胃肠道微型仿生机器人诊查系统及运动相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外对胃肠道疾病的诊断和治疗主要采用胃肠道内窥镜。因此,研究机器人系统来诊查胃肠道疾病是国际生物医疗器械研究的前沿和重点之一。本研究在国家高技术研究发展计划的资助下,利用微加工技术、微驱动技术、微电子技术、无线通信和能量传输技术以及临床医学技术,开展了胃肠道微型仿生机器人诊查系统及运动相容性研究。
     在对人体胃肠道的生理特征进行详细分析的基础上,研制成胃肠道微型仿生机器人诊查系统。组装完成的第一代胃肠道诊查微型机器人样机实现了无缆化要求,其外径12.1mm,长165.5mm。由1个头舱、3个驱动单元、1个尾舱共五个运动单元组成,可以实现前进、后退、停止等功能。位于头舱中的视频摄像模块采集到的胃肠道内部图像经无线通信模块发送至体外,视频传输约3帧/秒,功耗约120mW。无线能量接收模块为机器人的各个部分提供能量。第二代全覆膜式胃肠道诊查微型机器人样机在第一代样机的基础上研制而成。硅胶波纹管覆盖在整个机器人样机的外表,在保护机器人的同时减少了胃肠道黏弹性对机器人运动的负面影响。
     利用电磁耦合原理设计并研制了无线能量传输系统。这种无线能量传输方式需要两个线圈。其中发射线圈为螺线管线圈,布置在人体表面,由E类放大器或开关电路驱动。接收线圈安放于机器人的头舱。为提高无线能量传输电路的电磁耦合能效,发射和接收回路均采用谐振补偿技术,即在发射和接收回路串联或者并联谐振电容。通过调节谐振电容使发射端谐振,产生一定频率的正弦波激励电流,形成一个交变磁场。此时,处于交变磁场中的接收端线圈感生电动势。经过后续整流稳压电路,转换成直流电压为胃肠道诊查微型机器人提供稳定能量。在将无线能量传输系统应用于胃肠道微型仿生机器人诊查系统的同时,人体也将暴露于无线能量传输系统的电磁场当中。为此,建立了一个有限长密绕螺线管电磁场模型,推导了电场强度和生物组织中SAR值以及电流密度值之间的关系。并进行了SAR值和电流密度值的仿真试验。结果表明,供能480mW、工作频率36 kHz的无线能量传输系统对人体的电磁影响非常小,属安全范围内。
     研制成基于直流电动机的微型直线驱动器,具有体积小、体重轻、功重比高、控制简单等优点。考虑到系统的稳定性,建立了微型直线驱动器的有限元模型,根据有限元模态分析结果设计并优化了微型直线驱动器,避免了系统共振的产生。并建立了该微型直线驱动器的数学模型,进行了动力学分析。仿真和试验表明,该微型直线驱动器的阶跃响应时间短,受负载变化影响小,在额定电压工作时驱动力达可到2.55N,温升在36℃以下。该研究为胃肠道诊查微型机器人在人体胃肠道运行的安全性和可行性提供了保障。
     研究了胃肠道生物组织的黏弹性力学行为,提出了一般三维情况的准线性黏弹性模型。引入了拟应变能函数的指数形式,并利用最小平方的方法拟合试验曲线得到了待定的材料常数C1和C2。为了得到最低阶应变,利用应变能函数指数的二次方程形式推导出了黏弹性体的一般表达式。对于单轴拉伸试验系统,推导了黏弹性体一般表达式中各个部分的具体形式,并引用了fung的连续谱归一化松弛函数表达式,将准线性黏弹性模型简化成一维模型。利用一维黏弹性简化模型,结合两个模拟肠道应变情况的应变变形函数,求出了黏弹性组织变形时的应力-时间关系和应变-应力关系,并分析了不同参数的松弛函数对模型的影响。在机器人的运动时效性分析中,得到了在一定的应变率范围内,加载时应力响应对加载速度的不敏感性这一重要结论。从牵引效率的角度出发,分析了机器人临界步距和机器人的质量、摩擦系数、直径、初始接触长度之间的关系,得到了胃肠道诊查微型机器人运动单元需要具有较轻的重量、光滑的表面和较大的直径以及较小的接触长度的结论。根据这些结论研制成的全覆膜式胃肠道诊查微型机器人的理论临界步距由原先的6.45mm减小到了1.6mm。机器人外表覆盖的波纹管能够起到减黏降阻的作用,是依据仿生学的原理设计并加工制造。通过测试波纹管变形-力之间的关系,发现波纹管产生的弹性力最大不会超过0.12N,很容易被微型直线驱动器所克服。当微型直线驱动器伸长时,波纹管因自身的弹性恢复功能,将会助推动微型直线驱动器的挡板做伸长运动。
     研究比较了本文研制的两种胃肠道诊查机器人样机的牵引力、运动性能和离体肠道试验结果。通过牵引力和运动性能试验,分别测量了两种机器人在不同环境中的牵引力和运动速度,验证了机器人的运动模型和驱动原理。进行了离体肠道爬行试验,进一步验证了机器人模型,并对比了这两种机器人离体试验结果,发现将硅胶波纹管应用于胃肠道诊查机器人之后,机器人的运动效率得到了明显的提高。
     本文对胃肠道微型仿生机器人诊查系统的样机集成、无线能量传输、驱动技术、模型建立和离体试验等方面进行了深入的研究。这些工作为机器人诊查系统的实用化奠定了基础,系统的进一步能量供应优化和机构优化等是下一步的研究方向。
At the present day, the diagnose and therapy of the diseases of the gastrointestinal tract mainly depend on the means of gastrointestinal endoscopes. Therefore, the resea
     rch on the gastrointestinal robotic examination system is the fornter and central issue in the international medical apparatus and instruments fields. Based on the micro machining technology, micro actuation technology, microelectrionics technology, wireless communication technology, wireless power transfer technology and clinical medical technology, this study focused on the system design and the locomotion compatibility of a miniature biomimetic robotic examination system for gastrointestinal tract under the support of the National High Technology Development Program.
