照研究样本大小的影响[J].中国卫生统计, 1990, 7(4): 55-57.
    [30] Sram RJ, Binkova B. Molecular epidemiology studies on occupational and environmental exposure to mutagens and carcinogens, 1997-1999. EnvironHealth Perspect, 2000, 108 Suppl1: 57-70.
    [31] Taioli E, Zocchett C, Garte S. Models of interaction between metabolic genes and environmental exposure in cancer susceptibility. Environ Health Perspect, 1998, 106(2): 67-70.
    [32] Vineis P, Bartsch H, Caporaso N, et al. Genetically based N-acetyltransferase metabolic polymorphism and low-level environmental exposure to carcinogens. Nature, 1994, 369(6476): 154-156.
    [1]曹奕丰,王桂清,黄久仪,等.脑血管血液动力学参数脑卒中预测模型的建立[J].中华流行病学杂志, 2003, 24 (9): 798 -800.
    [2] Nakatou T, Nakata K, Nakamura A, et al. Carotid haemodynamic parameters as risk factors for cerebral infarction in Type 2 diabetic patients. Diabet Med, 2004, 21(3): 223-229.
    [3] Castellanos M, Sobrino T, Millan M et al. Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: a multicenter confirmatory study. Stroke, 2007, 38(6):1855-1859.
    [4] Bisdas S, Hartel M, Cheong LH, et al. Prediction of subsequent hemorrhage in acute ischemic stroke using permeability CT imaging and a distributed parameter tracer kinetic model. J Neuroradiol, 2007, 34(2):101-108.
    [5] Moons KG, Bots ML, Salonen JT, et al. Prediction of stroke in the general population in Europe (EUROSTRKE): is there a role for fibrinogen and electrocardiography ? J Epidemiol Community Health, 2002, 56(Supple1): 130-136.
    [6]卢启秀,刘厚林.颈动脉粥样斑块显示与中风预报[J].现代中西医结合杂志, 2002, 9(2): 98-100.
    [7] Ahmed R, Zuberi BF, Afsar S et al. Stroke scale score and early prediction of outcome after stroke. J Coll Physicians Surg Pak, 2004, 14(5): 267-269.
    [8]韦贵珠,郑军.中风预测394例分析[J].中国蛇志杂志, 1995, 7(3):16-18.
    [9]王桂清,黄久仪.脑血管血流动力学在卒中预防中的应用[J].中华流行病学杂志, 2002, 23(4): 308-311.
    [10] Breiman L, Fridman JH, Olshen RA, et al. Classification and regression trees. In: Venables, Rlpley [M]. eds. Modern applied statistics with S- plus. California: Wadsworth, 1984, 2nd ed.
    [11] Kass G. An exploratory technique for investigating large quantities ofcategaorical data. J Appl Stat, 2002, 29: 119-127.
    [12]石玲,王燕.婴幼儿死亡危险因素的研究——兼论CHAID方法的原理及应用[J].中国卫生统计, 2002, 19(5): 283-285.
    [13] Biggs D, de Ville B, Suen E. A method of choosing multi-way partitions for classification and decision trees. J Appl Stat, 1991, 18: 49-62.
    [14]宇传华主编.第一版。SPSS与统计分析.电子工业出版社, 2007:
    [15] Crocetti E, Mangone L, Scocco GL et al. Prognostic variables and prognostic groups for malignant melanoma. The information from Cox and Classification And Regression Trees analysis: an Italian population-based study. Melanoma Res, 2006, 16(5): 429-433.
    [16] Binongo JN, Taylor A, Hill AN, et al. Use of classification and regression trees in diuresis renography. Acad Radiol, 2007, 14(3): 306-311.
    [17] Marshall RJ. The use of classification and regression trees in clinical epidemiology. J Clin Epidemiol, 2001, 54(6): 603-609
    [18]叶辉,张苏明,洪茂林,等.武汉地区脑卒中相关危险因素研究[J].中国医师杂志,2006, 8(10):1436-1437.
    [1]张海澄,郭继鸿.冠心病的流行病学与一级预防.中国实用内科杂志, 2002, 22 (8): 449 - 451.
