广枣抗心肌缺血再灌注损伤的物质基础及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性心脏病是严重危害人类健康和生命的一类疾病,是导致人类死亡的主要病因之一。心肌缺血再灌注损伤是缺血性心脏病常见的病理生理过程,同时也是加重心肌损伤的重要原因。导致再灌注损伤的机制是多方面的,主要包括细胞内离子累积(细胞内钙超载、钠离子增多,以及再灌注过程中pH降低);线粒体膜电位降低(线粒体通透性转换孔mPTP及线粒体钙转运体MCU的改变);氧自由基大爆发(黄嘌呤氧化酶的生成,mPTP的开放,ROS诱导的ROS释放);内皮细胞功能受损(粘附分子表达,血管舒张功能障碍);凋亡和自噬;血小板聚集和微栓塞形成等。如何减轻心肌缺血再灌注损伤已经成为近年来心血管疾病研究领域的热点问题。从中药中寻找疗效确切,不良反应小的天然药物已成为当前缺血性心脏病治疗的迫切需要。
     广枣为漆树科植物南酸枣Choerospondias axillaris (Roxb.) Burtt et Hill的干燥成熟果实,味甘、酸,性平,具有行气活血,养心安神的功效,用于气滞血瘀,胸痹作痛,心悸气短,心神不安等。广枣是蒙医治疗心血管疾病的主药,疗效确切。广枣中含有黄酮、有机酸、酚酸、鞣质及多糖等成分。目前有关广枣的药效物质研究主要集中在黄酮,认为黄酮具有保护缺血心肌、抑制血小板聚集,增强免疫等多种药理活性。然而,文献研究表明广枣果皮中含有丰富的有机酸类成分,高达5.22%-8.13%。本实验室化学研究也证实广枣药材中除了含有小量的黄酮之外,还含有大量的有机酸和酚酸类成分,并采用MRM总离子流图确认了7个化合物,分别是柠檬酸、苹果酸、原儿茶酸、没食子酸、原儿茶醛、鞣花酸和槲皮素。在广枣水提物中,柠檬酸含量约为15%,原儿茶酸约为0.13%,没食子酸约为0.08%,而槲皮素约为0.0003%。中药有机酸类成分具有广泛的药理作用,如抗炎症反应、抑制血小板聚集、抗血栓、抗氧化及诱导肿瘤细胞凋亡等,其中抗炎症反应、抑制血小板聚集、抗血栓及抗氧化的药理作用提示了小分子有机酸可能在广枣治疗缺血性心脏病过程中发挥了不可忽视的作用。因而,我们推测广枣治疗缺血性心脏病的药效物质可能不仅仅是广枣黄酮,还可能是小分子有机酸类及酚酸类成分,值得进一步深入探讨。
     迄今,心肌缺血再灌注损伤的机制已经取得了很大的研究进展,但仍然没有完全得以阐明。最新研究发现心脏成纤维细胞的免疫激活与炎症分泌可能在心肌缺血再灌注损伤过程中扮演了重要角色。研究认为心脏成纤维细胞在心肌缺血再灌注损伤中扮演“哨兵”的角色,心肌缺血再灌注时心脏成纤维细胞ROS产生以及钾离子外流,心脏成纤维细胞炎症体激活,诱导了早期炎症介导者IL-1p产生,早期炎症反应刺激趋化因子释放,招募单核细胞、巨噬细胞及中性粒细胞至缺血心肌组织,加重了心肌缺血再灌注损伤。因此,我们认为干预调节心脏成纤维细胞的炎症分泌可以降低心肌缺血再灌注损伤。
     本实验室前期研究发现广枣有机酸部位具有显著的抗心肌缺血再灌注损伤作用。本研究采用体外筛选结合体内验证的方法探讨广枣抗心肌缺血再灌注损伤的药效物质,并从心肌细胞的凋亡和心脏成纤维细胞的炎症旁分泌角度阐述其作用机制。主要内容包括如下:
     (1)采用新生大鼠乳鼠原代心肌细胞培养体系,考察广枣粗提物及所含成分有机酸(柠檬酸、L-苹果酸、琥珀酸、酒石酸、熊果酸和香草酸)、酚酸(原儿茶酸和没食子酸)、黄酮(槲皮素和山柰酚)对原代心肌细胞活力的影响。在此基础上,建立新生大鼠乳鼠原代心肌细胞缺氧复氧损伤模型,筛选广枣抗心肌细胞缺氧复氧损伤的具体成分,初步明确广枣抗心肌缺血再灌注损伤的药效物质。
     (2)建立大鼠心肌缺血再灌注损伤模型,考察广枣粗提物、广枣模拟总有机酸、广枣模拟总酚酸以及所选取的4种代表成分(有机酸部分:柠檬酸和L-苹果酸;酚酸部分:原儿茶酸;黄酮部分:槲皮素)对心肌缺血再灌注损伤的影响,进一步明确广枣抗心肌缺血再灌注损伤的药效物质。
     (3)从心肌细胞凋亡的角度,采用流式细胞术分析心肌细胞的凋亡百分数,western blot考察cleaved-caspase3及p-Akt(Ser473)蛋白表达的改变,探讨广枣小分子有机酸、酚酸、黄酮对心肌缺血再灌注损伤的干预机制。
     (4)建立心脏成纤维细胞炎症分泌模型,明确广枣成分对心脏成纤维细胞活力的影响,通过检测细胞增殖,ELISA测定炎症因子TNF-α、IL-1β、IL-6及IL-18,明确广枣干预心脏成纤维细胞炎症分泌的药效物质,并进一步考察其对p-NF-kB P65(S276)和p-Akt (S473)蛋白表达的影响,明确其作用机制。研究结果简述如下:
     (1)①广枣粗提物、广枣有机酸部分(模拟总有机酸、柠檬酸、L-苹果酸、琥珀酸和酒石酸)、黄酮部分(槲皮素和山柰酚)对心肌细胞缺氧复氧损伤均具有直接的保护作用;②广枣酚酸部分(原儿茶酸和没食子酸)不能抑制原代心肌细胞缺氧复氧损伤所致的LDH漏出,未见明显的心肌细胞保护作用。
     (2)广枣粗提物589.2mg·kg-1、广枣模拟总有机酸500mg·kg-1、广枣模拟总酚酸500mg·kg-1、有机酸部分代表成分柠檬酸250、500mg·kg-1、L-苹果酸250.500mg·kg-1,酚酸部分代表成分原儿茶酸250.500mg·kg-1以及黄酮部分代表成分槲皮素20、40mg·kg-1均可显著降低心肌缺血再灌注所致的心肌梗死。研究证实了除黄酮之外,小分子有机酸及酚酸也是广枣抗心肌缺血再灌注损伤的重要药效物质。
     (3)①流式研究结果表明广枣有机酸部分(柠檬酸、L-苹果酸和琥珀酸),酚酸部分(原儿茶酸)、黄酮部分(槲皮素)可以抑制缺氧复氧损伤所致的心肌细胞凋亡百分数升高,其中有机酸部分的酒石酸成分有降低趋势,但无统计学差异;②广枣有机酸部分(柠檬酸、L-苹果酸、琥珀酸和酒石酸),酚酸部分(原儿茶酸)、黄酮部分(槲皮素)均可显著降低缺氧复氧所致的cleaved-caspase3蛋白表达增加,与模型组相比,有显著性差异;(3)广枣有机酸部分(柠檬酸、L-苹果酸、琥珀酸和酒石酸),酚酸部分(原儿茶酸)、黄酮部分(槲皮素)均可显著增加缺氧复氧所致的Akt (Ser473)磷酸化激活,p-Akt蛋白表达显著增加,与模型组相比较,有显著性差异。实验证实广枣有机酸、酚酸和黄酮均可以通过激活Akt的磷酸化而抑制心肌细胞的凋亡,对心肌细胞缺氧复氧损伤有直接保护作用。
