G-CSF及Thy1.1干细胞对大鼠动脉球囊损伤后内膜增生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的(1)探讨简便、快捷建立大鼠颈动脉球囊损伤模型的方法;(2)探讨低分子肝素与普通肝素在建立大鼠颈动脉球囊损伤模型中的效果及差异;(3)探讨G-CSF对大鼠颈总动脉球囊损伤后内膜增生及再内皮化的影响;(4)评价G-CSF预处理及后处理两种不同处理方式对损伤血管的影响;(5)探讨大鼠Thy-1.1+干细胞局部移植对大鼠颈总动脉球囊损伤后内膜增生的影响,评价干细胞移植对再狭窄的作用;(6)探讨G-CSF与大鼠Thy-1.1+干细胞局部移植联合应用对损伤后血管内皮的修复是否具有协同作用。
     方法实验分三阶段进行。第一阶段:取60只雌性SD大鼠随机分为2组,每组30只,低分子肝素组及普通肝素组,对比低分子肝素与普通肝素在建立大鼠颈动脉球囊损伤模型中的效果。第二阶段:取90只雌性SD大鼠随机分为3组,每组30只,即G-CSF预处理组,于颈总动脉球囊前7天开始皮下注射G-CSF,连续7d后行颈总动脉球囊导管损伤;G-CSF后处理组,于颈总动脉球囊后即刻开始皮下注射G-CSF,连续7d;对照组只行颈总动脉球囊损伤。3组各于术后即刻、3d、7d、14d、21d、28d取损伤血管段,病理组织学检查观察细胞增殖情况,并通过RT-PCR方法分析内皮型一氧化氮合酶(eNOS mRNA)的表达情况,、评价G-CSF预处理及后处理两种不同处理方式对损伤血管的影响;第三阶段:取30只4~6周龄雄性SD大鼠提取骨髓Thy-1.1+干细胞;另取90只雌性SD大鼠随机分为3组,每组30只,即干细胞移植组:于颈总动脉球囊损伤后即刻将约5x 106 Thy-1.1+干细胞注入至损伤血管局部;联合移植组:于颈总动脉球囊前7d开始皮下注射G-CSF,连续7d后行颈总动脉球囊导管损伤,于颈总动脉球囊损伤后即刻将约5x 106 Thy-1.1+干细胞注入至损伤血管局部;对照组:颈总动脉球囊损伤后予等剂量生理盐水局部注入。各组分别于术后即刻、3d、7d、14d、28d取损伤血管段,行病理组织学方法观察细胞增殖情况,原位杂交方法观察移植细胞的定植、分化情况,并通过RT-PCR方法分析内皮型一氧化氮合酶(eNOS mRNA)的表达情况。
     结果(1)采用Medtronic球囊导管损伤使大鼠颈总动脉内膜剥脱和新生内膜增生,管腔狭窄。术后7d内膜开始增生,14~28d增生最明显,低分子肝素组建模成功率高于普通肝素组,低分子肝素组血栓形成几率低于普通肝素组。低分子肝素组手术成功率93.3%,血栓形成率3.4 %,死亡率3.3%;(2) G-CSF预处理组内膜面积低于G-CSF后处理组及对照组,I/M比值在3组中最低;G-CSF预处理组eNOS mRNA表达明显高于对照组,有统计学差异(P<0.05),G-CSF后处理组与对照组比较eNOS mRNA表达无明显差异;(3)原位杂交发现,干细胞移植组及联合移植组损伤血管壁中均可发现异体细胞;(4)干细胞移植组及联合移植组新生内膜面积、I/M比值比对照组明显减少,eNOSmRNA表达明显高于对照组,联合移植组较干细胞移植组新生内膜面积亦明显减少,二者比较有统计学差异;(5)联合移植组I/M比值低于G-CSF预处理组,eNOS mRNA表达高于G-CSF预处理组。
     结论(1)在建立大鼠颈动脉球囊损伤模型过程中,采用低分子肝素可提高建模效率,提高建模成功率;(2)G-CSF预处理可促进大鼠颈总动脉球囊损伤后再内皮化的进程,抑制内膜增生过程,对球囊损伤具有修复作用,可预防血管成形术术后再狭窄。G-CSF预处理较后处理有效;(3)Thy-1.1+干细胞局部移植可促进损伤血管的修复;(4)G-CSF与大鼠Thy-1.1+干细胞联合移植可促进大鼠颈总动脉球囊损伤后再内皮化的进程,抑制内膜增生过程,二者具有协同作用;(5)G-CSF及Thy-1.1+干细胞移植促进损伤血管的修复与损伤血管内皮功能重建,eNOSmRNA的表达上调有关。
Objective (1) To look for a convenient, quick method of making rat carotid arterial injury model with PTCA balloon, and to investigate the character of intimal thickening by pathology; (2) To compare the effect of low-molecular-weight heparin(LMWH) and unfractionated heparin(UFH) in the process of making rat carotid arterial injury model with Medtronic balloon; (3) To explore the influence of G-CSF on the injured carotid artery ; (4) To evaluate the effect of different treatment of G-CSF on endothelial hyperplasia after saccule injury of rat common carotid artery and the effect on injured blood vessel; (5) To study the effect of Thy-1.1+ stem cells transplant on neointimal, and evaluate the influence of stem cells transplant on restenosis; (6) To study whether recombination G-CSF can cooperate with Thy-1.1+ stem cells to repair the injured artery.
