基于软件无线电的编码激励超声血流检测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学超声检测系统具有无损、价廉、实时的优点,被广泛应用于人体血流动力学参数测量领域,对生理研究和疾病诊断都具有重要价值。近年来,随着工程电子、信号处理、半导体集成电路等现代高新技术的迅速发展,提高血流测速分辨力、改善回波信噪比、增强系统的灵活性,实现系统的智能化和小型化成为医学超声检测领域的研究热点。
     论文深入研究了超声血流检测中涉及到的若干关键性问题,提出了一套完整的系统解决方案。采用软件无线电思想和编码激励技术来改进传统超声系统的硬件平台,并配以高性能的流速估计方法,用以实现血流速度剖面的定量测量。论文的创新性工作包括了硬件平台和软件算法两个部分的内容,主要概括如下:
     1)将软件无线电思想引入到系统平台构建中,将高速模数转换推进到超声接收电路的最前端,直接对未经解调的超声射频回波信号进行采样量化,使得大部分的系统功能完全由软件实现。同时,采用了现代集成电路技术和数字信号处理技术的最新成果,提出了一个稳定的、通用的全数字化硬件平台设计方案,实现了超声信号的发射、接收、采样量化和后续处理。
     2)将编码激励技术引入到超声发射信号的改进中,对适用于血流检测的编码特性进行了深入剖析,从编码优选的角度出发,提出一种ZCWC码序列组,该组序列具有区域最理想的非周期自相关性和互相关性,在零相关窗内可以完全消除旁瓣。论文给出了ZCWC码序列组的构造方法并分析了采用该码测量血流速度剖面的原理,通过单反射面回波实验、混合编码回波分离实验和模拟血流测量实验验证了该码的优良特性。
     3)依据超声血流散射回波信号的形成机理,提出一种更精确的分布式速度回波信号模型来描述散射子运动的时延效应,首次引入了分布参数的概念来反映测量单元内流速的分布状况。
     4)针对传统窄带流速估计方法会受到中心频率偏移和短脉冲频谱展宽导致精度下降的缺点,提出了一种基于频谱特征匹配的2-DFST算法。直接对携带着原始运动信息的超声射频回波序列进行二维傅立叶变换,利用发射信号生成动态特征模板,采用简化的相关系数作为相似性度量准则进行跟踪匹配,由匹配成功后的特征点坐标得到宽带回波信号的中心频率和多普勒频移的估计,计算出流速测量值。
     5)针对高轴向分辨率的实时系统需要利用小样本进行有效快速的估计的特点,提出了一种基于分布式速度回波信号模型的TVJE算法,将传统的单一速度估计问题扩展成中心速度和分布参数的二维联合估计。根据表征速度扩展程度的分布参数估计值动态调整采样容积的大小,利用扩充后的样本点估计出最终的流速剖面。实际应用中,血流散射回波信号的随机扰动对测量结果的影响超过算法本身性能的影响,尤其是在样本数较少的情况下。TVJE法首次提出分布参数作为估计的置信度准则,从另一个角度提供了提高流速估计质量的新思路。该方法可有效改善估计算法在空间非平稳信号环境下的表现,提高了利用小样本测量流速剖面的精确度和稳健度。
     完成了硬件平台的搭建和软件算法的调试后,采用该系统进行了模拟血流测量实验研究。实验结果表明系统能够实现仿血液的速度剖面的定量测量,实验结果与理论分析基本一致,尤其在小样本数据时能获得良好的测量效果。
The medical ultrasonic-inspection system has been widely applied in the hemodynamic parameters measurement due to its merits of noninvasiveness, low cost and real-time processing, which has proved to be a valuable tool for pathophysiology research and clinical diagnosis of vascular disease. With the rapid development of modern techniques, several topics recently become the hotspots in the research of the system, which include improving the measuring resolution, raising the signal to noise ratio of echoes, enhancing the sensitivity of the system, as well as designing the system with intelligentization and miniaturization.
