用户名: 密码: 验证码:
剪切角、流屑角模型及刀具状态监测方法的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属切削加工是机械制造业的主导加工方法,其机理分析成果对各种生产线和各类零部件的加工具有重大的指导意义。金属切削过程是一个复杂的非线性动力学变形过程,传统的研究方法都对切削过程进行了大量的简化,使得研究结果不能很好地完全反映实际的切削过程。因此,为了提高切削结果预测的准确度,仍需要对切削加工基础机理做进一步的研究。
     剪切角是切削加工中一个重要的物理量,几乎各种计算都与剪切角有关。本文对切削能量平衡方程V·F=WS+Wf进行变换,提出一种新的关于直角切削的剪切角预报模型。与以往剪切角的预报模型相比,由于在加工过程中对模型中的重要参数主切削力F进行了测量,该模型能够考虑到实际的复杂切削状况对剪切角的影响,减少了以往单纯的理论推导对剪切角预报精度带来的影响,具有较理想的预报精度。
     作为一种普遍存在的切削方式,三维切削具有刀具主副刃同时参与切削的特点。本文首次研究了刀具参与切削的主副刃长之比对切削力的影响,分析了各向切削力随参与切削的主副刃长比的变化特点。分析结果与通过切削力经验公式得到的定性理论分析结果一致。针对三维切削中的Usui双刃切削模型和V型槽切削模型,本文分别提出了两种流屑角预测模型,Usui双刃切削模型条件下的流屑角预测模型从总剪切面积最小的角度阐述了切屑流出机理;V型槽切削条件下的流屑角预测模型则由切削能量平衡方程推导得到。这两种预测模型的预测结果与实验测量值都具有较好的一致性。本文首次研究了Usui双刃切削模型和V型槽切削条件下的流屑角与参与切削的刀具主副刃长比之间的关系:在等效切削面积一定的前提下,流屑角随着切削刃长比RATIO的增加而减小,切削刃长比RATIO等于4为转折点,在此之前和之后流屑角变化曲线的下降趋势相异。
     刀具的磨损状况对零件的加工质量、机床的寿命以及操作者的安全具有重要的影响。本文采用图像处理技术,通过对内窥镜数字摄像系统获取的反映刀具磨损情况的图形进行处理,从而实现刀具状态的直接监测;通过力传感器采集切削过程中的切削力信号,借助小波变换对其进行了多分辨率分析。利用小波变换模的极大值和信号奇异点的关系,分析了用Lip指数来描述的切削力信号局部奇异性,通过观察奇异点的位置等信息得到切削刀具的磨损情况,从而实现了对刀具状态的间接监测。实验表明,通过对切削力信号进行小波分析来实现刀具磨损的监测具有较好的可靠性。
     本文对剪切角以及三维切削过程中流屑角、切削力等若干方面进行了研究,并通过有限元软件仿真以及实验进行验证,同时还对刀具磨损监测方法进行了研究。本文的研究结果将为切削加工理论与应用的进一步发展提供有益的借鉴。
Metal cutting is a leading machining method in manufacturing industry, and its mechanism research has great directive significance to all kinds of production lines and machining of parts. Metal cutting is a complicated nonlinear deformation process which has been simplified in previous researches. However, the simplified models in previous researches didn't have good performances to reflect actual cutting process. Further studies of cutting mechanism are still needed to improve prediction results of metal cutting.
     Shear angle is an important parameter in metal cutting and is almost used in all kinds of cutting calculation. Using the cutting power equilibrium equation V-F=Ws+Wf, a new shear angle prediction model for orthogonal cutting was proposed in the study. The principal cutting force F which can reflect the complicated cutting situation was experimentally measured in the study. By substituting into the cutting power equilibrium equation with the measured value of the principal cutting force F, the prediction model has more accurate prediction than just theoretical derivation without experimental data.