    [2]王文化,赵冬,吴桂贤,等.北京市1984~1999年人群脑卒中发病率变化趋势分析.中华流行病学杂志, 2001, 22(4): 269-272.
    [3] Hamsten A, Iselius L, de Faire U, et al. Genetic and cultural inheritance of plasma fibrinogen concentration. Lancet, 1987, 2(8566):988-991.
    [4] Tonk M, Haan J. A review of genetic causes of ischemic and hemorrhagic stroke. J Neurol Sci, 2007, 257(1-2): 273-279.
    [5] Gao X, Yang H, ZhiPing T. Association studies of genetic polymorphism, environmental factors and their interaction in ischemic stroke. Neurosci Lett, 2006,398(3): 172-177.
    [6] Melino G, Bernassola F, Knight RA, et al. S-nitrosylation regulates apoptosis. Nature, 1997, 388: 432-433.
    [7] Plamer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived releasing factor. Nature, 1987, 327(6122): 524-526.
    [8] Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol, 1996, 271:C1424-1437.
    [9] Hausladen A, Stamler JS. Nitrosative stress. Methods Enzymol, 1999, 300: 389–395.
    [10] Denninger JW, Marletta MA. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta, 1999, 1411: 334–350.
    [11] Cary SP, Winger JA, Marletta MA. Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proc Natl Acad Sci USA, 2005, 102(37): 13064-13069.
    [12] Quyyumi AA, Dakak N, Andrews NP, et al. Nitric oxide activity in the human coronary circulation: Impact of risk factors for coronary atherosclerosis. J Clin Invest, 1995, 95:1747–1755.
    [13] Rudic RD, Sessa WC. Nitric oxide in endothelial dysfunction and vascular remodeling: Clinical correlates and experimental. Am J Hum Genet, 1999, 64: 673-677.
    [14] White CR, Brock TA, Chang LY, et al. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci USA, 1994, 91:1044-1048.
    [15] Miller FJ Jr, Gutterman DD, Rios CD, et al. Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res, 1998, 82(12):1298-1305
    [16] Pollock DM, Polakowski JS, Divish BJ, et al. Angiotensin blockade reverses hypertension during nitric oxide synthase inhibition. Hypertension, 1993, 21: 660-665.
    [17] Hodge G, Ye VZ, Duggan KA. Salt-sensitive hypertension resulting from nitric oxide synthase inhibition is associated with loss of regulation of angiotensin II in the rat. Exp Physiol, 2002, 87(1): 1-8
    [18] Kinugawa KI, Kohmoto O, Yao A, et al. Cardiac inducible nitric oxide synthase negatively modulates myocardial function in cultured rat myocytes. Am J Physiol 1997, 272: H35-47.
    [19] Joes EK, Schussheim AE, Longrios D, et al. Regulation of caidiac myocyte contractile function by inducible nitric oxide synthase(iNOS):Mechanisms of contractile depressionby nitric oxide. J Mol Cell Cardio1, 1998, 30:303-315.
    [20] Kanai AJ, Mesaros S, Finkel MS, et al. Beta-adrenergic regulation of constitutive nitric oxide synthase in cardiac myocytes. Am J Physiol, 1997, 273(4Pt1): C1371-1377.
    [21] Terada LS, Repine JE, Piermattei D, et al. Endogenous nitric oxide decreases xanthine oxidase-mediated neutrophil adherence: role of P-selectin. J Appl Physiol, 1997, 82(3): 913-917.
    [22] Aizawa T, Wei H, Miano JM, et al. Role of phosphodiesterase 3 in NO/cGMP mediated antiinflammatory effects in vascular smooth muscle cells. Circ Res 2003, 93(5): 406-413.
    [23] Dhausi G,Mathews C,Kanrk et al.NO increase protein tugrosine phosphatase activity in smooth muscle cells:relationship to antimitogenesis.Am J Physio1 1997; 272:H1 342
    [24] Chen J, Zacharek A, Zhang C, et al. Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J Neurosci, 2005, 25(9): 2366-2375.
