大间隙磁力传动系统驱动性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

Magnetic drive technology, using the magnetic force produced by permanent magnetic materials or electromagnetic mechanism, realizes the non-contact transfer of force or torque, of which research and application is very wide at the condition of small gap, but is less at the condition of large gap. The external magnetic field drive of permanent magnetic axial blood pump belongs to the category of large gap magnetic drive technology and it is helpful to realize the micromation of blood pump, which has been the research hotspot of blood pump driving technology. However, because the actual magnetic pole gap is much larger than the classical magnetic drive scope, there exists the problem that the system space magnetic field and driving torque decrease rapidly with the increase of magnetic pole gap. Therefore, the research and application of large gap magnetic drive is restricted.
     Aiming to realize the applications of magnetic drive at the condition of large gap and promote the clinical application of micro axial blood pump, this paper presents a large gap magnetic drive system project, which drives permanent magnetic gear rotate based on the coupling of traveling wave and permanent magnetic gear. The key theories of system drive project, space magnetic field, driving torque and torque-angle characteristic are studied. The large gap magnetic drive system is designed, and the experiment research of system space magnetic field and driving torque is conducted. The research results have instructive value for designing the large gap magnetic drive system which has strong driving ability and is suitable for driving the permanent magnetic axial blood pump and the similar application situation.
     The main research contents and the corresponding conclusions of this paper are as follows:
     1. Design and simulation of large gap magnetic drive system project
     The new magnetic drive system project, which can drive the permanent magnetic gear magnetized at the radial direction, is put forward and conducted by the finite element numerical simulation at the condition of large gap. The change law of the system driving torque along with the permanent magnet corner and the design method of magnetic drive system at the condition of large gap are derived. The research results show that magnetic drive system application with strong driving torque at the condition of large gap can be realized by designing the magnetic drive system electromagnet structure and coil electrifying sequence according to the simulation result.
     2. Research on the space magnet field of large gap magnetic drive system
     The mathematical model of large gap magnetic drive system space magnet field was established and solved under every state of magnetic pole. The distribution law of system space magnet field was revealed. The research results show that permanent magnet can always be in the strong space magnet field which is beneficial to rotation by decreasing the coupling distance of the electromagnet and permanent magnet in the direction of vertical direction and making permanent magnet in the certain space area relatively to electromagnet in the direction of horizontal direction.
     3. Research on the driving torque of large gap magnetic drive system
     The calculation model of large gap magnetic drive system driving torque was established and solved. The influence law of system main parameter to driving torque was revealed. The research results show that stronger system driving torque can be obtained by increasing the number of windings of coil, the electric current of coil, the permanent magnet outer radius, the permanent magnet magnetization and axial length, by reducing the coupling distance between electromagnet and permanent magnet, and by placing the relative position of the electromagnet and permanent magnet in certain area in x direction (at the left or right side).
     4. Research on the torque-angle characteristic of large gap magnetic drive system
     The calculation model of torque-angle characteristic of the large gap magnetic drive system under every state of magnetic pole was established and solved. The torque-angle characteristic which indicates the change law about system driving torque along with permanent magnet corner was obtained. The research results show that system torque-angle characteristic curve can be regulated and system driving ability can be increased by changing the electric current and number of windings of coil, the magnetization of permanent magnetic gear, the outer diameter of permanent magnetic gear, and the axial length of permanent magnetic gear.
     5. Experimental research on the space magnetic field and driving torque of large gap magnetic drive system
     With the theoretical research results used to design the external magnetic field drive system of permanent magnetic axial blood pump and the experiment device made, the experimental research on the space magnetic field and driving torque of large gap magnetic drive system were conducted, which results verified the theoretical results of system space magnetic field and driving torque.
引文
[1]杨超君,顾红伟.水磁传动技术的发展现状和展望[J].机械传动,2008,32(2):1-4.
    [2]赵韩,王勇,田杰.磁力机械研究综述[J].机械工程学报,2003,39(12):31-36.
    [3]Fraxier OH, Myers TJ. Surgical therapy for ever heart failure. Current Problems in cardiology[J],1998,23:727-764.