     Three-dimensional (3D) cutting is a common cutting situation with the main and the minor cutting edge in engagement with workpiece. In this study, RATIO is defined as the ratio of the main to the minor cutting edge length engaged in cutting, and the effect of RATIO on cutting force was first proposed. The research results are in good accordance with qualitative analysis results derived from empirical formula of cutting force. Two prediction models of chip flow angle were proposed for Usui cutting model and helical V grooves turning:the minimum value of the total shear area produced by the two cutting edges was calculated to determine the chip flow direction for Usui cutting model; chip flow angle prediction model was expressed as the transformed cutting power equilibrium equation for V grooves turning. The relation between chip flow angle and the value of RATIO was first studied for the two cutting situations:chip flow angle decreases with the increase of RATIO at the constant equivalent cutting area; RATIO equal to 4 is the turning point before and after which the drop trend of the chip flow angle is different comparatively.
     Tool wear greatly affects quality of workpiece, machine life and safety of machine operators. In this study, image processing technology was applied to direct monitoring of tool condition by processing tool wear image obtained via endoscopy digital photographic system. Multi-resolution analysis was applied to the analysis of cutting force signals acquired by a turning dynamometer. Using the relationship between wavelet transform modulus maxima and singular point, the signal point location can be analyzed, and the local singularity was described by Lipschitz index. The wearing condition of cutting tool can be acquired by location of singular point and its other information to realize indirect tool condition monitoring. The feasibility of cutting tool wearing detection by wavelet transformation was validated by experiments.
     Shear angle, cutting force and chip flow angle in 3D cutting were analyzed in this study, and the research results were validated by FEM software and experimental measurement. In addition, tool wear monitoring was investigated in this study. The research conclusions obtained in this dissertation will be very helpful for the further application and studies of metal cutting.
引文
[1]郭建英.基于不同刀-屑摩擦模型的金属切削过程动力学研究[D].太原理工大学博士学位论文.2010
    [2]雷源忠,黎明.21世纪的制造科学[J].中国机械工程.1999,10(6):689-691
    [3]袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,1998
    [4]袁巨龙.功能陶瓷的超精密加工技术[M].哈尔滨:哈尔滨工业大学出版社,2000
    [5]严隽琪,范秀敏,蒋祖华等。虚拟制造的理论与技术基础研究[J].中国机械工程.1999,10(9):1068-1071
    [6]杨叔子,吴波.依托基金项目开展创新研究[J].中国机械工程.1999,10(9):987-990
    [7]郑力,刘大成,李志忠等.数字化加工过程:概念、结构及其应用[J].中国机械工程.1999,10(9):1060-1062
    [8]曾攀,石亦平.工程中数值分析的复杂力学建模与高精度方法[J].中国科学基金.2000,2:89-91
    [9]J. Corbett, P. A. McKeown, G. N. Peggs et al.. Nanotechnology:international developments and emerging products [J]. Annals of CIRP.2000,49(2):523-546
    [10]周泽华.金属切削原理[M].上海:上海科学技术出版社,1984
    [11]杨荣福,董申.金属切削原理[M].北京:机械工业出版社,1988
    [12]谢峰,起吉文,张宗高等.剪切角理论研究有限元新方法探索[J].中国机械工程.2003,14(18):1539-1541
    [13]Boothryod G. Fundamentals of metal machining and machine tools [M]. Washington.1975
    [14]范继美,万光珉.位错理论及其在金属切削中的应用[M].上海:上海交通大学出版社,1991
    [15]万光珉,范继美.位错理论在金属切削中的应用[J].昆明工学院学报.1991,16(5):54-58
    [16]张景耀,牛玉舒.金属切削过程中位错理论探索[J].机械设计与制造.1997,6:45-46
    [17]林晶,顾立志等.超声波振动切削剪切应力的研究[J].佳木斯大学学报:自然科学版.2001,19(4):337-339
    [18]王扬,杨立军等.A1203颗粒增强铝基复合材料激光加热辅助切削的切削特性[J].中国机械工程.2003,14(4):344-346
    [19]武文革,刘战强.基于Bauschinger效应的逆向精切削变形机理[J].工具技术.2006,40(3):56-59
    [20]梁迎春,盆洪民,白清顺.单晶Cu材料纳米切削特性的分子动力学模拟[J].金属学报.2009,45(10):1205-1210