     Methods The study included three stages. First: 60 female SD rats were equally divided into 2 groups: LMWH group and UFH group, to compare the effect of LMWH and UFH in the process of making carotid arterial injury model. Second: Another 90 female SD rats were randomly divided into 3 groups (30 each group), namely G-CSF pretreated group, G-CSF posttreated group and control group. The G-CSF pretreated group rats were injected daily with 30μg G-CSF /kg for 7 days before carotid artery injury, the G-CSF posttreated group rats were injected daily with 30μg G-CSF /kg for 7 days shortly after carotid artery injury, and the control group was merely underwent carotid artery injury. The animals were killed shortly after injury and 3, 7, 14, 21, 28 days after balloon denudation, and the samples of carotid artery were harvested for pathology and RT-PCR for eNOS mRNA, to evaluate the effect of different treatment of G-CSF on endothelial hyperplasia. Third: 30 male 4-6w old SD rats were killed for Thy-1.1+ stem cells. Another 90 female SD rats were randomized divided into stem cells transplant group, combination transplant group and control group with 30 rats in every group. The stem cells transplant group rats were injected about 5x106 Thy-1.1+ stem cells into the injured artery after carotid artery injury; the combination transplant group rats were injected daily with 30μg G-CSF /kg for 7 days before carotid artery injury and were injected about 5x106 Thy-1.1+ stem cells into the injured artery shortly after the artery injury, and the control group was underwent carotid artery injury and injected the same amount of saline. The animals were killed shortly after injury and 3, 7, 14, 21, 28 days after balloon denudation, and the samples of carotid artery were harvested for pathology, RT-PCR and in situ hybridzation(ISH) to detect the transplanted cells in the injured artery.
     Results (1) Irregular intimal thickening and stenosis of arterial cavity were observed since 1 week after balloon denudation. At 2 to 4 week, the intimal thickening reached peak. More rats in LMWH group accomplished carotid arterial injury model than UFH group, and the thrombosis is more frequently in UFH group. (2) It was found that the intimal thickness was thinner in G-CSF pretreated group, and eNOS mRNA expression was higher in G-CSF pretreated Group compared with that in control Group(P <0.05), I/M ratio was the smallest in G-CSF pretreated Group. (3) ISH can trace the transplanted cells in the rats of the stem cells transplant group and combination stem cells transplant group. (4) The intimal thickness was thinner in stem cells transplant group and combination stem cells transplant group, and eNOS mRNA expression was much higher compared with those in control group. I/M ratio was lower in combination stem cells transplant group compared with that in stem cells transplant group. (5) The intimal thickness was lower in combination stem cells transplant group compared with that in G-CSF pretreated Group, and eNOS mRNA expression was higher in combination stem cells transplant group.