    [4]包玉生,杨子彬.辅助循环的现状.国外医学生物医学工程分册,1995,18(3):137-141.
    [5]陆颂芳,杨子彬.人工心脏及心室辅助研究的进展.国外医学生物医学工程分册,1998,21(5):280-286.
    [6]Kiyotaka Fukamachi. New technologies for mechanical circulatory support: current status and future prospects of CorAide and MagSrew technologies[J].J Artif organs,2004,7(2):45-57.
    [7]Sharp MK. An orbiting scroll blood pump without valves or rotating seals[J]. ASAIO J,1994,40:41-48.
    [8]Qian KX, Wang SS, Chu SH, et al. In vivo study of pulsatile implantable impeller assist and total heart[J]. Artificial Organs,1995,19(4):328-333.
    [9]Taenaka Y, Wakisaka Y, Masusawa T, et al. Development of a cenirifugal pump with improved antithrombogenicity and hemolytic property for chronic circulatory support[J]. Artifical Organs,1996,20(6):491-496.
    [10]Nojiri C, Kijima T. Maekawa J, et al. More thanlyear continuous operation of a centrifugal pump with a magnetically suspended impeller[J]. ASAIO J,1997, 43(5):M548-M552.
    [11]Schima H, Schlusche C, Jeremejev BV, et al. Influence of centrifugal blood pumps on the elasticity of erythrocytes[J]. ASAIO Trans,1991,37(4):658-661.
    [12]Bulter KC, Moise JC, Wampler RK. The Hemopump-a new cardiac pro thesis device[J]. IEEE Trans Biomed Eng,1990,37(2):193-196.
    [13]Parnis SM, Conger JL, Fuqua JM, et al. Progress in the development of a transcutaneously powered axial flow blood pump ventricular assist system[J]. ASAIO J,1997,43(5):M567-M580.
    [14]Damm G, Mizuguchi K, Bozeman R, et al. In vitro performance of the Baylor/ NASA axial flow pump[J]. Artif Organs,1993,17(7):609-613.
    [15]Yamazaki K, Umezu M, Koyanagi H, et al. A miniature intraventricular axial blood pump that is introduced through the left ventricular apex[J]. ASAIO J, 1992,38(3):M679—M683.
    [16]李国荣,朱晓东,胡盛寿等.新型左心室辅助装置-动力性主动脉瓣的探索性研究.生物医学工程杂志,1999,16(1):116-119.
    [17]Guo-Rong Li, Wei-Guo Ma, Xiao-Dong Zhu. Development of a new left ventricular assist device:the dynamic aortic value[J]. ASAIO journal,2001, 47(3):257-260.
    [18]Takeshi Naktani, et al. A bioartificial ventricle used as a totally implantable circulatory assist device[J]. ASAIO J,1992,38(3):M167.
    [19]Moniies J R, Mesana T, Havlik P, et al. Another way of pumping blood with a rotary but noncentrifugal pump for an artificial heart[J]. ASAIO Trans,1990, 36(3):M258-M260.
    [20]Mahmood A K, Courtney J M, Westaby S, et al. Critical review of current left ventricular assist devices[J]. Perfusion,2000,15:399-420.
    [21]Yih-Chong Yu, J.Robert Boston, Marwan A. Simaan, et al. Presure-volume relationship of a pulstile blood pump for ventricular assist device development J]. ASAIO J,2001,47(3):293-301.
    [22]www.worldheart.com.
    [23]Miller PJ, Billich TJ, Laforge DH, et al. Initial clinical experience with a wearable controller for the Novacor left ventricular assist system[J]. ASAIO J, 1994,40(3):M465-M470.
    [24]Wheeldon DR. Mechanical circulatory support state of the art and future perspectives[J].Perfusion,2003,18(4):233-243.
    [25]Yukihiko N, Furukawa K. Current Status of the Gyro Centrifugal Blood Pump Development of the Permanently Implantable Centrifugal Blood Pump as a Biventricular Assist Device (NEDO Project) [J]. Artif Organs,2004,28 (10):953-958.
    [26]Mesana TG. Rotary blood pump s for cardiac assistance:A "Must" [J]. Artif Organs,2004,28 (2):218-225.