    [25] Cui X, Chen J, Zacharek A, et al. Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells, 2007, 25(11): 2777-2785.
    [26] Moro MA, Cárdenas A, Hurtado O, et al. Role of nitric oxide after brainischaemia. Cell Calcium, 2004, 36(3-4): 265-275.
    [27] Messmer UK, Lapetina EG, Brüne B. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is antagonized by protein kinase C- and protein kinase A-activating compounds. Mol Pharmacol, 1995, 47(4): 757-765.
    [28] López-FarréA, Sánchez de Miguel L, et al. Role of nitric oxide in autocrine control of growth and apoptosis of endothelial cells. Am J Physiol, 1997, 272(2 Pt 2): H760-768.
    [29] Yagüe S, Alvarez Arroyo V, Castilla A, et al. Modulation of the effect of vascular endothelial growth factor on endothelial cells by heparin: critical role of nitric oxide-mediated mechanisms. J Nephrol, 2005, 18(3):,234-242.
    [30] Boyle JJ, Weissberg PL, Bennett MR. Human macrophage-induced vascular smooth muscle cell apoptosis requires NO enhancement of Fas/Fas-L interactions. Arterioscler Thromb Vasc Biol, 2002, 22(10):1624-1630.
    [31]孙青芳,赵卫国,卞留贯,等.脑缺血对cNOS, iNOS基因表达的影响.中华神经科杂志,1999, 32(2):119-120.
    [32] Fulton D, Gratton JP, McCabe TJ,et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 1999, 399(6736):597-601.
    [33] Haynes MP, Sinha D, Russell KS, et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res, 2000, 87(8): 677-682.
    [34] Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation, 2000, 101(6): 676-681.
    [35] McCabe TJ, Fulton D, Roman LJ, et al. Enhanced electron flux and reduced calmodulin dissociation may explain "calcium-independent" eNOS activation by phosphorylation. J Biol Chem, 2000, 275(9): 6123-6128.
    [36] Papapetropoulos A, Fulton D, Lin MI, et al. Vanadate is a potent activator of endothelial nitric-oxide synthase: evidence for the role of the serine/threonine kinase Akt and the 90-kDa heat shock protein. Mol Pharmacol, 2004, 65(2):407-415.
    [37] Nadaud S, Bonnardeaux A, Lathrop M, et al. Gene structure, polymorphism and mapping of the human endothelial nitric oxide synthase gene. Biochem Biophys Res Commun, 1994, 198(3):1027-1033.
    [38] Miyahara K, Kawamoto T, Sase K, et al. Cloning and structural characterization of the human endothelial nitric-oxide-synthase gene. Eur J Biochem, 1994, 223(3): 719-726.
    [39] Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion. Hum Mutat, 2000, 15: 7–12.
    [40] Antonarakis SE. Recommendations for a nomenclature system for human gene mutations: Nomenclature Working Group. Hum Mutat, 1998, 11: 1–3.
    [41] Nakayama M, Yasue H, Yoshimura M, et al. T-786C mutation in the 59-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation, 1999, 99: 2864–2870.
    [42] Sim AS, Wang J, Wilcken D, et al. MspI polymorphism in the promoter of the human endothelial constitutive NO synthase gene in Australian Caucasian population. Mol Genet Metab1998; 65:62.
    [43] Poirier O, Mao C, Mallet C, et al. Polymorphisms of the endothelial nitric oxide synthase gene—No consistent association with myocardial infarction in the ECTIM study. Eur J Clin Invest, 1999, 29: 284–290.
    [44] Yoshimura M, Yasue H, Nakayama M, et al. A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Hum Genet, 1998, 103: 65–69.
    [45] Searles CD, Ide L, Davis ME, et al. Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res, 2004, 95(5): 488-495.
    [46] Sanchez de Miguel L, Alonso J, Gonzalez-Fernandez F, et al. Evidence that an endothelial cytosolic protein binds to the 39-untranslated region of endothelial nitric oxide synthase mRNA. J Vasc Res, 1999, 36: 201–208.