     Conclusions (1) LMWH is more effective in the process of making carotid arterial injury model than UFH. (2) G-CSF pretreatment accelerated reendothelialization and decreased neointimal formation following vascular injury, which suggest that exogenous G-CSF may be a feasible treatment to prevent restenosis after PCI. The pretreatment G-CSF is more effective than posttreatment G-CSF.(3)Thy-1.1+ stem cells transplant can promote the repairing of the injured artery. (4) G-CSF combined with Thy-1.1+ stem cells transplant can accelerate reendothelialization and decrease neointimal formation following vascular injury, G-CSF can cooperate with Thy-1.1+ stem cells to repair the injured artery. (5) The repairing of G-CSF and Thy-1.1+ is associated with upregulation of eNOSmRNA expression.
引文
1. Simper D, Stalboerger PG, Panetta CJ, et al. Smooth muscle progenitor cells in human blood. Circulation. 2002; 106(10): 1199-1204.
    2. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilized with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomized clinical trial. Lancet. 2004; 363(9411): 751-756.
    3. Lapidot T, Petit I. Current understanding of stem cell mobilization : the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002; 30(9): 973-981.
    4. Bussolino F, Wang JM, Defilipp P, et al. Granulocyte and granulocyte-macrophage- colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature. 1989; 337(6206): 471-473.
    5. Asahara T, Murohara T, Sullivan, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997 ; 275(5302) :964-967.
    6. Mathur A, Martin JF. Stem cells and repair of the heart. Lancet. 2004; 364(9429): 183-92.
    7. Takano H, Ohtsuka M, Akazawa H, et al. Pleiotropic Effects of Cytokines on Acute Myocardial Infarction: G-CSF as A Novel Therapy for Acute Myocardial Infarction. Curr Pharm Des. 2003; 9(14):1121-1127.
    8. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction the BOOST randomized clinical tril. Lancet. 2004; 364(9429): 141-148.
    9. Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation.2005;112(9 Suppl):I178-183.
    10. Vulliet PR, Greeley M, Halloran SM, et al. Intra-coronary arterial injection ofmesenchymal stromal cells and microinfarction in dogs. Lancet. 2004;363 (9411):783-784.
    11. Lowe HC, Oesterle SN, Khachigian LM. Coronary in -stent restenosis: Current status and future strategies. J Am Coll Cardiol. 2002; 39 (2) : 183 - 193.
    12. Yoon YS, Lee N, Scadova H. Myocardial regeneration with bone - marrow - derived stem cells . Biol Cell. 2005; 97 (4) : 253 - 263.
    13.薛丽京,周序珑。内皮干/祖细胞的研究进展。中国病理生理杂志,2004,20 (5) : 904– 908.
    14.张威,周莉,金惠铭等。用CD133免疫磁珠分离脐血内皮祖细胞的实验研究。中国病理生理杂志,2005,21 (9) : 1675– 1680。
    15. WernerN, Priller J , Laufs U, et al. Bone marrow - derived p rogenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3 - hydroxy - 3 -methylglutaryl coenzyme a reducatase inhibition. Arterioscler Thromb Vasc Biol. 2002; 22 (10) : 1567 - 1572.
    16. Goldschneider I, Gordon LK, Morris RJ .Demonstration of Thy-1 antigen on pluripotent hemopoietic stem cells in the rat. J Exp Med. 1978; 148(5):1351.
    17. Sai-nan Shu, Lai Wei, Jiang-hua Wang, et al. Hepatic differentiation capability of rat bone marrow-derived mesenchymal stem cells and hematopoietic stem cells. World J Gastroenterol. 2004; 10(19):2818-2822.
    18.崔连群,王晓军,刘继东等。粒细胞集落刺激因子对大鼠颈动脉球囊损伤后再内皮化和内膜增生过程的影响,中国病理生理杂志,2006,22(9):1702-1707。
    19. Kong D, Melo LG, Gnecchi M, et al. Cytokine Induced Mobilization of Circulating Endothelial Progenitor Cells Enhances Repairof Injure Arteries. Circulation. 2004; 110(14):2039-2046.
    20. Jorgensen E, Ripa RS, Helqvist S, et al. In-stent neo-intimal hyperplasia after stem cell mobilization by granulocyte-colony stimulating factor Preliminary intracoronary ultrasound results from a double-blind randomized placebo-controlled study of patients treated with percutaneous coronary intervention for ST-elevation myocardial infarction (STEMMI Trial). Int J Cardiol. 2006; 111(1): 174-177.