    [21]戈晓岚,姜左,许晓静等SiCp/Cu复合材料切削加工性及其加工表面微观结构研究[J].中国机械工程.2006,17(9):965-968
    [22]Anandakrishnan, V, Mahamani, A. Investigations of flank wear, cutting force, and surface roughness in the machining of Al-6061-TiB(2) in situ metal matrix composites produced by flux-assisted synthesis[J]. INT J ADV MANUF TECH.2011,55:65-73
    [23]Damir, A, Ng, EG, Elbestawi, M. Force prediction and stability analysis of plunge milling of systems with rigid and flexible workpiece [J]. INT J ADV MANUF TECH. 2011,54:853-877
    [24]Li, BL, Wang, XL, Hu, YJ, et al.. Analytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone model [J]. INT J ADV MANUF TECH.2011, 54:431-443
    [25]Cao, QY, Xue, DY, Zhao, J, et al.. A cutting force model considering influence of radius of curvature for sculptured surface machining [J]. INT J ADV MANUF TECH.2011, 54:821-835
    [26]李振加,融亦鸣等.切屑空间运动轨迹及其约束方程的研究[J].机械工程学报.2001,37(12):42-46,50
    [27]郑敏利,融亦鸣等.形成切屑上向弯曲非折断插入区的理论研究[J].机械工程学报.2001,37(8):106-109
    [28]Colwell LV. Predicting the angle of chip flow for single point cutting tools [J]. Trans ASME.1954,76(2):199-204
    [29]樊宁,郭培全等.刀具磨损过程切削力频谱特性的研究[J].组合机床与自动化加工技术,2008(5):69-71
    [30]舒服华.基于小波神经网络的刀具状态监测[J].组合机床与自动化加工技术,2006(1):69-70
    [31]刘小斌.数控机床刀具磨损状态AR建模与研究[J].机械研究与应用.2007,20(3):33-34
    [32]崔敬巍,谢里阳,刘晓霞.应用MCEWMA控制图监测刀具磨损过程[J].东北大学学报:自然科学版,2007,28(5):708-711
    [33]Huseyin Metin Ertunc, Cuneyt Oysu. Drill wear monitoring using cutting force signals[J].Mechatronics,2004,14(5):533-548
    [34]Scheffer C, Kratz H, Heyns P S, et al.. Development of a tool wear-monitoring system for hand turning [J]. International journal of machine tools & manufacture,2003,43(10):973-985
    [35]陈捷,张成强.基于BP神经网络的盘形成形铣刀的刀具磨损诊断研究[J].制造技术与机床.2010,12:34-37
    [36]Dan L, Mathew J. Tool wear and failure monitoring techniques for turning-A review[J]. International Journal of Machine Tools and Manufacture,1990,30:579-598
    [37]关山,康晓峰.在线金属切削刀具磨损状态监测研究的回顾与展望Ⅰ:监测信号的选择[J].机床与液压.2010,38(11):127-132
    [38]高宏力.切削加工过程中刀具磨损的智能监测技术研究[D].西南交通大学博士学位论文.2005
    [39]李圣怡,吴学忠,范大鹏.多传感器融合理论及其在智能制造系统中的应用[M].长沙:国防科技大学出版社,1998
    [40]李世杰.用切削速度模型求解剪切角的新方法[J].工具技术,1997,31(10):3-6
    [41]张慧丽,贺斌,杨传华等.预报正交切削剪切角的修正拉格朗日有限元法[J].佳木斯大学学报,2001,19(2):109-112
    [42]杨国权,王春,李国和.一种新的剪切角预报方法的研究[J].机床与液压,2007,35(3):61-62,93
    [43]王丽平,王秀伦,马自勤.金属切削加工过程的有限元模拟[J].工具技术,2009,43(4):59-62
    [44]张幼桢.金属切削理论[M].北京:航空工业出版社,1988
    [45]Isik,Y. Tool life and performance comparison of coated tools in metal cutting [J]. INT J MATER PROD TEC,2010,39:240-250
    [46]Prasad,BS, Sarcar,MMM, Ben,BS. Development of a system for monitoring tool condition using acousto-optic emission signal in face turning-an experimental approach [J]. INT JADV MANUF TECH,2010,51:57-67
    [47]Usui,E, Hirota,A, Masuko. Analytical predictions of three dimensional cutting process: part 1 basic cutting model and energy approach [J]. ASME J Eng Ind,1978,100:222-228
    [48]Usui,E, Hirota,A. Analytical prediction of three dimensional cutting process:part 2 chip formation and cutting force with conventional single point tool [J]. ASME J Eng Ind,1978,100:229 235
    [49]Adibi-Sedeh,AH, Madhavan,V, Bahr,B. Upper bound analysis of turning using sharp corner tools[J]. Machining Science and Technology,2004,8(2):277-303
    [50]Seethaler,RJ, Yellowley,I, An upper-bound cutting model for oblique cutting tools with a nose radius [J]. Int. J.Mach. Tools Manufact,1997,37(2):119-134
    [51]GERE, JM. Mechanics of materials [M]. Kentucky:Thomson Learning,2001
    [52]夏祖印,张能武.机械加工实用手册[M].合肥:合肥科学技术出版社,2008
    [53]陈日曜.金属切削原理[M].北京:机械工业出版社,1993
    [54]中山一雄.金属切削加工理论[M].北京:机械工业出版社,1985
    [55]Ertunc, HM, Oysu Cuneyt. Drill wear monitoring using cutting force signals[J]. Mechatronics,2004,14:533-548.