    [27]Yi Wu, Allaire PE, Gang Tao, et al. A bridge from short-term to long-term left ventricular assist device-experimental verification of a physiological controller [J]. Artif Organs,2004,28 (10):927-932.
    [28]Vanholder R, Canizo JF, Sauer IM, et al. The European artificial organ scene: present status [J]. Artif Organs,2005,29 (6):498-506.
    [29]Wieselthaler GM, Schima H, Hiesmayr M, et al.First clicnical experience with the DeBakey VAD continuous-axial-flow pump for bridge to transplantation. Circulation[J]. American Heart Association,2000,101(4):356-359.
    [30]Noon GP, Morley DL, Irwin S, et al. Clinical with the Miero Med DeBakey ventricular assist device[J]. Ann thorac surg,2001,71:s133-s138.
    [31]WayneE.Richenbacher.Latest developments in the field of assisted circulation[J]. ASAIO Journal,2005,51 (6):ⅩⅤ-ⅩⅩ.
    [32]Nojiri C, Kijima T, Maekawa J, et al.Development of Terumo implantable left ventricular assist system(T-ILVAS)with a magnetieally suspended centrifugal pump[J]. J aritif organs,1999,2:3-7.
    [33]S.Saito, S.Westaby, D.Piggott, et al. Reliable long-term non-pulsatile circulatory support without anticoagulation[J]. Eur J Cardiothorac Surg,2001 19(5):678-683.
    [34]Bearnson G B, Jacobs G B, Kirk J, et al. Heart Quest ventricular assist device magnetically levitated centrifugal blood pump [J]. Artif Organs,2006, 30(5):339-346.
    [35]李莹,段婉茹等.人工心脏发展中的关键技术.北京生物医学工程,2008,27(2):100-104.
    [36]王广义.锥形螺旋叶轮血泵流场数值计算与分析[D].燕山大学硕士学位论文,2007.
    [37]高殿荣,杜世渊,阎淑丽.具有较大气隙的锥形螺旋血泵磁悬浮结构的设计与分析.机械设计,2007,24(12):33-35,63.
    [38]高殿荣,韩康壮.血泵转子远场驱动的原理及分析.液压与气动,2008,28(4):39-42.
    [39]GAO Dianrong, DU Shiyuan. Numerical Calculation and Analysis of Suspension Force of Permanent Magnetic Bearing in Conical Spiral Blood Pump[J]. Robotics, Automation and Mechatronics,2008 IEEE Conference on,2008, (21-24):123-127
    [40]殷桂梁,夏春雷,高殿荣.体外驱动锥形螺旋叶轮血泵电机有限元仿真分析.微特电机,2008,36(7):29-33,35.
    [41]郑小林,曹,邓小燕等.全人工心脏测试系统流路的数学建模.重庆大学学报(自然科学版),2007,30(10):119-125.
    [42]钱坤喜,曾培,茹伟民等.永磁磁浮电机的研制及其在人工心脏中的应用.微 特电机,2005,33(11):9-11.
    [43]钱坤喜,王颢,茹伟民等.轴向驱动永磁磁浮离心血泵的试制型装胃.江苏大学学报(自然科学版),2005,26(11):510-513.
    [44]K.X.Qian, P.Zeng, W.M.Ru, H.Y.Yuan. New concepts and new design of permanent maglev rotary artificial heart blood pumps[J].Medical Engineering & Physics,2006,28(4):383-388.
    [45]李国荣,朱晓东,彭远仪等.叶轮泵式全人工心脏的结构设计及流体力学特性.生物医学工程与临床,2008,12(3):167-170.
    [46]吴广辉,蔺嫦燕,李冰一等.应用计算流体动力学方法研究人工心脏流场.生物医学工程与临床,2008,12(6):439-442.
    [47]FAN Hui-min, HONG Fang-wen, ZHOU Lian-di, CHEN Yin-sheng. Design of Implantable Axial-flow Blood Pump and Numerical Studies on its Performance[J], Journal of Hydrodynamics,2009,21(4):445-452.