     In this dissertation, several crucial problems in the measurement of blood velocity are studied and analyzed, and a complete intellectual system solution is proposed. In order to improve the traditional ultrasound measurement system, the idea of software radio (SR) and coded excitation technique are introduced into the hardware platform design. In addition, some new methods with improved performance are developed to flow velocity estimation. The research including hardware and software achieves the following innovative points:
     1) The SR idea is introduced into building the system platform. The high speed A/D converter is used to sample the ultrasonic radio frequency (RF) echo signals directly and the most of functions are accomplished by software. With the integrated circuit technique and the digital signal processing, a stable and all-purpose hardware platform is carried out for ultrasonic signals transmitting, receiving, sampling and post-processing.
     2) Coded excitation is applied to improve the ultrasonic transmit signal. After discoursing learnedly on the characteristics of the known codes which have been adapt to blood velocity measurement, a zero correlation window complementary (ZCWC) coded sequence is firstly presented for its prefect local autocoiTelation and cross correlation. The structure of ZCWC code and its good feature in measuring blood velocity profile are studied and analyzed. It is proved that ZCWC code provides higher performance by the mirror reflection experiment and the mix codes separation experiment.
     3) According to the ultrasonic echo signal mechanism of the human blood, a distributed model which represents the time delay effect of the scatters movement more accurately than the conventional model is setup. The distributed parameter is firstly utilized in the model, which is able to denote velocity extension in sampling unit.
     4) To cope with the estimation error caused by central frequency downshift and the wide frequency band, a two-dimensional frequency shift tracing (2-D FST) algorithm based on the spectral feature matching is proposed. The first step is to represent the received RF echo sequence signals in the two-dimensional spectrum by applying the 2-D FFT and then analyze the resulting spectral feature. After using the transmit signals to build dynamic templates, a simplified correlation coefficient tracing strategy is presented to acquire the coordinate of feature points. Finally, the velocity could be estimated by calculating the central frequency shift and the Doppler frequency shift.
     5)To improve the quality of the estimation in small sampling data situation, a time delay vector joint estimation (TVJE) method based on the distributed model motioned above is used to turn the conventional velocity estimation into the joint estimation of the central velocity and a distributed parameter. Then the velocity estimation is obtained from the central velocity and its validity is represented by the distributed parameter which denotes the velocity extension. After adjusting the sampling volume by the distributed parameter dynamically, the final velocity profile can be acquired.
     After building the hardware platform and debugging the software algorithm, the system was tested in the velocity measurement of simulated blood flow. It is proven that the system is capable of measuring the blood flow velocity profile, and the measurements showed a good agreement with the theoretical analysis. The system could provide good blood flow velocity measurements, especially under the circumstance of small sampling data.
引文
[1]范毅民,范世忠,李祥杰.医用B超仪与超声多普勒系统[M].上海:第二军医大学出社,1999.
    [2]王志刚.超声治疗[M].北京:人民军医出版社,2009.
    [3]李治安,李建国,刘吉斌.临床超声影像学[M].北京:人民卫生出版社,2003.
    [4]任卫东.血管超声诊断基础与临床[M].北京:人民军医出版社,2005.
    [5]Satomura S. Matsubara S,Yoshioka M. A new method of mechanical vibration Measurement and its application [J]. Mem Inst Sci Res Osaka Univ,1956,13:125-133.
    [6]Strandness DE Jr,McCutcheon EP, Rushmer RF. Application of atranseutaneous Doppler flowmeter in evaluation of occlusive arterial disease [J]. Surg Gynecol Obstet,1966,122: 1039-1045.
    [7]Wells PNT. A range-gated ultrasonic Doppler system [J]. Med Biol Eng,1969,7:641-652.
    [8]Peronneau PA, Leger F. Doppler ultrasonic pulsed blood flowmeter [C]. Proc 8th Int conf Med Biol Eng,1969:10-11.
    [9]Baker DW. Pulsed ultrasonic Doppler blood-flow sensing [J]. IEEE Trans Sonics Ultrason, 1970, SU-17:170-185.
    [10]Sirmans D, Bumgarner B. Numerical comparison of five mean frequency estimators [J]. Journal of Applied Meteorology,1975,14:991-1003.
    [11]Namekawa K, Kasai C,Tsukamoto M, et al. Imaging of blood flow using autocorrelation [J]. Ultrasound Med Biol,1982,8:138.
    [12]Kasai C, Namekawa K, Koyano A, et al. Real-time two-dimensional blood flow imaging using an autocorrelation technique [J]. IEEE Transactions on Sonics and Ultrasonics.1985, SU-32:458-464.