    [56]Ertunc, HM, Loparo, KA. A decision fusion algorithm for tool wear condition monitoring in drilling[J]. Int J Mach Tool Manuf,2001,41:1347-1362.
    [57]Sr D E Dimda, Lister,PM. On-line metal cutting tool condition monitoring I:force and vibration analyses [J]. International Journal of Machine Tools & Manufacture,2000,40:739-768.
    [58]Cakir M Cemal, Isik Yahya. Detecting tool breakage in turning AISI1050 steel using Coated and uncoated cutting tools [J]. Journal of Materials Processing Technology,2005,159:191-198
    [59]Ghasempoor, A, Jeswiet, J, Moore, TN. Real time implementation of on-line tool condition monitoring in turning[J]. Int J Mach Tool Manuf,1999,39:1883-1902
    [60]许小村,刘世巨,赵伯颖等.对称V形槽切削的切削力研究[J].哈尔滨科学技术大学学报,1996,20(2):27-31
    [61]许小村,李振加,付德利等.非对称V形刃斜角切削切削力和流屑角的理论预测[J].哈尔滨理工大学学报,1996,1(2):5-9
    [62]Wang QM, Lin HL, Zhang ZF. Prediction of chip flow angle to study the relation between chip flow and ratio of the cutting edge lengths using sharp corner tools[J].INT J ADV MANUF TECH. DOI 10.1007/s00170-011-3231-8
    [63]洪明虎,黄志辉,郑泽晔.基于Deform3D加工中心钻削加工仿真研究[J].机械制造,2010,5:18-19
    [64]Jawahir, IS, van Luttervelt CA. Recent developments in chip control research and application[J]. Ann CIRP,1993,42:659-693
    [65]Van Luttervelt CA, Childs, TH, Jawahir, IS, et al.. Present situation and future trends in modeling of machining operations[J]. Ann CIRP, 1998,47:587-626
    [66]Jawahir, IS, Ghosh, R, Fang XD, Li XP. An investigation of the effects of chip flow on tool-wear in machining with complex grooved tools [J]. Wear, 1995,184:145-154
    [67]万珍平,邓文君,汤勇等.双刃斜角切削中流屑角的变化规律[J].华南理工大学学报:自然科学版,2008,36(8):83-87
    [68]Armarego, EJA. Machining with double cutting edge tools I:symmetric triangular cuts[J]. International Journal of Machine Tool Design and Research,1967,7(1):23
    [69]Stabler GV. The fundamentals geometry of cutting tools [J]. Proc Inst Mech Eng,1951, 165:14-21
    [70]Stabler GV. The chip flow law and its consequences [J]. Proc.5th Int. MTDR Conf,1964: 243-251
    [71]Bradley, HJ, Thomas, AD. Investigation of the direction of chip motion in diamond turning[J]. PRECIS ENG,2001,25(2):155-164
    [72]Okushima, K, Minato, K. On the behavior of chip in steel cutting[J]. Bulletin JSME,1959,2(5):58-64
    [73]Russell, JK, Brown, RH. The measurement of chip flow direction[J]. International Journal of Machine Tool Design and Research, 1966,6:129
    [74]G. K.Lal. An experimental study of oblique cutting with single-edged tool[J]. International Journal of Machine Tool Design and Research, 1982,22:269
    [75]Morcos, WA. A solution of the free oblique continuous cutting problem in condition of light friction at chip-tool interface[J]. J Engng Ind,1972,94:1124
    [76]Hu RS, Mathew P, Oxley PLB, Young HT. Allowing for end cutting edge effects in predicting forces in bar turning with oblique machining conditions[J]. Proc Inst Mech Eng,1986,200(part C):89-99