    [48]Sheng-Ming Yang, Chun-Cheng Ling. Performance of a Single-Axis Controlled Magnetic Bearing for Axial Blood Pump[J].2007, (23-27):963-968.
    [49]Fengxiang Wang, Longya Xu. Design and Analysis of a Permanent Magnet Motor Integrated with Journal Bearing [J]. Industry Applications Conference, 1997. Thirty-Second IAS Annual Meeting, IAS '97., Conference Record of the 1997 IEEE,1997, (5-9):24-28.
    [50]H. Yamada, M.Yamaguchi, M.Karita, et al. Acute Animal Experiment Using a Linear Motor-Driven Total Artificial Heart [J]. IEEE TRANSLATION JOURNAL ON MAGNETICS IN JAPAN,1994,9(6):90-97.
    [51]YOSHINOR1 MITAMURA, EIJI OKAMOTO, ATSUSHI HIRANO, et al. Development of an Implantable Motor-Driven Assist Pump System [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,1990,37(2):146-156.
    [52]M. Horz, H.G.Herzog, N.Mendler. System design and comparison of calculated and measured performance of a bearing less BLDC-drive with axial flux path for an implantable blood pump[J]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2006), 2006:s7-6--s7-9.
    [53]I.Sakuma, T.Sasaki, M.Shiono,et al. Development of a Novel Direct Motor Driven Seal-less Centrifugal Blood Pump (BAYLOR GYRO PUMP) [J].Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1991,13(5):2127-2128.
    [54]H. Yamada, T.Yano, H.Wakiwaka, et al. Development of High Power Linear Pulse Motor for Artificial Heart [J].2001,(3):110-114.
    [55]Li G R, Ma W G, Zhu X D. Preliminary study on an introaortic pump driven by a distant rotary magnet [J]. ASAIO Journal.2000,(2):46-151.
    [56]Wayne E. Richenbacher. Latest developments in the field of assisted cireulation[J]. ASAIO Journal,2005,51(6):ⅩⅤ-ⅩⅩ.
    [57]Willam L.Holman, Salpy V. Pambouldan, Margaret Blood, et al. Managing device infections:are we progressing or is infection an insurmountable obstaele[J]. ASAIO Journal,2005:452-455.
    [58]Edith Collard, Michel J. Van Dyck, Lue M.Jacquet. Ventricular assist devices. Curreni opnion in anaesthesiology[J],2003,(16):33-43.
    [59]www.methodisthealth.com/debakey/VAD.htm.
    [60]陈海燕,高晓琳,杨庆新.用于人工心脏的经皮传能系统耦合特性及补偿的研究[J].电工电能新技术,2008,27(2):5962.
    [61]吕瑰丽,李国国,范瑜.无刷直流电动机在轴流式血泵系统中的应用[J].微电机,2007,40(11):70-73.
    [62]Don B. Olsen, Paul E. Allaire, Houston G. Wood. Axial-flow blood pump with magnetically suspended, radically and axially stabilized impeller[J].Assigned to Med forte Research Foundation. Sep.2004:884-949.
    [63]曾培,茹伟民,袁海宇等.人工心脏血泵驱动电机的控制研究[J].中国生物医学工程学报,2001,20(4):342-345.
    [64]吕瑰丽.轴流式血泵系统的设计研究[D].北京交通大学学位论文,2007.
    [65]李国荣.动力性主动脉瓣研究近况[J].生物医学工程学杂志,2000,17(4):407-709.
    [66]Pan Zheng, Yousef Haik. Force and torque characteristics for magnetically driven blood pump [J] Journal of Magnetism and Magnetic Materials. Oct. 2002,241(2-3):292-302.
    [67]张建涛.永磁齿轮在人工心脏中的应用研究[J].微特电机,2005,33(9):5-6,10
    [68]徐先懂.轴流式血泵外磁场驱动及其控制系统研究[D].中南大学学位论文,2006.
    [69]徐先懂,龚中良,谭建平.基于外磁场耦合的血泵驱动系统[J].中南大学学报(自然科学版),2007,38(4):711-714.
    [70]龚中良,谭建平.外场驱动血.泵磁力耦合传动受力分析[J].机械科学与技 术,2006,25(6):725-727.