     (4) LPS100ng·mL-1作用3h而后ATP5mmol·L-1作用36h可刺激心脏成纤维细胞分泌炎症因子TNF-α、IL-1β、IL-6及IL-18,广枣黄酮部分(槲皮素和山柰酚)可通过抑制Akt/NF-kB信号途径的激活而抑制心脏成纤维细胞分泌上述炎症因子,减轻心肌缺血再灌注过程中的炎症反应,对心肌缺血再灌注损伤具有间接保护作用。
     综上所述,本研究的主要发现和结论是:①广枣抗心肌缺血再灌注损伤的药效物质基础是小分子有机酸、酚酸和黄酮;②广枣有机酸、酚酸和黄酮三大类成分均可通过激活Akt的磷酸化、抑制心肌细胞的凋亡,对心肌缺血再灌注损伤具有直接保护作用;③广枣黄酮(槲皮素和山柰酚)可通过抑制Akt/NF-kB信号途径的激活而抑制心脏成纤维细胞分泌TNF-α、IL-1β、IL-6及IL-18等炎症因子,减轻心肌缺血再灌注过程中的旁分泌炎症因子的释放,对心肌缺血再灌注损伤具有间接保护作用。
Ischemic heart disease is a leading cause of mortality of the clinical cardiovascular diseases and remains a major public health threat worldwide. Myocardial damage in ischemic heart disease is likely due to ischemia/reperfusion injury. Myocardial ischemia/reperfusion can lead to cardiomyocyte loss by several pathological mechanisms, which contain intracellular ion accumulation, reduction in mitochondrial membrane potential, free radical formation, inflammatory response and endothelial dysfunction, apoptosis, necrosis and autophagy, platelet aggregation and microembolization, and so forth. Therefore, a pharmacologic approach to ischemia/reperfusion injury remains a longstanding challenge in medicine.
     Fructus Choerospondiatis, a widely known Mongolian herb derived from the dried mature fruit of Choerospondias axillaris (Roxb.) Burtt et Hill, with efficacy of "activating vital energy and blood circulation" and "nourishing heart for tranquilization", according to traditional Chinese medicine theory, has been used extensively as a remedy for ischemic heart disease and achieved good clinical efficacy. It consists of several ingredients, including organic acids, phenolic acids, flavonoids, tannins and polysaccharides, etc. The flavonoids of Fructus Choerospondiatis have the effects of protecting the ischemic myocardium, inhibition of platelet aggregation and enhancing immune activities, and so forth. Previous studies have been focused on flavonoids, which were always considered to be the main active constituents responsible for the pharmacological actions of Fructus Choerospondiatis. However, recent pharmaceutical chemistry studies showed that the content of total flavonoids (mainly quercetin) in Fructus Choerospondiatis was very low and only accounted for0.0003%of its water-soluable extracts, whereas the content of total organic acids was in significant amounts, up to8.13%. And citric acid and L-malic acid are two main organic acids of Fructus Choerospondiatis, the content of which accounted for26.36%and22.95%of total organic acids, respectively.