     A miniature biomimetic robotic examination system for gastrointestinal tract was developed based on the detailed analysis of the physiological characteristics of human gastrointestinal tract. The first assembled miniature robotic prototype for gastrointestinal examination achieved the characteristics of being wireless. It’s outer dimension is 12.1mm in diameter and 165.5mm in length and comprised one head cabin, three driver units and one tail cabin. The robot may execute instructions including forwards, backwards and halt. The images of the inner gastrointestinal tract collected by the video camera module were transmitted to the outside by the wireless communication module. The image streams at rate of 3 frames per second with power consumption of 120mW. The wireless power receiving module supported each part of the robot with energy. The second whole tectorial membrane miniature robotic prototype was developed based on the first robotic prototype, The silicone bellows were laid over the whole robotic prototype. It reduced negative influence of the gastrointestinal viscoelastic behavior and protected the robot at the same time.
     The wireless transfer systerm was developed using the electromagnetic coupling principle. This power transfer means needed two coils. The launching coil was a solenoid, which was drived by the E class amplifier or switch circuit, and would surround the human trunk. The receiving coil was embedded in the the robot. For a power-efficient realization of an inductive link, the resonance compensation technology was adopted. That is to say, the inductance at the launching and receiving side were commonly cancelled by a parallel-resonant or series-resonant capacitor. The sine exciting current with a certain frequency, which was produced by the resonant lauching coil through adjusting the resonant capacitor, generated a alternating magnetic field. Here, the inductive electromotive force was produced in the receiving coil located in the alternating magnetic field. Through the following commutation and voltage regulation circuit, the inductive electromotive force was transformed to be direct voltage which would support the robot with steady power. At the time of applying the wireless power transfer system to the miniature biomimetic robotic examination system for gastrointestinal tract, the human would exposed to the electromagnetic field. Therefore, the limited close-wound solenoid electromagnetic model was build, the relationships between the electric intensity and the specific absorption rate and current density were deduced and the simulation experiments was done. Experimental results showed that the values of the SAR and the current density related to different tissue catalogs were all very small and not exceed their own limits, respectively, when the supplying power was 480mW and the resonance frequency of operation was 36 kHz.