    [71]田杰,邓辉华,张萍等.考虑非线性磁导率稀士永磁齿轮磁场研究[J].机械工程师,2006,25(1):92-94.
    [72]Hsien-Tsung Chang, Chia-Yen Lee. Theoretical analysis and optimization of electromagnetic actuation in a valve less micro impedance pump[J]. Microelectronics Journal. May,2007,38(6-7):791-799
    [73]杨清新,严珩志,付伟华.一种管内壁自动清淤器磁转子的特性[J].机械设计,2006,23(5):20-22.
    [74]Y. Gelfgat. Effects of system parameters on MHD flows in rotating magnetic fields [J]. Journal of Crystal Growth. Nov,1999,210(4):788-796
    [75]陈匡非,杜玉梅.平行轴永磁齿轮的特性研究[J].微特电机,2004,4:5-7.
    [76]D.M.Tsamakis, M.G.Ioannides, G.K.Nicolaides. Torque transfer through plastic bonded Nd2Fe14B magnetic gear system [J]. Journal of Alloys and Compounds,1996,241(1-2):175-179.
    [77]王福吉,周白杨,刘巍,全芳瑶.超磁致伸缩薄膜耦合特性驱动磁场的设计方法.压电与声光,2009,31(1):90-93.
    [78]王新华,肖峰,王思民,马永超.超磁致伸缩驱动器驱动磁场仿真分析.现代制造工程,2009,(2):11-14.
    [79]赵韩,陶骏,田杰等.磁场积分法在稀土永磁齿轮传动机构场分析中的应用[J].机械工程学报,2000,36(8):29-32.
    [80]赵韩,杨志轶,王忠臣.磁力轴承电磁力计算的两种建模方法与比较[J].农业机械学报,2002,33(4):84-87.
    [81]Smolkin.M.R, Smolkin.R.D. Calculation and analysis of the magnetic force acting on a particle in the magnetic field of Separator. Analysis of the equations used in the magnetic methods of separation [J]. IEEE Transactions on Magnetics. Nov.2006,42(11):3682-3693.
    [82]Y. M. Du, P.C.Xiu, L.Y.Xiao. Calculating Magnetic Force of Permanent Magnet Using Maxwell Stress Method [J]. TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,2000,10(1):1392-1394.
    [83]Kais Atallah, Stuart D. Calverley, David Howe. High-performance magnetic gears[J]. Journal of Magnetism and Magnetic Materials,2004, (272-276): e1727-e1729.
    [84]T. Sugiura, S. Ogawa, H.Ura. Nonlinear oscillation of a rigid body over high-Tc superconductors supported by electro-magnetic forces [J]. Physica C,2005, (426-431):783-788.
    [85]A. Yamazaki, M.Sendoh, K.Ishiyama, T.Hayase, K.I.Arai. Three-dimensional analysis of swimming properties of a spiral-type magnetic micro-machine[J]. Sensors and Actuators A,2003,105(1):103-108.
    [86]David G. Craig, Mir Behrad Khamesee. Derivation of an Analytical Model for the Force Produced During the Motion of a Magnetically Suspended Object[J]. Proceedings of the IEEE International Conference on Mechatronics & Automation, Niagara Falls, Canada, July 2005, (2):970-974.
    [87]Frank T. Jorgensen, Torben Ole Andersen, Peter Omand Rasmussen. The Cycloid Permanent Magnetic Gear [J]. IEEE TRANSACTIONS ON MAGNETICS,2008,44(6):1659-1665.
    [88]P.O. Rasmussen, T.O.Andersen, F.T.Joergensen, O.Nielsen. Development of a High Performance Magnetic Gear[J]. Conference Record of the 2003 IEEE Industry Applications Conference (Cat. No.03CH37459),2003, (3):1696-1702.
    [89]Toshiyuki Ueno, Jinhao Qiu, Junji Tani. Magnetic Force Control Based on the Inverse Magnetostrictive Effect [J]. IEEE TRANSACTIONS ON MAGNETICS,2004,40(3):1601-1605.