    21. Collet JP, Montalescot G, Lison L, et al. Percutaneous coronary intervention aftersubcutaneous enoxaparin pretreatment in patients with unstable angina pectoris. Circulation. 2001 ; 103(5):658-663.
    22. Antman EM, Morrow DA, McCabe CH, et al. Enoxaparin versus unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction. N Engl J Med. 2006; 354(14):1477-1488.
    23. SYNERGY Executive Committee. The SYNERGY trial: study design and rationale.Am Heart J. 2002 ; 143(6): 952-960.
    24. Behrendt D, Ganz P. Endothelial function :from vascular biology to clinical applications. Am J Cardiol. 2002 ; 90(10C) :40L-48L.
    25. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998; 92(2): 362-367.
    26. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999; 85(3): 221-228.
    27. Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation 2003; 108(21): 2710-2715.
    28. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Thetapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomized controlled trial. Lancet. 2002; 360(9331): 427-435.
    29. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001; 410(6829): 701-705.
    30. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial factor(165) gene transfer augments circulating endothelial progenitor cell in human subjects. Circ Res. 2000; 86(12): 1198-1202.
    31. Harada M, Qin Y, Takano H, et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med. 2005; 11(13): 305-311.
    32. Gulati R, Jevremovic D, Peterson TE, et al. Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation 2003; 108(12):1520-1526.
    33. Takamiya M, Okigaki M, Jin D, et al. Granulocyte colony-stimulating factor-mobilized circulating c-Kit+/Flk-1+ progenitor cells regenerate endothelium and inhibit neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol. 2006; 26(4):751-757.
    34. Yoshioka T, Takahashi M, Shiba Y, et al. Granulocyte colony-stimulating factor (G-CSF) accelerates reendothelialization and reduces neointimal formation after vascular injury in mice.Cardiovasc Res. 2006; 70(1): 61-69.
    35. Bussolino F, Ziche M, Wang JM, et al. In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 1991; 87(3): 986-995.
    36. Bussolino F, Wang JM, Turrini F, et al. Stimulation of the Na+/H+ exchanger in human endothelial cells activated by granulocyte and granulocyte-macrophage- colony-stimulating factor. Evidence for a role in proliferation and migration. J Biol Chem. 1989; 264(31): 18284-18287.
    37. Cho HJ, Kim TY, Cho HJ, et al. The effect of stem cell mobilization by granulocytes-colony stimulating factor on neointimal hyperplasia after vascular injury. J Am Coll Cardiol. 2006 18; 48(2):366-374.
    38. Libby P. Inflammation in atherosclerosis. Nature. 2002 ; 420(6917) :868-874.
    39. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiologyand in the pathophysiology of vascular disorders. Blood. 1998 ; 91(10) :3527-3561.
    40. Schwartz RS. Pathophysioloy of restenosis : interaction of thrombosis, hyperplasia and/or remodeling. Am J Cardiol. 1998 ; 81(7A) :14E-17E.
    41. Pauleto P, Sartore S, Pessina AC. Smooth muscle proliferation and differentiation in neointima formation and vascular restenisis. Clin Sci. 1994 ; 87(5) :467-479.
    42. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of exvivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001 ;103(5) : 634-637.
    43. Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endotheliium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res. 2003 ;93(10) :980-989.
    44. Werner N, Junk S, Laufs U, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res. 2003,93(2) :E17-24.
    45. Gulati R, Jevremovic D, Peterson TE, et al. Autologou culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation. 2003;108(12): 1520-1526.
    1. Mathur A, Martin JF. Stem cells and repair of the heart. Lancet. 2004; 364:183-92.
    2. Takano H, Ohtsuka M, Akazawa H, et al. Pleiotropic Effects of Cytokines on Acute Myocardial Infarction: G-CSF as A Novel Therapy for Acute Myocardial Infarction. Current Pharmaceutical Design. 2003; 9(4): 1121-1127.