    [13]Kosmala W, Kucharski W, Przewlocka Kosmala M, et al. Comparison of left ventricular function by tissue Doppler imaging in patients with diabetes mellitus without systemic hypertension versus diabetes mellitus with systemic hypertension [J]. Am J Cardiol,2004, 94:395-399.
    [14]Fenster A, Downey DB.3-D Ultrasound Imaging:A Review [J]. IEEE Engineering in Medicine and Biology,1996,18(9):41-51.
    [15]Averkiou M.A, Roundhif D.R, Powers J.E. A new imaging technique based on the nonlinear properties of tissues [J]. In Proc IEEE Ultrason Symp,1997, vol.2:1561-1566.
    [16]万明习,李莉,程敬之.基于超声造影剂的低速血流多普勒测量技术[J].仪器仪表学报,1999,20(5):451-484.
    [17]刘洁,高上凯.二维空间Doppler夹角的测量与流速校正方法的研究[J].清华大学学报:自然科学版,2002,42(3):337-339.
    [18]赵珩.超声彩色血流成像中编码激励技术的研究[D].北京:清华大学生物医学工程,2006.
    [19]程东彪,高上凯.数字化多深度脉冲波超声多普勒系统的设计与实验研究[J].中国医学影像技术,2005,21(8):1278-1280
    [20]项雷.编码激励技术在超声多普勒血流测量中研究和应用[D].北京:清华大学医学院,2008.
    [21]钱明.运动高质量估计动脉血管壁定征研究[D].上海:上海交通大学模式识别与智 能控制.2000.
    [22]温世杰.基于FPGA的医用超声内窥镜旋转扫描成像系统的研究[D].天津:天津大学光学工程.2006.
    [23]温宇,万明习,王素品.超声多普勒血流信号谱组成[J].西安交通大学学报,1997,31(1):69-75.
    [24]李仰梅,李俊博,王素品,et al.基于血管内高频超声的血管壁组织应变成像及弹性重构[J].生物物理学报,2001,17(3):514-521.
    [25]徐大专.合成孔径聚焦超声成像系统的实验研究[D].南京:南京航空航天大学,2003.
    [26]鲁凡水,殷玲,张培青.基于ARM9的超声实验仪研制[J].实验室研究与探索,2009,28(7):41-44.
    [27]王威琪,汪源源,余建国.et a1.关于超声无创伤测量血流速度和流量的分析[J].中国工程科学.2001,2:52-64.
    [28]张羽.狭窄血管超声多普勒血流信息提取方法的研究[D].上海:复旦大学电子工程,2003.
    [29]冯若.超声手册[M].南京:南京大学出版社,2002.
    [30]O'Donnell M Coded Excitation System for Improving the Penetration of Real-Time Phased-Array Imaging Systems [J]. IEEE Transactions on Ultrasonics. Ferroelectrics, and Frequency Control,1992,39(3):341-351.
    [31]彭旗宁,高上凯.医学超声成像中的编码激励技术及其应用[J].生物医学工程学杂志2005,22(1):175-180.
    [32]Newhouse VL, Bendick PJ. An ultrasonic random signal flow measurement system [J]. Jour Acoust Soc of America.1974,56:860-870.
    [33]Golay MJE. Complementary series [J]. IRE Trans on Information Theory,1961,7:82-87.
    [34]Takeuchi Y. An investigation of a spread energy method for medical ultrasound systems. Part one:theory and investigation [J]. Ultrasonics.1979,17(4):175-182.
    [35]Wilhjelm JE, Pedersen PC. Target velocity estimation with FM and PW echo ranging Doppler systems part I:signal analysis [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1993,40(4):366-372.
    [36]Pollakowski M, Ermert H. Chirp signal matching and signal power optimization in pulse-echo mode ultrasonic nondestructive testing [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1994,41(5):655-659.
    [37]Nowieki A, Litniewski J, Secomski W, et al. Estimation of ultrasonic attenuation in a bone using coded excitation [J]. Ultrasonics,2003,41:615-621.
    [38]Liu J, Insana MF. Coded Pulse Excitation for Ultrasonic Strain Imaging [J].IEEE Trans Ultrason Ferroelectr Freq Control,2005,52(2):231-240.