     Organic acids, which are also widely distributed in fresh fruits, vegetables and spices besides Chinese herbs, were always considered to be weak in activity and were usually discarded in the extraction process. Therefore, they have been long-neglected and their pharmacological actions have not been sufficiently studied. Recent research indicated that some organic acids have various pharmacological effects, including anti-inflammatory response, anti-platelet aggregation, anti-oxidant, and reducing cell apoptosis, and so on. It implies that organic acids may have protective effect on myocardial ischemia/reperfusion injury. Therefore, we hypothesize that the effective substances for Fructus Choerospondiatis against ischemic heart disease may not only flavonoids, but also organic acids and phenolic acids. It deserves to be explored in-depth.
     To date, the research of the mechanism of myocardial ischemia/reperfusion injury has been made great progress, but still not completely elucidated. Recent study revealed that immune activation and inflammation secretion of cardiac fibroblasts might play an important role in the process of myocardial ischemia/reperfusion injury. Cardiac fibroblasts play an important role as "sentinel" cells in the process of myocardial ischemia/reperfusion injury. ROS production and potassium efflux lead to the activation of inflammasomes and the secretion of IL-1β in cardiac fibroblasts. Such proinflammatory response stimulates chemotactic factor to release and recruits monocytes, macrophages and neutrophils to the ischemic myocardium tissue, which eventually aggravate myocardial ischemia/reperfusion injury. Therefore, we speculate that regulating the secretion of inflammatory cytokine in cardiac fibroblasts can prevent myocardial ischemia/reperfusion injury.
     Previous study in our lab revealed that organic acid part had protective effect on myocardial ischemia/reperfusion injury. Therefore, in the present study, we investigated the material basis of Fructus Choerospondiatis in in vitro primary neonatal rat cardiomyocyte model of hypoxia/reoxygenation and in vivo rat model of myocardial ischemia/reperfusion, and explored the possible mechanisms involved.
     The main contents are as follows:
     (1) Using primary neonatal rat cardiomyocyte culture system, the effects of Fructus Choerospondiatis crude extract and its ingredients contained, such as organic acids (citric acid, L-malic acid, succinic acid, tartaric acid, ursolic acid and vanillic acid), phenolic acids (protocatechuie acid and gallic acid), flavonoids (quercetin and kaempferol) were investigated on neonatal rat cardiomyocyte viability. On this basis, the material basis of Fructus Choerospondiatis was screened in in vitro primary neonatal rat cardiomyocyte model of hypoxia/reoxygenation.
     (2) Using rat model of myocardial ischemia/reperfusion injury, the cardioprotective effects of Fructus Choerospondiatis crude extract, simulated total organic acid, simulated total phenolic acid, as well as four representative ingredients (organic acids part:citric acid and L-malic acid; phenolic acids part:protocatechuie acid; flavonoids part:quercetin) were explored. The material basis of Fructus Choerospondiatis on myocardial ischemia/reperfusion injury were determined.
     (3) To explore the mechanism of organic acids, phenolic acids and flavonoids on myocardial ischemia/reperfusion injury, the apoptosis percentage of cardiomyocytes was analysed by flow cytometry. The protein expressions of cleaved-caspase3and p-Akt (Ser473) were investigated by western blot.
     (4) The model of inflammatory cytokine secretion in cardiac fibroblasts was established. The effects of the ingredients of Fructus Choerospondiatis were investigated on cardiac fibroblasts viability. To further explore the material basis of Fructus Choerospondiatis on cardiac fibroblasts inflammation secretion, The inflammatory cytokine levels of TNF-α, IL-1β, IL-6and IL-18were determined, and phospho-NF-kB P65(S276), NF-kB P65, phospho-Akt (Ser473) and Akt were investigated by western blot.
     The results are summarized as follows:
     (1)①The Fructus Choerospondiatis crude extract and its ingredients contained, such as organic acids (simulated total organic acid, citric acid, L-malic acid, succinic acid and tartaric acid), flavonoids (quercetin and kaempferol) had significant protective effects on primary neonatal rat cardiomyocytes hypoxia/reoxygenation injury.②The phenolic acids (protocatechuic acid and gallic acid) had no obvious effects in decreasing LDH leakage of cardiomyocytes induced by hypoxia/reoxygenation injury.
     (2) The crude extract of Fructus Choerospondiatis589.2mg·kg-1, simulated total organic acids500mg·kg-1, simulated total phenolic acids500mg·kg-1, representative ingredients citric acid250,500mg·kg-1, L-malic acid250,500mg·kg-1, protocatechuic acid250,500mg·kg-1and quercetin20,40mg·kg-1significantly reduced myocardial infarction induced by myocardial ischemia/reperfusion injury. Based on these findings, we concluded that both organic acids and phenolic acids may also be the major material basis of Fructus Choerospondiatis responsible for its cardioprotective effect, but not only flavonoids.
     (3)①The flow cytometry results showed that hypoxia/reoxygenation injury significantly increased the number of apoptotic cardiomyocytes. while treatment with organic acids part (citric acid, L-malic acid and succinic acid), phenolic acids part (protocatechuic acid) and flavonoids part (quercetin) significantly reduced the number of apoptotic cells, but tartaric acid not obvious.②Cleaved caspase-3was significantly upregulated by hypoxia/reoxygenation-induced cardiomyocytes injury, while significantly downregulated by treatment with organic acids part (citric acid, L-malic acid, succinic acid and tartaric acid), phenolic acids part (protocatechuic acid) and flavonoids part (quercetin) relative to the model control group.③Our results revealed that organic acids part (citric acid, L-malic acid, succinic acid, and tartaric acid), phenolic acids part (protocatechuic acid) and flavonoids part (quercetin) significantly increased the activation of Akt (Ser473) and upregulated the expression of phosphorylated Akt. All data demonstrated that organic acids, phenolic acids and flavonoids had direct protective effects on primary neonatal rat cardiomyocytes hypoxia/reoxygenation injury through the activation of Akt (Scr473) and inhibition of cardiomyocytes apoptosis.