     A miniature linear actuator based on the direct current motor was deceloped. It had many advantages such as small volume, light weight, high power-weigth ratio and easy control, etc. Finite element model of the miniature linear actuator was built for optimizing the linear actuator to avoid the sympathetic vibration of system. The mathematics model was also built to the analysis of the dynamics of the miniature linear actuator. The simulation and experimental results showed that the step response of miniature linear actuator was short and the infection of load was small. The driving force of miniature linear actuator could reach to 2.55N and the temperature rise was under 36℃. This research had laid a theory foundation for the motion security and feasibility of the miniature robot in the human intestines lumens.
     The viscoelastic mechanical behaviors of the gastrointestinal biological tissues were studied and the general three dimension quasi-linear viscoelastic model was introduced. The exponential format of the pseudo-strain energy function was used and the material constants C1 and C2 were determined by using the least-square method to fit the experimental curve. To achieve the lowest order of the strains, the general expression of the viscoelastic bodies was deduced by using the quadratic equation of the exponential format of the pseudo-strain energy function. For a uniaxial extension system, the concrete form of the the general expression of the viscoelastic bodies was deduced and the reduced relaxation function with a continuous spectrum of Fung was cited to reduce the quasi-linear viscoelastic model to be one dimension model. The relationships of the stress-time and the stress–strain of the deforming viscoelastic tissues were solved by using the one dimension quasi-linear viscoelastic model and two deformation functions which simulated the strain of the intestine. The influence by the relaxation function with the different parameters to the model was analyzed. In the analysis of the time-availability, an important conclusion was achieved, that was the stress response had insensitivity with the load rate in a certain range of the strain ratio. The influencing factors, such as the quality of robot, the friction coefficient, the diameter, and the original touching length, to the critical pace were analyzed. The analysis results showed that the locomotion units of the robot should have the lesser weight, the smooth surface, the bigdish diameter and the lesser touching length. Based on these results, a new whole tectorial membrane miniature robot prototype for the gastrointestinal tract examination was developed. According the quasi-linear viscoelastic model, the theoretical critical pace of the new robot was minished from the former 6.45mm to 1.6mm. The bellows could play the role to reduce the adhesion and was fabricated based on the bionic principle. The relationship between the distortion and the force was tested and the maximal elasticity force of the bellows was not exceeding 0.12N which would be conquered by the miniature linear actuator easily. When the miniature linear actutor elongated, the bellows would promote the baffle of the miniature linear actuator depending itself elasticity restoration function.
     The towing test, the locomotion capability and the in-vitro experimental results were researched and compared. The towing force and locomotion rates of the two robots were measured in the different condictionss, which validated the locomotion model and the driver principle. The in-vitro experiments were done and the results showed that the locomotion efficiency of the whole tectorial membrane miniature robot was promoted obviously.
     The prototype inegration, the wireless power transfer, the driver technology, the model foundation and the in-vitro experiments were studied thoroughly. All above researches laid the solid foundation to the robot examination system applying in clinic. The power supply and mechanism optimization should be studied in the future.
引文
1.吴波,付文政.胃癌的东西方流行病学调查综述. 2007. 20(003): p. 9-12.
    2.尹紫晋.威胁国人生命的十大疾病.医疗保健器具, (6): p. 4-8.
    3. Iddan G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature, 2000. 405(25): p. 417.
    4.许国铭.消化内镜的世纪回顾与展望.当代医学, 2001. 7(5): p. 10-12.
    5.丁生伟,陆松春.消化道内窥镜检查所致的教训分析.浙江临床医学, 1999. 1(3): p. 131.
    6.王文兴.人体胃肠道无创诊查系统及其实验研究.上海:上海交通大学, 2004.
    7. RF SYSTEM lab. Endoscopic Capsule, NORIKA System. http://www.rfnorika.com/e_system/e_system_001.html, Accessed on 2006.05.03.
    8.钟捷,吴云林.胶囊内镜的临床使用及价值评估.中华消化杂志, 2003. 23(9): p. 565-567.
    9.刘为纹.国外消化道内窥镜技术的新进展.第三军医大学学报, 1985. 7(2): p. 215-217.