    3. Strauer BE, Komowski R. Stem cell therapy in perspectives. Circulation. 2003; 107: 929-934.
    4. Kocher A, Schuster M, Szabolcs M, et al. Neovasculation of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis reduces remodeling and improves cardiac function. Nat Med.2001; 7(4): 430-436
    5. Kocher AA,Schuster MD,Szbolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis,reduces remodeling and improves cardiac function. Nat Med.2002; 7(4):430- 436.
    6. Bussolino F, Ziche M, Wang JM, et al. In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 1991; 87(3): 986-995.
    7. Wexler SA, Donaldson C, Denning-Kendall P, et al. Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003; 121(2): 368-74.
    8. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infracted heart, improving function and survival. Proc Natl Acad Sci USA. 2001; 98(18): 10344-10349.
    9. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilized with granulicyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction:the MAGIC cell randomized clinical trial. Lancet. 2004; 363(9411): 751-756.
    10. Petzsch M IH, Kleine HD, Schmidt H, et al. No restenosis after G-CSF in acute myocardial infarction: insights from FIRSTLINE-AMI (Front-Integrated Revascular- ization and Stem Cell Liberation in Evolving Acute Myocardial Infarction byGranulocyte Colony-Stimulating Factor). Circulation. 2004; 110(suppl III):238.
    11. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature.2004; 428(6983): 664-8.
    12. Kuhlmann MT, Kirchhof P, Klocke R, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. JEM,2006; 203(1): 87-97.
    13. Peter Kanellakis, Nicholas J. Slater, et al. Granulocyte colony- stimulating factor and stem cell factor improve endogenous repair after myocardial infarction. Cardiovascular Research. 2006; 70(1):117-125.
    14. Toru Yoshioka, Masafumi Takahashi, Yuji Shiba, et al. Granulocyte colony-stimulating factor (G-CSF) accelerates reendothelialization and reduces neointimal formation after vascular injury in mice. Cardiovascular Research. 2006; 70(1): 61-69.
    15. Minatoguchi S, Takemura G, Chen XH, et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony stimulating factor treatment. Circulation. 2004; 109(21): 2572-80.
    16. Deling Kong, Luis G. Melo, Massimiliano Gnecchi, et al. Cytokine- Induced Mobilization of Circulating Endothelial Progenitor Cells Enhances Repair of Injured Arteries. Circulation. 2004; 110(14): 2039-2046.
    17. Boyle AJ, Whitbourn R, Schlicht S, et al. Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: A 12-month follow-up. Int J Cardiol. 2006; 109(1):21-27.
    18. Jorgensen E, Ripa RS, Helqvist S, et al. In-stent neo-intimal hyperplasia after stem cell mobilization by granulocyte-colony stimulating factor Preliminary intracoronary ultrasound results from a double-blind randomized placebo-controlled study of patients treated with percutaneous coronary intervention for ST-elevation myocardial infarction (STEMMI Trial). Int J Cardiol. 2006; 111(1):174-7.
    19. Valgimigli M, Rigolin GM, Cittanti C, et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilizati-on in humans: clinical and angiographic safety profile. Eur Heart J. 2005; 26(18):1838-1845.
    20. Kuethe F, Figulla HR, Herzau M, et al. Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J. 2005; 150(1): 115.
    21. Ince H, Petzsch M, Kleine HD, et al. Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocytecolony- stimulating factor (FIRSTLINE-AMI). Circulation. 2005; 112(20): 3097-3106.
    22. Seiler C, Pohl T, Wustmann K, et al. Promotion of collateral growth by granulocyte- macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation, 2001; 104(17): 2012-2017.
    23. Ripa RS, Jorgensen E, Wang YZ. Stem Cell Mobilization Induced by Subcutaneous Granulocyte-Colony Stimulating Factor to Improve Cardiac Regeneration After Acute ST-Elevation Myocardial Infarction. Circulation. 2006; 113(16):1983-92.
    24. Zohlnhofer D, Ott I, Mehilli J. Stem cell mobilization by granulocyte colony- stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA. 2006; 295(9):1003-10.
    25. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003; 362(9385): 697-703.
    26. Kocher AA, Schutser MD, Bonaros N, et al. Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC chemokines. J Mol Cell Cardiol. 2006 ;40(4):455-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700