     (4) After LPS100ng·mL-13hand ATP5mmol·L-136h, the inflammatory cytokine levels of TNF-α, IL-1β, IL-6and IL-18secreted by cardiac fibroblasts were significantly increased, which were significantly decreased by the flavonoids part (quercetin and kaempferol) of Fructus Choerspondialis by inhibiting the activation of Akt/NF-kB signaling pathway. These results demonstrated that flavonoids (quercetin and kaempferol) had indirect protective effects on myocardial ischemia/reperfusion injury by inhibition inflammatory cytokines secretion from cardiac fibroblasts.
     In summary, we demonstrated that organic acids and phenolic acids may also be the material basis for Fructus Chocrospondiatis responsible for its cardioprotective effect, but not only flavonoids. Our results revealed that organic acids, phenolic acids and flavonoids had direct protective effects on myocardial ischemia/reperfusion injury through the activation of Akt (Ser473) and inhibition of cardiomyocytes apoptosis, and flavonoids also had indirect protective effects on myocardial ischemia/reperfusion injury by inhibition inflammatory cytokines secretion from cardiac fibroblasts.
引文
[1]国家药典委员会.中国药典(一部)[s].北京:化学工业出社,2005:29.
    [2J李长伟,崔承彬,蔡 兵.南酸枣的研究进展[J].解放军药学学报,2008,24(3):231-233.
    [3]江苏植物研究所编.江苏植物志[S1.南京:江苏科学技术出版社,1982:431-432.
    [4]樊海燕,赛音,宋一亭.蒙药广枣的研究进展[J].中草药,2004,35(3):353-354.
    [5]顾维彰,顾凯.蒙药广枣及其制剂的研究概况[J].中国民族医药杂志,1995,1(1): 47-48.
    [6]王乃利,倪艳,陈英杰,等.广枣活血有效成分的研究[J].沈阳药学院学报,1987,4(3):203.
    [7]徐晔,刘涛.蒙药广枣酚酸类化学成分的研究[J].北方药学,2012,9(7):2-3.
    [8]连珠,张承忠,李冲,等.蒙药广枣化学成分的研究[J].中药材,2003,26(1):23.
    [9]李国玉.广枣抗心肌缺血有效部位的化学成分研究[D].黑龙江中医药大学硕士学位论文,2003.
    [10]王玉兰,吕永镇,楼朱雄,等.南酸枣树皮中d-儿茶素的分离与鉴定[J].中草药,1985,16(2):45.
    [11]李长伟,崔承彬,蔡兵,等.南酸枣的芳香族化合物及其体外抗肿瘤活性[J].中国药物化学杂志,2005,15(3):138.
    [12]Khabir M, Khatoon F, Ansari WH, Kaempferol-5-O-arabinoside-A new flavonol glycoside from the leaves of Choerospondias axillaries [J]. Indian Journal of Chemistry,1987,26B:85.
    [13]曲功霖.中药广枣和红景天的药效物质基础研究.中国中医科学院博士后研究工作报告.2012:107.
    [14]刘晓庚,陈优生.南酸枣果实的成分分析[J].中国野生植物资源,2000,19(3):35.
    [15]刘晓庚,陈优生,丁悦琴.南酸枣核仁油成分研究[J].粮食和油脂,2001,10:32-33.
    [16]卜朝志.南酸枣果实营养成分分析及其加工利用[J].分析与加工,1992,1:32-36.
    [17]柳克铃,温俊达,金幼蓝.广枣的氨基酸和无机元素分析[J].湖南中医杂志,1992,6:48.
    [18]赵玉英,海平,孙占才,等.蒙药广枣中多糖的组分分析和糖含量测定[J].药物分析杂志,2001,21(6):440-442.
    [19]赵玉英.蒙药广枣中多糖的提取及无机元素的含量测定[J].西北民族学院学报(自然科学版),1999,20(33):56-58.
    [20]樊海燕,宋一亭,赛因.广枣中一种胸腺嘧啶脱氧尿苷的分离与鉴定[J].中国天然药物,2005,3(2):83-84.
    [21]唐丽,韩华,杨炳友,等.广枣对大鼠急性心肌缺血保护作用的研究[J].中医药学报,2003,31(3):50-51.
    [22]戴汉云,方云祥,肖州生.广枣浸膏对犬心脏血流动力学及心肌缺血的影响[J].中药药理与临床,1996,3:25-28.
    [23]张琪,杨玉梅,刘凤鸣,等.广枣总黄酮对大鼠缺血心肌组织蛋白质表达的影响[J].中国药理学通报,2006,22(11):1344-1348.
    [24]刘冠男,陈国权,赵明.广枣总黄酮对豚鼠心室肌细胞动作电位的作用研究[J].当代医学,2009,15(4):38-39.
    [25]杨玉梅,覃建民,徐继辉,等.广枣总黄酮对大鼠心室肌细胞ICa、Ito和细胞[Ca2+]i的影响[J].中国药理学通报,2004,20(7):784-788.