    10. Mackay R S, Jacobson B. Endoradiosonde. Nature, 1957. 179: p. 1239-1240.
    11. Mackay R S, Jacobson B. Radio telemetering from within the human body. Science, 1961. 134: p. 1196.
    12. Kassim I, Phee L, Ng W S, et al. Locomotion techniques for robotic colonoscopy. 2006. 25(3): p.
    49-56.
    13. Phee S J, Ng W S, Chen I M, et al. Locomotion and steering aspects in automation of colonoscopy. IEEE Engineering in medical and biology, 1997. 10(6): p. 85-96.
    14. Ikuta K, Takao N. Virtrual endoscope system with force sensation. MICCAI, 1998. 17(3): p. 293-304.
    15. Tonet O. Attanasio S.D., Megali G., Carrozza M.C., Dario P. A Semi-Automatic Hand-Held Mechatronic Endoscope with Collision-Avoidance Capabilities. International Conference on Robotic and Automation ICRA2000, 2000. 2: p. 1586-1591.
    16.殷金喜,钱晋武,沈林勇.利用硅微传感器实现智能内窥镜的主动避障.机电一体化, 2004. 10(3): p. 21-24.
    17. Wan S N, Soo J P, Choen S, et al. Development of a robotic colonoscope. Digestive Endoscopy, 2000. 12: p. 131-135.
    18. Breedveld P. Development of a Rolling Stent Endoscope. The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, 2006: p. 921-926.
    19. Given Image. Frequently Asked Questions. http://www.givenimaging.com/ en-US/HealthcareProfessionals/Pages/FAQs.aspx, Accessed on 2008.04.19.
    20. Johnson H. SmartPill hopes to expand use to the GI tract and beyond. Medical Device Daily, 2003: p. 1-2.
    21. SmartPill Diagnostics Corporation. SmartPill Diagnostics Corporation Homepage.http://www.smartpilldiagnostics.com/, Accessed on 2008.04.10.
    22. Wang L, Tang T B, Johannessen E A, et al. Integrated micro-instrumentation for dynamicgastro-intestinal tract monitoring. in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology. 2002. Madison, USA: p. 1717–1720.
    23. Wang L, Tang T B, Johannessen E, et al. An integrated sensor microsystem for industrial and biomedical applications. in IEEE Instrumentation and Measurement Technology Conference. 2002. Anchorage, USA.
    24. Wang L, Johannessen E A, Hammond P A, et al. A programmable microsystem using system-on-chip for real-time biotelemetry. in IEEE Transactions on Biomedical Engineering. 2005. 52: p. 1251-1260.
    25. Wang Wen-xing, Yan Guo-zheng, Ding Guo-qing. A miniature Bidirectional RF communication system for micro gastrointestinal robots. Journal of Medical Engineering & Technology, 2003. 27(4): p. 160-163.
    26. Wang Wen-Xing, Yan Guo-Zheng, Fang Sun, et al. A non-invasive method for gastrointestinal parameter monitoring. World Journal of Gastroenterology, 2003. 9(7): p. 905-908.
    27.重庆金山科技(有限)公司.项目介绍:OMOM胶囊. http://www.cqjs.net/products_1.shtml, Accessed on 2008.04.19.
    28. Ikuta K. Study of servo actuator using shape memory alloy. in IEEE International Conference of Robotics and Automation. 1987. Tokyo: p. 145-148.
    29. Ikuta K, Tsukamoto M, Hirose S. Shape memory alloy servo actuator system with electric resistance feedback and application for active endosope. in IEEE International conference of robotics and automation. 1988: p. 427-430.
    30. Slatkin A B, Burdich J, Grundfest W, et al. The Development of a Robotic Endoscope. in IEEE International conference on robotics and automation. 1995: p. 161-167.
    31. Slatkin A B, Burdich J, Grundfest W. The Development of a Robotic Endoscope. Proc., IEEE/RSJ Int. Conf. on Intelligent Robots and System, 1995: p. 162-171.