    [47] Wang XL, Sim AS, Wang MX, et al. Genotype dependent and cigarette specific effects on endothelial nitric oxide synthase gene expression and enzyme activity. FEBS Lett, 2000, 471(1): 45-50.
    [48] Wang XL, Mahaney MC, Sim AS, et al. Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasmaa nitric oxide levels. Arterioscler Thromb Vasc Bio1, 1997, 17(11): 3147-3153.
    [49] Li R, Lyn D, Lapu-Bula R, Oduwole A, et al. Relation of endothelial nitric oxide synthase gene to plasma nitric oxide level, endothelial function, and blood pressure in African Americans. Am J Hypertens, 2004, 17(7): 560-567.
    [50] Tsukada T, Yokoyama K, Arai T, et al. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans.Biochem Biophys Res Commun, 1998, 245(1): 190-193.
    [51] Marsden PA, Heng HH, Scherer SW, et al. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem, 1993, 268: 17478–17488.
    [52] Miyamoto Y, Saito Y, Kajiyama N, et al. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension, 1998, 32: 3–8.
    [53] Markus HS, Ruigrok Y, Ali N, et al.Endothelial nitric oxide synthase exon 7 polymorphism, ischemic cerebrovascular disease, and carotid atheroma.Stroke 1998;29(9):1908-1911.
    [54] Hassan A, Gormley K, O'Sullivan M, et al. Endothelial nitric oxide gene haplotypes and risk of cerebral small-vessel disease. Stroke, 2004, 35(3): 654-659.
    [55] Kerkeni M, Addad F, Chauffert M, et al. Hyperhomocysteinemia, endothelial nitric oxide synthase polymorphism, and risk of coronary artery disease. Clin Chem, 2006, 52(1): 53-58.
    [56] Hibi K, Ishigami T, Tamura K, et al. Endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction. Hypertension,1998, 32(3): 521-526.
    [57] Jaramillo PC, Mu?oz M A, Lanas M C, et al. Endothelial nitric oxide synthase G894T gene polymorphism in Chilean subjects with coronary artery disease and controls. Clin Chim Acta, 2006, 371(1-2): 102-106.
    [58] Liyou N, Simons L, Friedlander Y, et al. Coronary artery disease is not associated with the E298-->D variant of the constitutive, endothelial nitric oxide synthase gene. Clin Genet, 1998, 54(6): 528-529.
    [59] Wang CL, Hsu LA, Ko YS, et al. Lack of association between the Glu298Asp variant of the endothelial nitric oxide synthase gene and the risk of coronary artery disease among Taiwanese. J Formos Med Assoc, 2001,100 (11): 736-740.
    [60] Elbaz A, Amarenco P. Genetic susceptibility and ischaemic stroke. Curr Opin Neurol, 1999, 12: 47-55.
    [61] Howard TD, Giles WH, Xu J, et al. Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women. Stroke, 2005, 36(9):1848-1851.
    [62] Srivastava K, Narang R, Sreenivas V, et al. Association of eNOS Glu298Asp gene polymorphism with essential hypertension in Asian Indians. Clin Chim Acta, 2008, 387(1-2): 80-83.
    [63] Dosenko VE, Zagoriy VY, Haytovich NV, et al. Allelic polymorphism of endothelial NO-synthase gene and its functional manifestations. Acta Biochim Pol, 2006, 53(2): 299-302.
    [64] Hyndman ME, Parsons HG, Verma S, et al. The T-7863C Mutation in endothelial nitric oxide synthase is associated with hypertension. Hypertension, 2002, 39(4): 919-922.
    [65] Miyamoto Y, Saito Y, Nakayama M, et al. Replication protein A1 reduces transcription of the endothelial nitric oxide synthase gene containing a-786T-C mutation associated with coronary spastic angina. Hum Mol Genet 2000; 9:2629-37
    [66] Nasreen S, Nabika T, Shibata H, et al. T-786C polymorphism in endothelial NO synthase gene affects cerebral circulation in smokers: possible geneenvironmental interaction. Arterioscler Thromb Vasc Biol, 2002, 22(4): 605-610.