    [39]Ai Y, Jaffe JS. Design and preliminary tests of a family of adaptive waveforms to Measure blood vessel diameter and wall thickness [J]. IEEE Trans Ultrason Fermelectr Freq Control, 2005,52(2):250-260
    [40]Chiao RY, Mo LY, Hall AL. et al. B-mode blood flow (B-flow) imaging [C]. IEEE Ultrasonics Symposium.2000(2):1469-1472.
    [41]Claudon M, Tranquart F. Evans DH. et al. Advanced in ultrasound [J].EuroPean Radiology, 2002,12(1):7-18.
    [42]Philips P. Medical diagnostic ultrasonic imaging system using coded transmit pulses [P]. United States,2002,6213947.2001-04-10.
    [43]刘凯.医学超声成像中编码激励技术的研究[D].北京:清华大学医学院,2006.
    [44]鲍静.医学超声成像系统的编码激励技术研究[D].天津:天津大学精密仪器与光电子工程学院,2007.
    [45]黄伟华.B型超声诊断仪设计及编码激励方法研究[D].浙江:浙江大学生物医学工程与仪器学院,2008.
    [46]Miotal J. Software Radio Technology Challenges and Opportunities [C]. European Commission Software Radio Workshop, Brussels,1997:1-13.
    [47]Jeffery A.W. Analogue-to-digital converters and their applications in radio receivers [J], IEEE Communications Magazine,1995,33(5):39-45.
    [48]钮心忻,杨义先.软伯无线电技术与应用[M].北京:北京邮电大学出版社,2000.9.
    [49]Shung KK, Thieme GA. Ultrasonic scattering in biological tissues [M], CRC Press,1993.
    [50]王纷.人体及动物生理学[M].北京:高等教育出版社,1986.
    [51]Schmid-Schonbein H, Gaeghtgens P, Hirsch H. On the Shear Rate Dependence of Red Cell Aggregation in vitro [J], Clin Invest,1968,2:112-115.
    [52]Brooks DE, Goodwin JW, Seaman G.VF. Interaction among Erythrocytes under Shear [J]. Appl. Physiol,1970,28:67-74.?
    [53]秦任甲.临床血液流变学[M].北京:北京大学医学出版社,2006.
    [54]Carstensen EL, Schwan HP. Absorption of Sound Arising from the Presence of Intact Cells in Blood [J]. Acoust Soc Am,1959,31:24-38
    [55]汪源源,王威琪,余建国.超声多普勒血流信号的特征分析[J].中国医疗器械信息,1999,5(1):36-42
    [56]戴焕平,冯若.血液的超声衰减研究[J],生物物理学报,1986,2(2):117-120
    [57]Reid JM. Doppler Ultrasound [J].IEEE Eng Med Biol Mag,1987,14:65-79.
    [58]Censor D. Real and Complex Doppler Effects in Lossy Media [J]. IEEE Trans Ultrason Ferroelect Freq Contr,1992,2(39):121-125
    [59]Reid JM, Sigelmanm RA, Nasser M, et al. The scattering of ultrasound by human blood [C]. Proc 8th Int Conf Med Biol,1969:7-10.
    [60]Larry Y.L.Mo, Cobbold R.S.E. A Unified Approach to Modeling the Backscattered Doppler Ultrasound from Blood [J]. IEEE Trans Bio Med Eng,1992,39(5):450-460.
    [61]程君楷.心血管血流动力学[M].四川:四川教育出版社,1990.
    [62]Jones S A, Giddens D P. A simulation of transmit time effects in Doppler ultrasound signals [J]. Ultrasound Med Biol,1990,16(6):607-619.
    [63]陶倩.超声多普勒血流和管壁信号的计算机仿真与分离[D].上海:复旦大学生物医学工程,2004.
    [64]Kasai C, Namekawa K, Koyano A, et al. Real-time two-dimensional blood flow imaging using an autocorrelation technique [J]. IEEE Transactions on Sonics and Ultrasonics.1985, SU-32:458-464.
    [65]祁锦毅,高上凯,杨福生.关于宽带和窄带超声血流速度测量方法的评价[J].声学学报,1997,22(3):255-267.