    32. Reynaerts D, Peirs J, Van Brusse H. Design of a shape memory actuated gastrointestinal intervention system. in 5th International Conference on New Actuators. 1996. Bremen: p. 409-412.
    33. Reynaerts D, Peirs J, Van Brusse H. Shape memory micro-actuation for a gastro-intestinal intervention system. sensors and actuators, 1999. 77(2): p. 157-166.
    34. Dario P, Ciarletta P, Menciassim A, et al. Modelling and experimental validation of the locomotion of endoscopic robots in the colon. ISER02 International Symposium on Experimental Engineering, 2001.
    35. Dario P, Allotta B, Guglielmelli E. Micromechatronics in medicine. IEEE/ASME Transactions on mechatronics, 1996. 1(2): p. 137-148.
    36. Dario P, Carrozza M C, Lencioni L, et al. A microrobotic system for colonoscopy. IEEE International Conference on Robotics and Automation, 1997: p. 1567-1572.
    37. Carrozza M C, Lencioni L, Magnani B, et al. A microrobot for colonoscopy. in Seventh International Symposium on Micro Machine and Human Science. 1996: IEEE: p. 223-228.
    38. Dario P, Carrozza M C, Pietrabissa A. Development and in vitro testing of a miniature robotic system for computer-assisted colonoscopy. Computer Aided Surgery, 1999. 4(1): p. 1-14.
    39. Dario P, Menciassi A. Robotics for Surgery. Proc. of the Second Joint EMBS/BMES Conference: p.1813-1814.
    40. Dario P, Laschi C, Menciassi A, et al. Design and development of a neurorobotic human-like guinea pig. in EMBS-BMES 2002. 2002. Houston, Texas: IEEE: p. 387-391.
    41. Thomann G, Betemps M. A new type of Colonoscope, less painful for the Engineering Society. in Second Joint EMBS/BMES conference. 2002. Houston, USA.
    42. Thomann G, Redarce T, Betemps M, et al. The design of an instrumented surgical tool for the intestinal inspection. in proc. of the 2002 IEEE Int. Workshop on Robot and Human Interactive Communication. 2002. Berlin: p. 448-453.
    43. Thomann G, Betemps M, Redarce T. The design of a new type of micro robot for the intestinal inspection. in Proc. of 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2002. Lausanne: p. 1385-1390.
    44. Liu W, Menciassi A, Scapellato S, et al. A biomimetic sensor for a crawling minirobot. Robotics and Autonomous Systems, 2006. 54(7): p. 513-528.
    45. Menciassi A, Gorini S, Pernorio G, et al. Design, fabrication and performances of a biomimetic robotic earthworm. Proceedings - 2004 IEEE International Conference on Robotics and Biomimetics, 2004, : p. 274-278.
    46. Menciassi A, Stefanini C, Gorini S, et al. Legged locomotion in the gastrointestinal tract problem analysis and preliminary technological activity. in IEEE/RSJ International Conference on Intelligent Robots and Systems. 2004. Sendai,Japan: p. 937-942.
    47. Menciassi A, Stefanini C, Gorini S, et al. Locomotion of a Legged Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results. in the 26th Annual International Conference of the IEEE EMBS 2004. San Francisco,USA: p. 2767-2770.
    48. Gorini S, Quirini M, Menciassi A, et al. A Novel SMA-Based Actuator for a Legged Endoscopic Capsule Biomedical Robotics and Biomechatronics. he First IEEE/RAS-EMBS International Conference, 2006.
    49. Stefanini C, Menciassi A, Dario P. Modeling and experiments on a legged microrobot locomoting in a tubular. compliant and slippery environment, International Journal of Robotics Research, 2006. 25(5-6): p. 551-560.
    50. Menciassi A, Gorini S, Moglia A, et al. Clamping Tools of a Capsule for Monitoring the Gastrointestinal Tract. in IEEE International Conference on Robotics and Automation. 2005. Barcelona, Spain: p. 1309-1314.
    51. Menciassi A, Moglia A, Gorini S, et al. Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract. Journal of Micromechanics and Microengineering, 2005. 15 (11): p. 2045-2055.
    52. Pak N N, Scapellato S, La Spina G, et al. Biomimetic Design of a Polychaete Robot Using IPMC Actuator. in Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference on. 2006: p. 666-671.