    [26]杨玉梅,应康,王风华,等.广枣三种粗提物的抗心律失常作用比较[J].包头医学院学报,2008,24(1):4-7.
    [27]郭英,贝玉祥,王雪梅,等.广枣提取物体外清除活性氧自由基及抗氧化作用研究[J].微量元素与健康研究,2008,25(5):22-24.
    [28]杨明霞,孙福祥,乌日娜,等.广枣三味颗粒剂清除氧自由基实验研究[J].时珍国医国药,2001,12(2):108.
    [29]孙福祥,何瑞玲,乌日娜,等.广枣三味颗粒剂清除·OH的实验研究[J].中国卫生检验杂志,2001,11(5):544.
    [30]石山,胡元亮,吴秀英,等.广枣总黄酮对血小板聚集功能和血液动力学的影响[J].内蒙古药学,1985,4(2):14-16.
    [31]吴秀英,刘殿英,钮巧玲,等.蒙药复方广枣注射液对血小板聚集性和血栓形成的影响[J].中国民族医药杂志,2000,6(增刊):66-67.
    [32]侯慧英,秦荣,王玉珍.蒙药广枣总黄酮对小鼠体液免疫功能影响的研究[J].中国民族医药杂志,1998,4(4):38-39.
    [33]郭 华,姚文兵,王 华,等.广枣及其提取组分对神经细胞的保护作用[J].中国生化药物杂志,2007,28(2):87-90.
    [34]毕超荣,蒋祥贵.野生植物1227种抗菌作用的筛选[J].中草药,1981,12(5):30.
    [35]刘小玲,梁彬,张勇,等.广枣总黄酮体外抗CVB3病毒活性[J].中国医院药学杂志,2007,27(12):1637-1641.
    [36]李长伟,崔承彬,蔡 兵,等.南酸枣的芳香族化合物及其体外抗肿瘤活性[J].中国药物化学杂志,2005,15(3):138.
    [37]李长伟,崔承彬,蔡 兵,等.南酸枣的黄烷类成分及其体外抗肿瘤与抗缺氧活性[J].中国药物化学杂志,2009,19(1):48-51.
    [38]李卓明.复方广枣胶囊治疗冠心病心绞痛临床研究[J].中西医结合心脑血管杂志,2009,7(12):1387-1388.
    [39]韩班布拉.蒙药广枣七味散为主治疗稳定型心绞痛55例临床观察[J].中国民族民间医药,2010,19:8.
    [40]孟青春.蒙药广枣七味丸治疗稳定劳力型心绞痛[J].中国民族医药杂志,2012,5:1.
    [41]吴启忠,刘 法,白 桦,等.蒙药广枣蝎蜈丸治疗冠心病心绞痛30例临床观察[J].中国民族医药杂志,2001,7(4):11.
    [1]江纪武.植物药有效成分手册[M].北京:人民卫生出版社,1986:3.
    [2]Dharmappa KK, Kumar RV, Nataraju A, et al. Anti-inflammatory activity of oleanolic acid by inhibition of secretory phospholopase A2 [J]. Planta Medica,2009,75 (3):211.
    [3]Takada K, Nakane T, Masuda K, et al. Ursolic acid and oleanolic acid, members of pentacyclic triterpenoid acids, suppress TNF-α-induced E-selectin expression by cultured umbilical vein endothelial cells [J]. Phytomedicine,2010,17:1114.
    [4]刘岱琳,王欣,王乃利.酚酸类化合物体外抗血小板聚集活性探讨[J].沈阳药科大学学报,1998,15(1):25.
    [5]王乃利,倪艳,陈英杰,等.广枣活血有效成分的研究[J].沈阳药学院学报,1987,4(3):203.
    [6]樊宏伟,李英斌,孙敏,等.金银花中有机酸类成分抗血栓作用研究[J].中药药理与临床,2007,23(3):34.
    [7]Wu JL, Wu QP, Yang XF, et al. L-malate reverses oxidative stress and antioxidative defenses in liver and heart of aged rats [J]. Physiological Research,2008,57:261.
    [8]吴军林,吴清平,张菊梅.L-苹果酸抗氧化作用机理研究[J].食品科技,2010,35(2):194.
    [9]Wang X, Ye XL, Liu R, et al. Antioxidant activities of oleanolic acid in vitro:possible role of Nrf2 and MAP kinases [J]. Chemico-Biological Interactions,2010,184:328.
    [10]Vari R, D'Archivio M, Filesi C, et al. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages [J]. Journal of Nutritional Biochemistry,2011,22:409.
    [11]Punithavathi VR, Prince PS, Kumar R, et al. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats [J]. European Journal of Pharmacology,2011,650:465.
    [12]谢晓艳,刘洪涛,张吉,等.没食子酸体外抗氧化作用研究[J].重庆医科大学学报,2011,36(3):319.
    [13]叶锦霞,梁日欣,王岚.氧化应激与心血管疾病的关系研究进展[J].中国实验方剂学杂志,2008,14(10):68.
    [14]Achiwa Y, Hasegawa K, Udagawa Y. Regulation of the phosphatidylinositol 3-kinase-Akt and the mitogen-activated protein kinase pathways by ursolic acid in human endometrial cancer cells [J]. Bioscience, Biotechnology and Biochemistry,2007,71 (1):31.
    [15]Tang C, Lu YH, Xie JH, et al. Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis [J]. Anticancer Drugs, 2009,20 (4):249.
    [16]李娜,金敬红,姜洪芳,等.宣木瓜总有机酸的纯化及镇痛抗炎作用[J].中国实验方剂学杂志,2011,17(1):113.