    [90]赵国涛,谭庆昌,李为.直线往复运动磁力传动[J].机械工程学报,2007,43(1):100-103.
    [91]田录林,张靠社,王德意.永磁导轨悬浮和导向磁力研究[J].中国电机工程学报,2008,28(21):135-139.
    [92]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究[D].合肥理工大学学位论文,2006.
    [93]王晓光.磁悬浮转子系统的耦合理论分析及实验研究[D].武汉理工大学学位论文,2005.
    [94]刘新岩.面向油田高压注水的磁力传动增压系统的研究[D].上海交通大学学位论文,2007.
    [95]邓辉华.稀土永磁齿轮传动系统动态特性仿真技术研究[D].合肥理工大学学位论文,2006.
    [96]王洪群,虞培清,章志耿,杜佐寅.磁传动设计研究[J].机械设计,2008,25(10):51-54.
    [97]陈匡非.平行轴永磁齿轮的特性研究[D].中国科学院电工所硕士论文,2003.
    [98]Ikuta K. Non-contact Magnetic Gear for Micro transmission Mechanism [C]. Kyushu Institute of Technology,1991.
    [99]Axoum.K, Besbes.M, Bouillault.F, Ueno.T. Modeling of magnetostrictive phenomena. Application in magnetic force control[J]. European Physical Journal, Applied Physics.2006,36(1):43-47.
    [100]Takahisa Ohji, Takashi Shinkai, Kenji Amei, Masaaki Sakui. Application of Lorentz force to a magnetic levitation system for a non-magnetic thin plate[J]. Journal of Materials Processing Technology,2007,181 (1-3):40-43.
    [101]Tetsuo Ohashi, Hiroki Kuyama, Koichi Suzuki, Shin Nakamura. Control of aqueous droplets using magnetic and electrostatic forces [J]. ANALYTICA CHIMICA ACTA,2008,612(2):218-225.
    [102]Karel Frana. A numerical study of flows driven by a rotating magnetic field in a square container[J]. European Journal of Mechanics B/Fluids.Oct.2008, 27(4):491-500.
    [103]S. Schonhardt, J.G. Korvink, J. Mohr, U. Hollenbach, U.Wallrabe. Optimization of an electromagnetic comb drive actuator[J]. Sensors and Actuators A,2009, 154(2):212-217.
    [104]K.Ishiyama, M.Sendoh, A.Yamazaki, K.I.Arai. Swimming micro-machine driven by magnetic torque[J]. Sensors and Actuators A,2001, A91(1-2): 141-144.
    [105]Subrata Banerjee, Dinkar Prasad, Jayanta Pal. Large gap control in electromagnetic levitation [J]. ISA Transactions,2006,45(2):215-224.
    [106]J Vanags, U Viesturs, I Fort. Mixing intensity studies in a pilot plant stirred bioreactor with an electromagnetic drive [J]. Biochemical Engineering Journal, 1999,3(1):25-33.
    [107]Toshiyuki Ueno, Jinhao Qiu, Junji Tani. Device of magnetostrictive and piezoelectric materials for magnetic force control [J]. Journal of Magnetism and Magnetic Materials,2003, (258-259):490-492.
    [108]MASATSUGU TAKEMOTO. Torque and Suspension Force in a Bearingless Switched Reluctance Motor[J]. Electrical Engineering.2006,157(2):72-82.
    [109]Mochimitsu Komori, Gen-ichi Kamogawa. Basic Study of a Magnetically Levitated Conveyer Using Superconducting Magnetic Levitation [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,2005,15(2): 2238-2241.
    [110]Mochimitsu Komori, Takehiro Hirakawa. A Magnetically Driven Linear Microactuator With New Driving Method[J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS,2005,10(3):335-338.
    [111]Tingrui Pan, Eleanor Kai, Matthew Stay, Victor Barocas, Babak Ziaie. A Magnetically Driven PDMS Peristaltic Micropump[J]. Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September1-5,2004:2639-2642.
    [112]Christine Ruffert, Ralf Gehrking, Bernd Ponick, Hans H.Gatzen. Magnetic Levitation Assisted Guide for a Linear Micro-Actuator [J]. IEEE TRANSACTIONS ON MAGNETICS,2006,42(11):3785-3787.