    53. Intelligent Microsystem Center, Major Achievements. http://www.microsystem.re.kr/main_eng/ default.asp, Accessed on 2007.01.05.
    54. Byungkyu K, Yoon Seo-Jin, Jee C Y. An earthworm-like locomotive mechanism for capsuleendoscopes, Intelligent Robots and Systems, 2005. (IROS 2005). in 2005 IEEE/RSJ International Conference on. 2005: p. 2997-3002.
    55. Byungkyu K, Gu L M, Pyo L Y, et al. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators, A: Physical, 2006. 125(2): p. 429-437.
    56. Park S, Park H J, Park S J, et al. Capsular Locomotive Microrobot for Gastrointestinal Tract, Engineering in Medicine and Biology Society, 2006. in EMBS '06. 28th Annual International Conference of the IEEE. 2006: p. 2211-2214.
    57. Accoto D, Campolo D, Castrataro P, et al. A Soft Electrochemical Actuator for Biomedical Robotics. in 2005 IEEE International Conference on Robotics and Automation. 2005. Barcelona, Spain: p. 2915-2920.
    58. Dodou D, Girard D, Breedveld P, et al. Intestinal Locomotion by Means of Mucoadhesive Films. in IEEE International Conference on Robotics and Automation. 2005. Barcelona: p. 352-359.
    59. Cheung E, Karagozler M E, Park S, et al. A New Endoscopic Microcapsule Robot using Beetle Inspired Microfibrillar Adhesives. in IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2005. Monterey, California, USA: p. 551-557.
    60. Jiwoon K, Sukho P, Moon G, et al. Design and fabrication of a bio material property measurement system. in IEEE/RSJ International Conference on Intelligent Robots and Systems. 2004. Sendai, Japan: p. 1299-1304.
    61. Jinseok K, Byungkyu K, Soohyun K, et al. A reversible thermo sensitive hydrogel clamper of locomotive mechanism in gastro intestinal tract. in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems. 2005. Seoul, Korea: p. 749-752.
    62. Jiwoon K, Sukho P, Byungkyu K, et al. Bio-Material Property Measurement System for Locomotive Mechanism in Gastro-Intestinal Tract. 2005 IEEE International Conference on Robotics and Automation, 2005: p. 1303-1308.
    63.何斌.医用微型机器人动力学建模及其行为智能控制研究.杭州:浙江大学, 2001. p. 7.
    64.周银生,贺惠农,顾大强.医用微型机器人无损伤体内驱动方法.科学通报, 1999. 44: p. 2210-2213.
    65. Yan G Z, Zuo J Y. A Self-Propelling Endoscope System by Squirmy Robot. in 2003 International symposium on micromechatronics and human science. 2003: p. 159-163.
    66. Zuo J Y, Yan G Z, Gao Z J. A micro creeping robot for colonoscopy based on earthworm. Journal of Medical Engineering and Technology, 2005. 29(1): p. 1-7.
    67.高立明,林良明,颜国正,等.全方向蠕动机器人驱动内窥镜系统的研究.中国生物医学工程学报, 1998(1).
    68.颜国正,林良明,丁国清,等.新型机器人驱动内窥镜系统的研究高技术通讯, 2000(5).
    69.迟东祥,颜国正,林良明.基于蚯蚓运动原理的肠道检查微小机器人内窥镜系统.机器人, 2002. 24(3): p. 222-228.
    70.迟东祥,颜国正,林良明.用于肠道检查的微小机器人内窥镜系统.中国生物医学工程学报, 2002. 26(3): p. 180-184.
    71.罗继军,章亚男,沈林勇.机器人主动内窥镜的自动介入技术初探.机电一体化, 2003. 12: p. 21-23.
    72.钱继武,李毅.柔软管道中机器人蠕动机构研究.机械与电子, 2001. 5: p. 37-38.
    73. WANG X, MENG M. An Inchworm-like locomotion mechanism based on magnetic actuator for active capsule endoscope. in Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006. Beijing, China: p. 1267-1272.