    [66]Jensen JA, Nikolov SI. Directional synthetic aperture flow imaging [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2004,51:1107-1118.
    [67]王涛,王飞雪.郭桂蓉.理想二相编码评述[J].现代雷达,2002,4:46-49.
    [68]Misaridis TX, Jensen JA. Use of modulated excitation signals in medical ultrasound. Part Ⅱ: Design and Performance for medical imaging applications [J].IEEE Tran Ultrason Ferroeleetr Freq Conlrol.2005.52(2):192-207.
    [69]田日才.扩频通信[M].北京:清华大学出版社,2007.
    [70]陈思平,程敬之.伪随机超声多普勒血流距离选能测量的理论分析和应用[J].西安交通大学学报,1985,19(4):1-12.
    [71]Shiozaki A, Senda S. Kitbatake A. et al. A new modulation method with range resolution for ultrasonic Doppler flow sensing [J]. Ultrasonics,1979,11:269-275.
    [72]Ruprecht J, Rupf M. On the search for good aperiodic binary invertible sequences [J]. IEEE Trans.Inform.Theory.1996,42:1604-1612.
    [73]Weleh LR, Fox MD. Praetical spread spectrum pulse compression for ultrasonic tissue imaging [J]. IEEE Trans Ultrason Ferroelectr Freq Control,1998,45(2):349-355.
    [74]Li Daoben. The perspectives of large area synchronous CDMA technology for the fourth generation mobile radio [J]. IEEE Communication Magazine,2003,41(3):114-118.
    [75]Tang X H, Fan P Z. Bounds on aperiodic and odd correlations of spreading sequences with low and zero correlation zone [J]. Eelectronics Letters,2001,37 (19):1201-1203.
    [76]Welch L R. Lower bounds on the maximum cross-correlation of signals [J]. IEEE Trans Information Theory,1974, IT20:397-399.
    [77]刘亚林.儿类扩频序列集合的设计与实现[D].四川:西南交通大学通信与信息系统,2005.
    [78]Naoki Suehiro, Mitsutoshi Hatori. N-Shift Cross-Orthogonal Sequences [J]. IEEE Transactions on Information Theory,1988,34(1):143-146.
    [79]Bjaerum S, Torp H. Clutter filter design for ultrasound color flow imaging [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control.2002,49(2):204-216.
    [80]Kim K..S, Park SI, Song I. Performance enhancement of the decorrelating detector using antenna arrays [J]. IEEE ICASSP,1998,5:3321-3324.
    [81]Hoeks A.P G, Hennerici M. Reneman R.S. Spectral Composition of Doppler Signals [J]. Ultra sound Med.Biol,1991.17(8):751-760.
    [82]王威琪,姚林鑫.超声Doppler血流测量中的过零检测[J].中国生物医学工程学报,1983,2(1):1-7.
    [83]Embree P. M, O'Brien W. D, Pulsed Doppler accuracy assessment due to frequency-dependent attenuation and Rayleigh scattering error sources [J]. IEEE Trans. Biomed. Eng,1990,37: 322-326.
    [84]Bonnefous O, Pesque P, Time domain formulation of pulse-Doppler ultrasound and blood velocity estimation by cross correlation [J]. Ultrason. Imag.,1986,8:73-85.
    [85]Walker W. F, Trahey G. E. A fundamental limit on the performance of correlation lbased phase correction and flow estimation techniques [J]. IEEE Trans. Ultrason., Ferroelect., Freq. Contr..1994,41:644-653.
    [86]Jensen JA. Estimation of blood velocities using ultrasound:A signal processing approach [M]. New York:Cambridge University Press.1996.
    [87]Loupas T. Powers JT, Gill RW. An axial velocity estimator for ultrasound blood flow imaging based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach [J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1995.42:672-688.
    [88]Ferrara K. W. Algazi V. R. A new wideband spread target maximum likelihood estimator for blood flow velocity estimation-Part I:Theory [J]. IEEE Trans. Ultrason.. Ferroelect., Freq. Contr,1991,38:1-16.
    [89]Schmidt R. O. Multiple emitter location and signal parameter estimation in Proc. RADC Spectral Estimation Wkshp, Griffiss AFB, Rome, NY,1979,243-258.