    [113]Mir Behrad Khamesee, Norihiko Kato, Yoshihiko Nomura. Design and Control of a Microrobotic System Using Magnetic Levitation [J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS,2002,7(1):1-14.
    [114]谢晓丹,王博超,吴丹.电磁驱动快速刀具伺服机构的电磁场和驱动力[J].清华大学学报(自然科学版),2008,48(8):1298-1301.
    [115]穆参军,张飞岭,吴亚明.新型大尺寸电磁驱动MEMS光学扫描镜的研制[J].半导体学报,2008,29(3):584-588.
    [116]刘京诚.微小步行爬壁机器人驱动与位置检测技术与系统[D].重庆大学学位论文,2003.
    [117]王晓东.电磁力对金属熔体驱动及运动形态控制的研究[D].大连理工大学学位论文,2002.
    [118]王春仁.基于单片机的旋转磁场磁力研磨加工的计算机仿真与系统设计[D].大连理工大学学位论文,2002.
    [119]章志耿,叶子兆.磁传动技术在搅拌装置上的应用与计算[J].机械传动,2006,30(1):31-34.
    [120]贾彦璋,孙冰,杜鹏等.磁力驱动防盗锁闭阀的研究[J].机械研究与应用,2007,20(5):120-121.
    [121]席文明,钟辉.电磁力驱动的微夹持技术[J].纳米技术与精密工程,2008,6(3):195-198.
    [122]刘峰,许立忠.机电集成超环面传动的驱动机理[J].辽宁石油化工大学学报,2008,28(1):41-43.
    [123]刘雪洪,刘梁,常思勤.基于磁力传动的永磁离合器设计与试验[J].农业机械学报,2008,39(5):15-17.
    [124]郝晓红,梅雪松,张东升.一种新型磁悬浮纳米定位工作台的研究[J].机械科学与技术,2009,28(5):643-647.
    [125]李国丽,李剑平,王群京.外磁场驱动的无线内窥镜磁场线圈的设计方法研究[J].中国科学技术大学学报,2008,38(3):272-276.
    [126]Chao Hu,Dongmei Chen,LeiWang. Control Strategy of Active Actuation System of Wireless Capsule Endoscope [J]. Proceedings of the 2007 IEEE International Conference on Integration Technology,2007:1-6.
    [127]李弋可,王文兴,颜国正.消化道胶囊内窥镜的磁引导驱动[J].北京生物医学工程,2008,27(4):416-420,435.
    [128]张永顺,张凯,张林燕.体内微型机器人的全方位旋进驱动特性[J].机器人,2006,28(6):560-565.
    [129]Federico Carp i, Stefano Galbiati, Angelo Carp i. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion [J]. Biomedicine & Pharmacotherapy.Oct.2006,(60):370-374.
    [130]刘春景.肠胃检查机器人的外磁场驱动控制研究[D].石河子大学学位论文,2006.
    [131]王利容,朱文坚.胃肠道微机电系统取样驱动装置的设计与分析[J].机电工程技术,2007,36(12):48-50.
    [132]Hoshi.Hideo, Katakoa.Kiroyuki, Ohuchi.Katsuhiro. Magnetically suspended centrifugal blood pump with a radial magnetic driver[J]. ASAIO Journal. 2005,51(1):60-64.
    [133]杨剑.电磁血泵的研制及体外模拟实验[D].第四军医大学学位论文,2001.
    [134]曹湧.全人工心脏测试系统的研究[D].重庆大学学位论文,2007.
    [135]茹伟民.人工心脏用永磁无刷直流电机设计及驱动控制研究[D].江苏大学学位论文,2006.
    [136]张建涛.永磁齿轮特性仿真及其在人工心脏中的应用研究[D].中国科学院学位论文,2005.
    [137]雷永锋,汪希平等.磁悬浮人工心脏泵驱动电动机及控制研究[J].微电机,2008,41(3):72-74.
    [138]任来平,赵俊生,侯世喜.磁偶极子磁场空间分布模式[J].海洋测绘,2002,22(2):18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700