    74. Chan Y, Meng M, Wang X. A Prototype Design of Wireless Capsule Endoscope. in Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls. 2005. Canada: p. 400-403.
    75. Thumim A, Reed G, Lupo F, et al. High power electromagnetic energy transfer for totally implanted devices, Magnetics. IEEE Transactions on, 1970. 6(2): p. 326-332.
    76. IKenji W, Masaya W, Setsuo T, et al. The design of core-type transcutaneous energy transmission systems for artificial heart 2004: p. 948-952.
    77. Nishimura T H, Eguchi T, Kubota A, et al. An improved transmission energy transformer for a non invasive rechargeable battery to artificial organs. 2001. 3: p. 1209-1214.
    78. Wang G, Liu W, Mohanasankar S, et al. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005. 52(10): p. 2109-2117.
    79. RF SYSTEM Lab. The Next Generation Capsule Endoscope, http://www.rfamerica.com /sayaka/index.html. Accessed on 2008.04.19.
    80. Son J H, Hwang J S, Song K M, et al. Design of millimeter-sized coils for power transmission to in vivo robotic capsules. in Proceedings of the 3rd IASTED International Conference on Biomedical Engineering 2005. 2005: p. 499-502.
    81. Lenaerts B, Puers R. An inductive power link for a wireless endoscope. Biosensors and Bioelectronics, 2006: p. 1-6.
    82. Lenaerts B, Puers R. Inductive powering of a freely moving system. Sensors and Actuators, A: Physical, 2005. 123-124(9): p. 522-530.
    83. Lenaerts B, Puers R. An omnidirectional transcutaneous power link for capsule endoscopy. in Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on. 2006.4.
    84. Olympus Medical Systems Corporation. Development of Capsule Endoscopes and Peripheral Technologies for further Expansion and Progress in Endoscope Applications, http://www. olympus.co.jp/en/news/2004b/nr041130capsle.cfm. Accessed on 2008.04.25.
    85.严振国.正常人体解剖学.上海科学技术出版社, 1996: p. 98-105.
    86.楚宪襄,李名扬等.人体解剖学.河南医科大学出版社, 1997: p. 93-110.
    87.成令忠,王一飞,钟翠平.组织胚胎学.上海科学技术文献出版社, 2003.
    88.张经济,连至诚,许冠荪,等.消化道生理及病理生理学:基础与临床. 1997: p. 1.
    89.周吕,柯美云.胃肠动力学.北京:科学出版社, 1999. p. 112-114.
    90.许国铭.胃肠动力研究进展.云南医药, 1997. 18(4): p. 312-315.
    91.林良明.机电系统在医疗工程中的应用研究.中国医疗器械信息, 2003. 9(5): p. 4-7.
    92.施卫平,任露泉.蚯蚓蠕动过程中非光滑波纹形体表的力学分析.力学与实践, 2005: p. 73-74.
    93.安瑞永,黄薇.蚯蚓运动行为的观察与研究.生物学通报, 1995. 30(6): p. 42.
    94.米本和也[日]. CCD/CMOS图像传感器基础与应用北京:科学出版社, 2006.
    95.钱亚生曹志刚.现代通信原理.北京:清华大学出版社, 1992.
    96.钟顺时,钮茂德.电磁场理论基础.西安:西安电子科技大学出版社, 1995.
    97.冯亚伯.电磁场理论.成都:电子科技大学出版社, 1995.
    98. Ma H, Zhou W. Modeling a current source push-pull resonant converter for loosely coupled power transfer systems. in IEEE industrial Electronics Society. 2004. Busan, Korea: p. 1024-1029.
    99. Sato F, Nomoto T, Kano G, et al. A new contactless power-signal transmission device for implanted functional electrical stimulation (FES). IEEE Transactions on Magnetics, 2004. 40(4): p. 2964-2966.
    100. Ghahary A, Cho B H. Design of transcutaneous energy transmission system using a series resonant converter. IEEE Transactions on Power Electronics, 1992. 7(2): p. 261-269.
    101. Ma G Y, Yan G Z, He X. Power transmission for gastrointestinal microsystems using inductive coupling. Physiol Meas, 2007. 28: p. 9-18.