    [17]Sugino T, Aoyagi S, Shirai T, et al. Effects of citric acid and L-carnitine on physical fatigue [J]. Journal of Clinical Biochemistry and Nutrition,2007,41:224.
    [18]赵保胜,桂海水,朱寅荻,等.阿魏化学成分、药理作用及毒性研究进展[J].中国实验方剂学杂志,2011,17(17):279.
    [19]Ge F, Zeng FL, Liu SG, et al. In vitro synergistic interactions of oleanolic acid in combination with isoniazid, rifampicin or ethambutol against mycobacterium tuberculosis [J]. Journal of Medical Microbiology,2010,59:567.
    [20]郑企琨,谭光强,潭丽娟,等.心脏基础液的药效学实验学研究[J].中国医院药学杂志,1995,15(3):101.
    [21]Hansi Priscilla D, Mainzen Prince PS. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats [J]. Chemico-Biological Interactions, 2009,179:118.
    [22]于艳华, 卜丽梅,赵丽红,等.没食子酸对缺血再灌注损伤大鼠的保护作用[J].中国老年学杂志,2010,30(20):2935-2937.
    [23]Liobikas J, Majiene D, Trumbeckaite S, et al. Uncoupling and antioxidant effects of ursolic acid in isolated rat heart mitochondria [J]. Journal of Natural Products,2011,74:1640.
    [24]Gonza'lez-Loyola A, Barba I. Mitochondrial metabolism revisited:a route to cardioprotection [J]. Cardiovascular Research,2010,88:209.
    [25]Miura T, Tanno M, Sato T. Mitochondrial kinase signalling pathways in myocardial protection from ischemia/reperfusion-induced necrosis [J]. Cardiovascular Research,2010,88 (I):7.
    [26]Ma ZC, Hong Q, Wang YG, et al. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways [J]. Biological and Pharmaceutical Bulletin,2010,33 (1):29.
    [27]Ma ZC, Hong Q, Wang YG, et al. Ferulic acid attenuates adhesion molecule expression in Gamma-radiated human umbilical vascular endothelial cells [J]. Biological and Pharmaceutical Bulletin,2010,33(5):752.
    [28]Steinkamp-Fenske K, Bollinger L, Voller N, et al. Ursolic acid from the Chinese herb Danshen (Salvia miltiorrhiza L.) upregulates eNOS and downregulates Nox4 expression in human endothelial cells [J]. Atherosclerosis,2007,195:104.
    [29]Feng J, Zhang P, Chen XX, et al. PI3K and ERK/Nrf2 pathways are involved in oleanolic acid-induced heme oxygenase-1 expression in rat vascular smooth muscle cells [J]. Journal of Cellular Biochemistry,2011,112:1524.
    [30]Mayte P, Virginia C, Cristina G, et al. Ursolic acid inhibits neointima formation in the rat carotid artery injury model [J]. Atherosclerosis,2006,184:53.
    [31]Atsushi S, Naoki Y, Hiroko J, et al. Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats [J]. Journal of Hypertension,2006,24 (6): 1065.
    [32]Watanabe T, Arai Y, Mitsui Y, et al. The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension [J]. Clinical and Experimental Hypertension,2006,28 (5):439.
    [33]张兰桐,任雷鸣,温进坤.山茱萸提取液抗心律失常有效部位的研究[J].中草药,2001,32(11):1004.
    [34]刘晓庚,陈优生.南酸枣果实的成分分析[J].中国野生植物资源,2000,19(3):35.
    [1]Aslan T.Turer, Joseph A. Hill. Pathogenesis of myocardial ischemia/reperfusion injury and rationale for therapy [J]. American Journal of Cardiology,2010,106 (3):360-368.
    [2]Thompson-Gorman SL, Zweier JL. Evaluation of the role of xanthine oxidase in myocardial reperfusion injury [J]. The Journal of Biological Chemistry,1990,265 (12):6656-6663.
    [3]Xia Y, Zweier JL. Substrate control of free radical generation from xanthine oxidase in the postischemic heart [J]. The Journal of Biological Chemistry,1995,270 (32):18797-18803.
    [4]Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Regulation and pharmacology of the mitochondrial permeability transition pore [J]. Cardiovascular Research, 2009,83 (2):213-225.
    [5]Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release:a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes [J]. The Journal of Experimental Medicine,2000,192 (7):1001-1014.
    [6]沈继龙,朱克军,李增男,等.丹参多酚酸盐预处理对大鼠心肌缺血再灌注损伤的防护作用[J].临床心血管病杂志,2012,28(9):707-710.
    [7]付晓春,陈建军,王舰平.黄连解毒汤对心肌缺血再灌注心率失常的保护作用[J].实用医学杂志,2012,28(23):3874-3876.
    [8]Bond JM, Herman B, Lemasters JJ. Protection by acidotic pH against anoxia/reoxygenation injury to rat neonatal cardiac myocytes [J]. Biochemical Biophysical Research Communications, 1991,179:798-803.
    [9]Murphy CJ, Oudit GY. Iron-overload cardiomyopathy:pathophysiology, diagnosis and treatment [J]. Journal of Cardiac Failure,2010,16(11):888-900.
    [10]马丽娟,张雨薇,张文杰,等.大豆异黄酮对过氧化氢诱导大鼠心肌细胞内钙超载的影响[J].中国老年学杂志,2010,30:2313-2315.