    [77]Young HT, Mathew P, Oxley PLB. Allowing for nose radius effect in predicting the chip flow direction and cutting forces in bar turning [J]. Proc Inst Mech Eng,1987,201(C3):213-226
    [78]Hu RS, Mathew P, Oxley PLB, et al.. Allowing for end cutting edge effects in predicting forces in bar turning with oblique machining conditions[J]. Proc Inst Mech Eng,1986,200(C2):89-99
    [79]Armarego EJA, Wiriyacosol S. Oblique machining with triangular form tools I:theoretical investigation[J]. International Journal of Machine Tool Design and Research,1978,18(2):67-80
    [80]Armarego EJA, Wiriyacosol S. Oblique machining with triangular form tools II:experimental investigation[J]. International Journal of Machine Tool Design and Research,1978,18(3):153-165
    [81]Brown RH, Armarego EJA. Oblique machining with a single cutting edge[J]. International Journal of Machine Tool Design and Research,1964, 4:9
    [82]Rebenstein C. The mechanics of continuous chip formation in oblique cutting in the absence of chip distortion:part I-Theory[J]. International Journal of Machine Tool Design and Research,1983,23:11
    [83]Armarego EJA, Brown RH. The Machining of Metals [M]. New Jersey:Prentice Hall,1969
    [84]Spaans C. A systematic approach to three-dimensional chip curl[J]. Chip breaking and chip control,1970,70:241
    [85]Jiang CY, Zhang YZ, Chi ZJ. Experimental research of the chip flow direction and its application to the chip control[J]. Annals of the CIRP,1984,33:1
    [86]Shamoto E, Altintas Y. Prediction of shear angle in cutting with maximum shear stress and minimum energy principles[J]. J Manuf Sci Eng,1999, 121:399-407
    [87]Adibi-Sedeh AH, Madhavan V, Bahr B. Upper bound analysis of oblique cutting with nose radius tools[J]. Int J Mach Tool Manuf,2002,42 (9):1081-1094
    [88]Adibi-Sedeh AH, Madhavan V, Bahr B. Upper bound analysis of oblique cutting: improved method of calculating the friction area[J]. Int J Mach Tool Manuf, 2003,43:485-492
    [89]John SS, Albert JS, Lin JC. An analytical finite element model for predicting three-dimensional tool forces and chip flow[J]. Int J Mach Tool Manuf, 2002,42:723-731
    [90]Wen DH, Zheng L, Li ZZ, et al.. An improved chip flow model considering cutting geometry variations based on the equivalent cutting edge method [J]. Proc Inst Mech Eng Part B:J Engineering manufacture,2003,217(12):1737-1745
    [91]Wen DH, Zheng L, Li ZZ, et al.. On the prediction of chip flow angle in non-free oblique machining [J]. Proc Inst Mech Eng Part B:J Engineering manufacture,2004,218(10):1267-1278
    [92]Zou GP, Yellowley I, Seethaler RJ. A new approach to the modeling of oblique cutting processes [J]. Int J Mach Tool Manuf,2009,49:701-707
    [93]Dogra AJS, Kapoor SG, Devor RE. Mechanistic model for tapping process with emphasis on process faults and hole geometry [J]. J Manuf Sci Eng,2002,124:18-25
    [94]Suzuki T, Ariura Y, Umezaki Y. Basic study on cutting forces in gear cutting: theory of cutting with two continuous symmetrical cutting edges [J]. JSME International Journal,1993,36:543-549