    102. Masamichi K. Electromegnetics in Biology. Springer, 2006.
    103.李缉熙,牛中奇.生物电磁学概论.西安:西安电子科技大学出版社, 1990.
    104. Polk C, Postow E. Handbook of Biological Effects of Electromagnetic Fields. Boca Raton, Florida: CRC Press, 1996.
    105. International Commission on Non-Ionizing Radiation Protection, Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz). 1998.
    106. Dennis M, Sullivan, David T, et al. Use of the finite-difference time-domain method in calculating EM absorption in human tissues IEEE Transactions on Biomedical Engineering, 1987. 2: p. 148-157.
    107. Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol, 1996. 41: p. 2231-2249.
    108. Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol., 1996. 41: p. 2251-2269
    109.左建勇,颜国正.基于蚯蚓原理的多节蠕动机器人.机器人, 2004. 26(4): p. 320-324.
    110.傅志方.模态分析理论与应用.上海:上海交通大学出版社, 2000. p. 1-55.
    111.张永昌. MSC.Nastran有限元分析理论基础与应用北京:科学出版社2004.
    112.郭乙木.有限元方法与MSC.NASTRAN软件的工程应用.北京:机械工业出版社, 2006. p. 100-119.
    113.马爱军,周传月,王旭. Patran和Nastran有限元分析专业教程.北京:清华大学出版社, 2005.
    114.谢永春.双环减速器运动特性及其故障诊断研究.重庆:重庆大学, 2004.
    115. Federico S, Grillo A, Giaquinta G, et al. Convex Fung-type potentials for biological tissues. Meccanica, 2007.
    116. Gregersen H, Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterol, 1996. 8: p. 277-297.
    117.冯元桢.生物力学.长沙:湖南科学技术出版社, 1983. p. 320-324.
    118.冯元桢.生物力学.北京:科学出版社, 1986. p. 115.
    119.冯元桢.生物力学--活组织的力学特性.长沙:湖南科学技术出版社, 1986.
    120. Fung Y C, Fronek K, patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. American Journal of Physiology socirty, 1979. 237: p. 620-631.
    121. Fung F C. A First Course in Continuum Mechanics. in Third Ed. Prentice-Hall, Englewood Cliffs. 1994. NJ.
    122. Chaudhry H, Huang C Y, Schleip R, et al. Viscoelastic behavior of human fasciae under extension in manual therapy. Journal of Bodywork and Movement Therapies, 2007. 11: p. 159–167.
    123. J Iatridis, J Wu, J Yandow, et al. Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension. Connective Tissue Research, 2003. 44: p. 208–217.
    124. Phee L, Menciassi A, Gorini S, et al. An innovative locomotion principle for minirobots moving in the gastrointestinal trast. Int. Conf. of Robotics& Autonomous, 2001: p. 1125-1130.
    125.王坤东.结肠诊查微型仿生机器人系统关键技术及实验研究.上海:上海交通大学, 2006.
    126.李洁,黄平,罗海堤.体内微机构与动物肠道摩擦实验研究.润滑与密封, 2006. 3: p. 119-122.
    127. Freakley P K, Payne A R.橡胶在工程中应用的理论和实践.北京:化学工业出版社, 1985.
    128.刘怀庆,任露泉,董小刚.波纹形典型土壤动物非光滑体表的演化建模及其计算机实现.工程数学学报, 2006. 23(5): p. 767-774.
    129. RenLuquan. Soil adhesion and bionimeties of soil-engaging components in anti-adhesion against soil: a review. in Proc 13th international Conf ISTVS Munieh Sept. 1999. Germany: p. 14-17.
    130. RenLuquan, CongQian, TongJin, et al. Reducing adhesion of soil against loading soil using bionic electro-osmosis method J Teramechanics, 2001: p. 211-219.
    131.丛茜.几何非光滑生物体表形态的分类学研究.农业工程学报, 1992. 8(2): p. 7-12.
    132.葛子余.环状薄壁金属波纹管设计规范初探.化工设备与管道, 1985. 5: p. 3-6.
    133.陈义.中国动物图谱.北京:科学出版, 1959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700