    [11]刘如秀,谭双,李敏,等.强心复脉颗粒药物血清对模拟缺血再灌注致钙超载窦房结细胞的影响[J].中国中西医结合杂志,2008,28(9):828-831.
    [12]张薇薇,马康华.心肌缺血再灌注损伤的研究进展[J].现代诊断与治疗,2012,23(4):250-252.
    [13]陈存芳,赵凤琴.能量代谢障碍与心肌缺血再灌注损伤[J].临床误诊误治,2009,22(2): 77-79.
    [14]Gustafsson AB, Gottlieb R.A. Heart mitochondria:gates of life and death [J]. Cardiovascular research,2008,77 (2):334-343.
    [15]Hausenloy D, Wynne A, Duehen M, et al. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection [J]. Circulation,2004,109 (14): 1714-1717.
    [16]杨一萍,骆媛, 范礼斌,等.线粒体在心肌缺血再灌注损伤中的作用研究进展[J].中国药理学与毒理学杂志,2012,26(4):577-579.
    [17]冉珂,万晶晶,杨东妹,等.银杏叶提取物延迟预处理对大鼠心肌缺血再灌注时细胞色素c氧化酶表达的影响[J].中南大学学报(医学版),2012,37(1):89-93.
    [18]王小燕,景桂霞.黄芪预处理对家兔心肌缺血再灌注后心肌线粒体结构及功能的影响[J].西安交通大学学报(医学版),2008,29(3):330-332.
    [19]Oerlemans MI, Koudstaal S, Chamuleau SA, et al. Targeting cell death in the reperfused heart:pharmacological approaches for cardioprotection [J]. International Journal of Cardiology, 2013,165 (3):410-422.
    [20]Fujio Y, Nguyen T, Wencker D. et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart [J]. Circulation,2000,101 (6): 660-667.
    [21]Hamacher-Brady A, Brady NR, Gottlieb RA, et al. The interplay between prodeath and prosurvival signaling pathways in myocardial ischemia/reperfusion injury:apoptosis meets autophagy [J]. Cardiovascular Drugs and Therapy,2006,20 (6):445-462.
    [22]孙宇,陈建光.细胞凋亡与心肌缺血再灌注损伤研究[J].北华大学学报(自然科学版),2009,10(1):34-43.
    [23]Jin HJ, Xie XL, Ye JM, et al. TanshinonellA and Cryptotanshinone Protect against Hypoxia-Induced Mitochondrial Apoptosis in H9c2 Cells [J]. PLos one,2013,8 (1):e51720.
    [24]Pan H, Li D, Fang F, et al. Salvianolic acid A demonstrates cardioprotective effects in rat hearts and cardiomyocytes after ischemia/reperfusion injury [J]. Journal of Cardiovascular Pharmacology,2011,58 (5):535-542.
    [25]李欣志,刘建勋.缺血/再灌注过程中心肌细胞自噬研究进展[J].中国药理学通报,2008,24(6):704-707.
    [26]Dong Y, Undyala VV, Gottlieb RA, et al. Autophagy:definition, molecular machinery, and potential role in myocardial ischemia-reperfusion injury [J]. Journal of Cardiovascular Pharmacology and Therapeutics,2010,15 (3):220-230.
    [27]Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion:roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy [J]. Circulation research,2007,100 (6):914-922.
    [28]解欣然,张蕾,尚菊菊,等.参元丹含药血清对缺氧复氧心肌细胞自噬的影响[J].中华中医药杂志(原中国医药学报),2012,27(3):559-562.
    [29]李丽静,刘佳,李玉梅,等.参附汤血中移行成分对缺氧复氧心肌细胞凋亡和自噬的影响[J].中医药临床杂志,2012,24(8):773-774.
    [30]Akhlaghi M, Bandy B. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury [J]. Journal of Molecular and Cellular Cardiology,2009,46 (3): 309-317.
    [31]Xu YQ, Huo YQ, Toufektsian MC, et al. Activated platelets contribute importantly to myocardial reperfusion injury [J]. American Journal of Physiology-Heart and Circulatory Physiology,2006,290 (2):692-699.
    [32]王靓,龙子江,施惠,等.心康注射液对心肌缺血模型大鼠PGI2/TXA2平衡和血小板聚集的影响[J].中成药,2011,33(4):581-582.
    [33]陈铎葆,张雷,孙静文,等.红花水提物对心肌缺血大鼠的血液流变学与血小板聚集影响的实验研究[J].中国中医药科技,2004,11(5):290-291.
    [34]谭江宁,韩玲.心肌缺血-再灌注过程中的炎症反应[J].心血管病研究进展,2004,增刊:62-66.
    [35]Zhang HM, Tang DL, Tong L, et al. Gualou Xiebai Banxia Decoction inhibits NF-kappa B-dependent inflammation in myocardial ischemia/reperfusion injury in rats [J]. Journal of Traditional Chinese Medicine,2011,31 (4):338-343.
    [36]Liang Z, Liu LF, Yao TM, et al. Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/reperfusion injury in rats [J]. Journal of Geriatric Cardiology,2012,9: 130-136.
    [37]Grundmann S, Bode C, Moser M. Inflammasome activation in reperfusion injury:friendly fire on myocardial infarction? [J]. Circulation,2011,123:574-576.
    [38]Takahashi M. Role of the inflammasome in myocardial infarction [J]. Trends in Cardiovascular Medicine,2011,21:37-41.
    [39]Kawaguchi M, Takahashi M, Hata T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury [J]. Circulation,2011,123:594-604.