    [90]David J.Y, Jones S. A, Giddens D. P. Modem spectral analysis techniques for blood flow velocity and spectral measurements with pulsed Doppler ultrasound [J]. IEEE Trans. Ultrason. Ferroelect Freq.Contr,1991,38:589-596.
    [91]Frosberg F. On the usefulness of singular value decomposition, ARMA models in Doppler ultrairound [J]. IEEE Trans. Ultrason., Ferroelect,Freq. Contr,1991,38:418-428.
    [92]刘斌,汪源源,王威琪.利用小波变换提取声谱图参数的一种方法[J],中国生物医学工程学报,2000,19(1):104-109.
    [93]高上凯,徐国富.超声血流测量中若干新方法的研究.上海医学影象杂志1996年第5卷第1期
    [94]Wilson L. S. Description of broad-band pulsed Doppler ultrasound processing using the two-dimensional Fourier transform [J]. Ultrason. Imag,1991,13:301-315.
    [95]HU MK. Visual pattern recognition by moment invariants [J]. IRE Trans,1962,8:179-187.
    [96]傅惠民.相关系数平稳过程方法[J].机械强度,2002,24(3):400-404.
    [97]朱永松,国澄明.基于相关系数的相关匹配算法的研究[J].信号处理,2003,19(6):531-534.
    [98]刘剑平.线形代数[M].上海:华东理工大学出版社,2009.
    [99]Jensen J A. User'Guide for the Field Program. Technical University of Denmark,2001,1-65.
    [100]Allam ME, Greenleaf JF. Isomorphism between pulsed-wave Doppler ultrasound and direction-of-arrival estimation-part I:basic principles [J]. IEEE Trans Ultrason Ferro elect, Freq Contr,1996,43(5):911-922.
    [101]杨小牛,楼才义,徐建良.软件无线电原理与应用[M].北京:电子工业出版社,2001.
    [102]朱吴.基于软件无线电的数字ADCP信号处理系统的研究[D].天津:天津大学精密仪器与光电子工程学院,2005.
    [103]Eberhard Brunner. Ultrasound System Considerations and their Impact on Front-End Components [J]. Analog Devices, Inc,2002
    [104]徐志军,徐光辉CPLD/FPGA的开发与应用[M].北京:电子工业出版社,2002.
    [105]ALTERA Corporation. MAX 7000S Programmable Logic Device Data Sheet.2001,1-60.
    [106]May D. Direct digital synthesis-aspects of operation and application [J]. IEEE Colloquium on Direct Digital Frequency Synthesis,1991,11(6):1-7.
    [107]Nicholas H, Samueli H, Kim B. The optimization of direct digital frequency synthesizer performance in the presence of finite word length effects [J].In proc.42nd Annual frequency Control Symposium,1988,357-363.
    [108]CMOS 300 MSPS Wuadrature Complete-DDS-AD9854, Analog Device sine,2002.
    [109]High speed Integrated Ultrasound Diver IC-MD1711. Supertex inc,2004.
    [110]康华光,陈大饮.电子技术基础(模拟部分)[M].北京:高等教育出版社,1998.
    [111]McGillem C.D, Cooper G.R.Continuous and Discrete Signal and System Analysis, Holt, Rinehartand winstor, Inc,1974.
    [112]ICETEK-C6713Ae实验指导书.2003.
    [113]任丽香.TMS320C6000系列DSPs的原理与应用[M].北京:电子工业出版社,2001.
    [114]Ledoux LAF. Brands PJ, Hoeks APG. Reduction of the clutter component in Doppler ultrasound signals based on singular value decompositions simulation study [J].Ultrasonic Imaging.1997.19:1-18.
    [115]Kruse DE. Ferrara KW. A new high resolution color flow system using an eigendecomposition-based adaptive filter for clutter rejection [J]. IEEE Transactions Ultrasonics, Ferroelectrics and Frequency Control,2002,49:1384-1399.
    [116]Kargel C, Hobenreich G, Trummer B, et al. Adaptive clutter rejection filtering in ultrasonic strain-flow imaging [J]. IEEE Transactions Ultrasonics, Ferroelectrics and Frequency Control, 2003,50(7):824-835.
    [117]王威琪,余建国.关于超声血流速度的测试定标方法和系统[J].上海生物医学工程,1996,17(2):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700