    [95]Murat K, Mirigul A, Erhan A. Prediction of chip flow angle in orthogonal turning of mild steel by neural network approach [J]. Int J Adv Manuf Technol, 2007,33:251-259
    [96]翟元盛,梁迎春,王洪祥.精密切削过程三维有限元分析[J].工具技术,2007,41(96):55-58
    [97]Wang J. Development of a chip flow model for turning operations [J]. Int J Mach Tool Manuf,2001,41:1265-1274
    [98]于瑛瑛,白铁钧.正交试验设计在37SiMnCrNiMoV高强钢过载试验中的应用[J].装备制造技术,2007,11:22-23
    [99]王伟,贠超.机器人机构精度综合的正交试验法[J].机械工程学报,2009,45(11):18-24
    [100]Montgomery D. Design and analysis of experiments [M]. New York:John Wiley and Sons-Inc.,2001
    [101]董如何,肖必华,方永水.正交实验设计的理论分析方法及应用[J].安徽建筑工业学院学报(自然科学版),2004,12(6):103-106
    [102]魏国丰,王巍,须莹等.加工铸铝合金时切削用量对切削热的影响分析[J].工具技术,2009,43(10):29-30
    [103]Lan TC, Wang MY. Competitive parameter optimization of multi-quality CNC turning[J]. Int J Adv Manuf Technol,2009,41:820-826
    [104]Mohan LV, Shunmugam MS. An orthogonal array based optimization algorithm for computer-aided measurement of worm surface [J]. Int J Adv Manuf Technol, 2006,30:434-443
    [105]罗明军,王哲.足式步行机器人的动态仿真及结构优化[J].煤矿机械,2008,29(8):26-28
    [106]魏国丰,须莹,王巍等.影响铸铝合金ZL108切削力主要因素分析[J].机械设计与制造,2010,1:185-186
    [107]曹自洋,何宁,李亮.微细铣削切削力正交实验研究[J].工具技术,2010,44(10):11-14
    [108]刘鹏,徐九华,冯素玲等.PCD刀具高速铣削TA15钛合金切削力的研究[J].南京航空航天大学学报,2010,42(2):224-229
    [109]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001
    [110]魏浩征,李志远,王晓军.关于叉车进气系统降噪的研究[J].合肥工业大学学报:自然科学版,2007,30(6):697-700
    [111]董昕,于秀山.正交试验方法在软件测试中的应用[J].北京化工大学学报:自然科学版,2007,34(A01):130-132
    [112]Jeang A, Chang CL. Combined robust parameter and tolerance design using orthogonal arrays [J]. Int J Adv Manuf Technol,2002,19:442-447
    [113]Lin CL, Lin JL, Ko TC. Optimization of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method [J]. Int J Adv Manuf Technol,2002,19:271-277
    [114]张曙.以独立制造岛为基础的虚拟制造[J].中国机械工程.1996,7(5):21-24
    [115]A. Novak, H. Wiklund. On-Line Prediction of the Tool Life [J]. Annals of CIRP. 1996,45(1):93-96
    [116]聂鹏,王东磊,徐涛等.频带能量特征法在声发射刀具磨损监测系统中的应用[J].工具技术.2009,43(2):24-27
    [117]夏海涛孟广耀刘松年等.基于切削力实现铣刀状态监测的特征值选取的研究[J].制造技术与机床.2011,2:97-99
    [118]杨晓波,冯冀宁,刘鸿运.基于小波-神经网络纹理图像识别的刀具状态监测[J].组合机床与自动化加工技术.2007,12:46-49
    [119]迟辉,张伟,陈颖等.图像处理技术在刀具磨损检测中的应用[J].工具技术.2007,8:100-102
    [120]Fayad Ramzi. Cutting Tool Monitoring System for down Milling process using AI Methods[J]. International Conference on Advances in Computational Tools for Engineering Applications.2009,344-350
    [121]Zhou, JH, Pang, CK, Zhong, ZW, et al.. Tool Wear Monitoring Using Acoustic Emissions by Dominant-Feature Identification [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT.2011,60(2):547-559
    [122]Xu, CW, Wu, XH, Luo, WC, et al.. Milling Wear Monitoring Study Based on Cutting Power. International Conference on Advanced Computer Control.2009,671-674
    [123]Rivero A, Lopez de Lacalle L N, Luz Penalva Ma. Tool wear detection in dry high-speed milling based upon the analysis of machine internal signals[J]. MECHATRONICS.2008,18 (10):627-633