    [67] Yoshimura T, Hisatomi A, Kajihara S, et al. The relationship between insulin resistance and polymorphisms of the endothelial nitric oxide synthase gene in patients with coronary artery disease. J Atheroscler Thromb, 2003, 10(1): 43-47.
    [68] Erbs S, Baither Y, Linke A, et al. Promoter but not exon 7 polymorphism of endothelial nitric oxide synthase affects training-induced correction of endothelial dysfunction. Arterioscler Thromb Vasc Biol, 2003, 23(10): 1814-1819.
    [69]华琦,李东宝,皮林,等.内皮型一氧化氮合酶基因T786C多态性与几沙坦降压疗效的关系.高血压杂志, 2004, 12(4): 331-334.
    [70] Deng F, Hu Q, Tang B, et al. Endothelial nitric oxide synthase gene intron 4, 27 bp repeat polymorphism and essential hypertension in the Kazakh Chinese population. Acta Biochim Biophys Sin (Shanghai), 2007, 39(5): 311-316.
    [71] Akar N, Akar E, Cin S, et al. Endothelial nitric oxide synthase intron 4, 27 bp repeat polymorphism in Turkish patients with deep vein thrombosis and cerebrovascular accidents. Thromb Res, 1999, 97: 63-64.
    [72] Song J, Yoon Y, Park KU, et al. Genotype-specific influence on nitric oxide synthase gene expression, protein concentrations, and enzyme activity in cultured human endothelial cells. Clin Chem, 2003, 49(6 Pt 1): 847-852.
    [73] Yahashi Y, Kario K, Shimada K, et al. The 27-bp repeat polymorphism in intron 4 of the endothelial cell nitric oxide synthase gene and ischemic stroke in a Japanese population. Blood Coagul Fibrinolysis, 1998, 9(5): 405-409.
    [74] Hou L, Osei-Hyiaman D, Yu H, et al. Association of a 27-bp repeat polymorphism in ecNOS gene with ischemic stroke in Chinese patients. Neurology, 2001, 56(4): 490-496.
    [75] Pulkkinen A, Viitanen L, Kareinen A, et al. Intron 4 polymorphism of the endothelial nitric oxide synthase gene is associated with elevated blood pressure in type 2 diabetic patients with coronary heart disease. J Mol Med, 2000, 78(7): 372-379.
    [76] Gouni-Berthold I, Giannakidou E, Müller-Wieland D, et al. Peroxisome proliferator-activated receptor-gamma2 Pro12Ala and endothelial nitric oxide synthase-4a/b gene polymorphisms are not associated with hypertension in diabetes mellitus type 2. Hypertens, 2005, 23(2): 301-308.
    [77] Yoon Y, Song J , Hong SH , et al. Plasma nitric oxide concentrations and nitric oxide synthase gene polymorphisms in coronary artery disease. Clin Chem , 2000, 46 (10): 1626-1630.
    [78] Suzuki S, Yoshimura M, Nakayama M, et al. A novel genetic marker for coronary spasm in women from a genome-wide single nucleotide polymorphism analysis. Pharmacogenet Genomics, 2007, 17(11): 919-930.
    [79] Fatini C, Gensini F, Sticchi E, et al. High prevalence of polymorphisms of angiotensin-converting enzyme (I/D) and eNOS (Glu298A sp) in patients with systemic sclerosis. Am J Med, 2002, 112: 540-544.
    [80] Szolnoki Z, Havasi V, Bene J, et al. Endothelial nitric oxide synthase gene interactions and the risk of ischaemic stroke. Acta Neurol Scand, 2005, 111(1): 29-33.
    [81] Cable DG, O’Brien T, Kullo IJ, et al. Expression and function of a recombinant endothelial nitric oxide synthase gene in porcine coronary arteries. Cardiovasc Res, 1997, 35(3): 553-559.
    [82] Cooke GE, Doshi A, Binkley PF. Endothelial nitric oxide synthase gene: prospects for treatment of heart disease. Pharmacogenomics, 2007, 8(12): 1723-1734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700