    [40]Sandanger (?), Ranheim T, Vinge LE, et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischemia-reperfusion injury [J]. Cardiovascular research,2013, http://www.ncbi.nlm.nih.gov/pubmed/23580606.
    [1]曲功霖.中药广枣和红景天的药效物质基础研究.中国中医科学院博士后研究工作报告.2012: 105.
    [1]刘晓庚,陈优生.南酸枣果实的成分分析[J].中国野生植物资源,2000,19(3):35.
    [2]Li P, Fu JH, Wang JK, et al. Extract of Paris polyphylla Simth protects cardiomyocytes from anoxia-reoxia injury through inhibition of calcium overload [J]. Chinese Journal of Integrative Medicine,2011,17 (4):284.
    [3]李澎,任钧国,段昌令,等.4种延胡索成分对乳鼠心肌细胞缺氧和过氧化损伤的影响[J].中国中药杂志,2010,35(1):85.
    [4]Ao JN, Feng HJ, Xia F. Transforming growth factor and nuclear factor kappa B mediated prophylactic cardioprotection by total flavonoids of fructus chorspondiatis in myocardial ischemia [J].Cardiovascular Drugs and Therapy,2007,21(4):235-241.
    [5]杨玉梅,覃建民,徐继辉,等.广枣总黄酮对大鼠心室肌细胞ICa、Ito和细胞[Ca2+]i的影响[J].中国药理学通报,2004,20(7):784.
    [6]张昕原,包保全,王志民,等.广枣总黄酮对阿霉素致大鼠心肌细胞过氧化损伤的保护作用[J].中药材,2001,24(3):185.
    [7]张琪,杨玉梅,刘凤鸣,等.广枣总黄酮对大鼠缺血心肌组织蛋白质表达的影响[J].中国药理学通报,2006,22(11):1344.
    [1]饶曼人,刘广余,高长忠,等.原儿茶酸对缺血区心肌代谢及心肌梗死范围的影响[J].中国药理学报,1988,9(1):27-30.
    [2]金树梅,赵桂峰,范英昌,等.丹酚酸B对大鼠心肌缺血再灌注损伤内皮素及TXA2/PGI2系统的影响[J].中国老年学杂志,2004,24:128.
    [3]刘晓庚,陈优生.南酸枣果实的成分分析[J].中国野生植物资源,2000,19(3):35.
    [4]曹文军,陈瑞芬,刘国贞.槲皮素对缺血再灌注大鼠心肌损伤的保护作用[J].首都医科大学学报,2004,25(3):311-312.
    [5]任钧国,马晓斌,林成仁,等.加味生脉散对急性心肌缺血再灌注损伤大鼠的保护作用[J].中国实验方剂学杂志,2010,16(2):79.
    [6]殷忠,薛白,高好考,等.抑制GSK-3β减轻大鼠急性心肌缺血/再灌注损伤的作用[J].心脏杂志,2011,23(5):590.
    [7]李红月,陈超.基于炎症反应的香椿子总多酚抗大鼠心肌缺血再灌注损伤的机制研究[J].中国实验方剂学杂志,2012,18(2):188.
    [1]曲功霖.中药广枣和红景天的药效物质基础研究.中国中医科学院博士后研究工作报告.2012: 105.
    [2]饶曼人,刘广余,高长忠,等.原儿茶酸对缺血区心肌代谢及心肌梗死范围的影响[J].中国药理学报,1988,9(1):27-30.
    [3]金树梅,赵桂峰,范英昌,等.丹酚酸B对大鼠心肌缺血再灌注损伤内皮素及TXA2/PGI2系统的影响[J].中国老年学杂志,2004,24:128.
    [1]Oerlemans MI, Koudstaal S, Chamuleau SA, et al. Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection [J]. International Journal of Cardiology,2013, 165 (3):410-422.
    [2]Ji LL, Fu F, Zhang LH, et al. Insulin attenuates myocardial ischemia/reperfusion injury via reducing oxidative/nitrative stress [J]. American Journal of Physiology Endocrinology and Metabolism,2010,298:E871-E880.
    [3]Oshima YC, Ouchi N, Sato K, et al. Follistatin-like I is an Akt-regulated cardioprotective factor that is secreted by the heart [J]. Circulation,2008,117:3099-3108.
    [4]Mullonkal CJ, Toledo-Pereyra LH. Akt in ischemia and reperfusion[J]. Journal of Investigative Surgery,2007,20 (3):195-203.
    [1]Grundmann S, Bode C, Moser M. Inflammasome activation in reperfusion injury:friendly fire on myocardial infarction? [J]. Circulation,2011,123:574-576.
    [2]Takahashi M. Role of the inflammasome in myocardial infarction [J]. Trends in Cardiovascular Medicine,2011,21:37-41.
    [3]Kawaguchi M, Takahashi M, Hata T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury [J]. Circulation,2011,123:594-604.
    [4]Sandanger 0, Ranheim T, Vinge LE, et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischemia-reperfusion injury [J]. Cardiovascular research,2013, http://www.ncbi.nlm.nih.gov/pubmed/23580606.
    [5]Gong YN, Wang XM, Wang JY, et al. Chemical probing reveals insights into the signaling mechanism of inflammasome activation [J]. Cell Research,2010,20:1289-1305.
    [6]Perregaux DG, McNiff P, Laliberte R, et al. ATP acts as an agonist to promote stimulus-induced secretion of IL-1b and IL-18 in human blood [J]. The Journal of Immunology, 2000,165:4615-4623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700