    [124]Tang, LH, Huang, JL, Xie, LM. Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool [J]. Int J Adv Manuf Technol. 2011,53:1167-1181
    [125]Motorcu, AR. Tool life performances, wear mechanisms and surface roughness characteristics when turning austenised and quenched AISI 52100 bearing steel with ceramics and CBN/TiC cutting tools [J]. INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES.2011,18:137-146
    [126]Xue, C, Chen, WY. Adhering layer formation and its effect on the wear of coated carbide tools during turning of a nickel-based alloy [J]. WEAR.2011,270:895-902
    [127]Park, KH, Kwon, P Y. Flank wear of multi-layer coated tool [J]. WEAR.2011,270: 771-780
    [128]关山.在线金属切削刀具磨损状态监测研究的回顾与展望Ⅱ:信号特征的提取[J].机床与液压.2010,38(17):121-125
    [129]杨吟飞,李亮,何宁.一种新的刀具磨损面图像边界提取方法[J].南京航空航天大学学报.2007,39(6):786-789
    [130]周柏清.基于纹理分析的刀具磨损状态监测技术[J].自动化技术与应用.2006,25(10):17-19
    [131]Yu, JB. Online tool wear prediction in drilling operations using selective artificial neural network ensemble model [J]. NEURAL COMPUTING & APPLICATIONS.2011,20 (4):473-485
    [132]Jie Sun, San Wong Yoke, Soon Hong Geok. Identification of Feature Set for Effective Tool Condition Monitoring-A Case Study in Titanium Machining [J]. IEEE International Conference on Automation Science and Engineering 2008:273-278
    [133]Li, PY, Li, Y, Yang, MS. Monitoring Technology Research of Tool Wear Condition Based on Machine Vision [J].7th World Congress on Intelligent Control and Automation 2008:2783-2787
    [134]Gao, HL, Xu, MH, Su, YC, et al.. Experimental Study of Tool Wear Monitoring Based on Neural Networks [J].7th World Congress on Intelligent Control and Automation 2008:6906-6910
    [135]杨永.基于切削力的小波神经网络刀具磨损状态监测[J].机床与液压,2009,37(7):250-251,269
    [136]张超.基于特征数据融合的刀具工况监测研究[D].西安理工大学博士学位论文.2004
    [137]于殿泓.图像检测与处理技术[M].西安:西安电子科技大学出版社,2006
    [138]K. Matsushima, T.Kawabata, T.Sata. Recognition and control of the morphology of tool failures [J]. Annals of CIRP.1979,28(1):43-47
    [139]Lee, YH, Bandyopadhyay, P, Kaminski, BD. Cutting tool wear measurement using computer vision [J]. Proceedings of Sensor'86 Conference 1996:195-212
    [140]Toshio Teshima, et. al.. Estimation of cutting tool life by processing tool image data with neural network [J]. Annals of the CIRP.1993(42):59-62
    [141]梅安华,王菁蕙.机器视觉监测刀具磨损状态初探[J].武汉测绘科技大学学报,1992,16(3):52-56
    [142]梅安华,王菁蕙.应用机器视觉技术研究刀具磨损与耐用度[J].武汉测绘科技大学学报,1993,18(1):86-93
    [143]张昆,宋千,郝晓红.金属切削刀具磨损的监控和预报研究[J].中国机械工程,1994,5(6):61-62
    [144]魏建亮.基于计算机视觉的刀具磨损状态识别技术研究[D].北京信息科技大学硕士学位论文.2008
    [145]Szafarczyk, M, Chrzanowski, J. Tool probe for measuring dimensional wear and X-coordinate of turning edge [J]. INT J ADV MANUF TECH.2004,23:272-278
    [146]Bradley, C, Wong, YS. Surface texture indicators of tool wear-a machine vision approach [J]. INT J ADVMANUF TECH,2001,17(66):435-443
    [147]Kurada, S, Bradley, C. A machine vision system for tool wear assessment[J]. Tribology International,1997,30(4):295-304.
    [148]周柏清.基于纹理分析的刀具磨损状态检测技术[D].浙江工业大学硕士学位论文.2004
    [149]熊四昌,王亚良,计时鸣等.基于分数布朗运动的加工表面图像分析及其在刀具状态检测中的应用[J].机床与液压,2004,4:44-46
    [150]熊四昌,计时鸣,樊炜等.基于马儿可夫随机场加工表面纹理模型的刀具状态监测[J].中国机械工程,2004,15(8):678-680
    [151]Liu, XL. Automated inspection of chip-type using image analysis method [J]. Proceedings of SPIE,1998,3558(5):304-307
    [152]胡伏原,张艳宁,薛笑荣等.基于树型小波和灰度共生矩阵的SAR图像分类[J].系统工程与电子应用,2003,25(10):1286-1288
    [153]靳华,王晓丹,赵荣椿.树型小波变换在纹理分析中的应用[J].计算机应用研究,2001,10(3):91-93
    [154]Mannan, MA, Zhu, M, Kassim, AA. Tool wear monitoring using a fast Hough transform of images of machined surfaced [J]. Machine Vision and Applications,2004,15(3):156-163
    [155]史晓骏.数据采集卡在切削力测量中的应用[J].机电工程技术,2008,4(37):76-77
    [156]胡贻荟.工业内窥镜的视频图像采集与处理系统实现[J].农机化研究.2004.4(2):175-176
    [157]王莉.基于图像处理的切削过程监控系统[D].华东理工大学硕士学位论文.2009
    [158]张韬.数码影像质量的革新者Super CCD[J]微电脑世界,2000,14:1-3
    [159]胡广书.数字信号处理理论、算法与实现(第二版)[M].北京:清华大学出版社,2003
    [160]张中民,刘献礼,李振加等.自动化加工中切屑状态的监测方法[J].哈尔滨科学技术大学学报,1995,19(2):8-10
    [161]熊四昌.基于计算机视觉的刀具磨损状态检测技术的研究[D].浙江大学博士学位论文.2003
    [162]袁巧玲.金属表面图像检测系统的开发[D].哈尔滨理工大学硕士学位论文.2004
    [163]黄遂,陈洪涛,傅攀等.数控车削加工过程的刀具磨损动态监测[J].机械设计与制造,2010,2:191-193
    [164]邸继征.小波分析原理[M].北京:科学出版社,2010
    [165]樊启斌.小波分析[M].武汉:武汉大学出版社,2008
    [166]程正兴,杨守志,冯晓霞.小波分析的理论、算法、进展和应用[M].北京:国防 工业出版社,2007
    [167]Alain,D, Stephane,J. Wavelet methods in mathematical analysis and engineering [M]. Beijing:Higher Education Press,2010
    [168]周伟.基于MATLAB的小波分析应用[M].西安:西安电子科技大学出版社,2010
    [169]张德丰.MATLAB小波分析[M].北京:机械工业出版社,2009
    [170]高成Matlab小波分析与应用[M].北京:国防工业出版社,2007
    [171]邓东皋,彭立中.小波分析[J].数学进展,1991,20(3):294-310
    [172]刘贵忠,邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1993
    [173]秦前清,杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1994
    [174]王建中.小波理论及其在物理和工程中的应用[J].数学进展,1992,21(3)290-310
    [175]李世雄,刘家琦.小波理论和反演数学基础[M].北京:地质出版社,1994
    [176]Gabor D. Theory of communication[J]. J Inst Elect Eng,1946,93(3):429-457
    [177]Morlet J. Seismic tomorrow:Interferometry and quantum mechanics. The 45th annual international SEG meeting, New York, Oct.15,1972
    [178]崔锦泰著.小波分析导论[M].西安:西安交通大学出版社,1994
    [179]杨文平,石博强.基于小波理论的复杂机械振动信号降噪分析[J].北京科技大学学报,2002,24(4):455-457
    [180]文东辉PCBN刀具硬态切削机理及技术[D].大连理工大学博士学位论文.2002
    [181]秦叶.小波分析与机械故障诊断[J].广东工业大学学报,1997,14(2):64-68
    [182]赵小林,赵学智,陈统坚等.刀具磨损的小波检测[J].工具技术,2001,35(12):39-41
    [183]张宝金,宋书善,陈明.基于刀具状态的切削力模型研究[J].工具技术,2010,44(2):27-30
    [184]刘密歌,李小斌.阶跃型奇异点的小波检测[J].计算机仿真,2010,27(5):314-317
    [185]陈晓智,李蓓智,杨建国.一种新的声发射刀具磨损小波分析方法[J].无损检测,2007,29(1):12-35
    [186]王庆明,张振峰,林海龙.基于不同比例的双刃切削的研究[J].工具技术,2010,44(12):27-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700