生物医学光子学成像的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种非入侵、无损、高分辨率的成像方法,生物医学光子学成像技术近年来发展迅速,成为生命科学领域与光学领域的研究热点。本文采用理论分析、模拟、实验及应用相结合的研究方法,对生物医学光子学成像中的若干关键技术展开研究,着重对自适应相位补偿的超短脉冲双光子显微成像技术和共路频域光学相干层析成像技术进行分析,提供了在组织成像、内窥、外科手术引导成像等方面应用受限的解决方案。
     首先本文从非线性光学出发介绍了双光子显微成像技术的理论及其优势,对自适应相位补偿(同时补偿低阶色散和高阶色散)的超短脉冲(10 fs)双光子成像系统进行了详细阐述,展现了在补偿后超短脉冲获得的一系列优势;首次对双光子显微成像中的高阶色散进行理论推导和量化分析,通过分析超短脉冲双光子系统中光学材料和棱镜对的色散,发现了整个系统高阶色散的来源;整理了双光子显微系统中使用长脉冲和短脉冲的优劣,并证明了在生物医学成像应用中,超短脉冲在没有进行自适应补偿的情况下,效率和激发强度甚至低于长脉冲情况。
     然后本文从光学层析成像的理论基础出发介绍了频域光学相干层析成像的原理和特点,对基于共路的光学相干层析成像系统进行了详细的描述;首次提出并分析了三种不同的共路光学相干层析成像系统中光纤束内窥探头的聚焦系统,还对系统的信噪比进行分析从而对探头的结构进行参数优化;首次对光学相干层析成像技术添加了拓扑补偿和运动补偿功能,为表面拓扑差异过大导致OCT应用受到限制以及外科手术引导中组织无意识的跳动和运动造成成像伪影导致错误引导手术等问题提供了有效的解决方案。
     综上所述,本文解决了生物医学光子学成像中某些关键技术问题,为其更好更广泛的在组织成像、内窥以及外科手术引导成像奠定了基础。
With rapid development in recent years, biomedical optical imaging, as a non-invasive, non-destructive and high resolution imaging technique, has become a focus of study in the fields of life science and optics. In this dissertation work, several key techniques of biomedical optical imaging was investigated by using a theoretical analysis-simulation-experiment-application research method. The adaptive phase compensation ultrashort pulse two-photon microscopy and the common-path Fourier domain optical coherence tomography (OCT) were studied, providing the solution for limited used in tissue imaging, endoscopy, surgical procedure guidance imaging and so on.
     Firstly, starting from the non-linear optics, the theory and advantages of two-photon microscopy were introduced. By describing the adaptive phase compensation (both low and high order dispersion are compensated) ultroshort pulse (10 fs) two-photon microscopy system in detail, the advantages of using ultroshort pulse after compensation were revealed. For the first time, the high order dispersion in two-photon microscopy was derivated theoretically and analyzed quantitatively. By studying the dispersion of optical materials and prism pairs in two-photon microscopy system, we found the origin of high order dispersion of the entire system. We discussed the advantages and disadvantages of long and short pulses in two-photon microscopy system, and showed that without adaptive phase compensation, the efficiency and excitation intensity of ultrashort pulses were even worse than long pulses for biomedical imging,
     Secondly, starting from the theory of optical tomography, the principle and characters of Fourier domain OCT were introduced. The common path OCT system were described in detail. For the first time, we suggested and analysed three different focus systems for fiber bundle endoscopic probe of common path OCT system. Signal to noise ratio was analyzed to optimize the probe configuration. Moreover, a surface topology and motion compensation system was developed first time for OCT and can be used for various clinical applications.
     In conclusion, we studied several key techniques of biomedical optical imaging, providing the better and wider applications in various fields, such as tissue imaging, endoscopy and surgical procedure guidance imaging.
引文
[1] Hopt A., Neher E. Highly nonlinear photodamage in two-photon fluorescence microscopy[J]. Biophysical journal, 2001 (4): 2029-2036.
    [2] Patterson G., Piston D. Photobleaching in two-photon excitation microscopy[J]. Biophysical journal, 2000 (4): 2159-2162.
    [3] G?ppert-Mayer M.über elementarakte mit zwei quantensprüngen[J]. Annalen der Physik, 1931 (3): 273-294.
    [4] Peticolas W., Goldsborough J., Rieckhoff K. Double photon excitation in organic crystals[J]. Physical Review Letters, 1963 (2): 43-45.
    [5] Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990 (4951): 73-76.
    [6] So P., Dong C., Masters B., et al. T WO-P HOTON E XCITATION F LUORESCENCE M ICROSCOPY[J]. Annual review of biomedical engineering, 2000 (1): 399-429.
    [7] Xu C., Zipfel W., Shear J., et al. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996 (20): 10763.
    [8] Denk W., Piston D., Webb W., et al. Handbook of biological confocal microscopy[J]. Plenum Press, New York, 1995: 445.
    [9] Han M., Bindewald-Wittich A., Holz F., et al. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells[J]. Journal of Biomedical Optics, 2006: 010501.
    [10] Han M., Giese G., Schmitz-Valckenberg S., et al. Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging[J]. Journal of Biomedical Optics, 2007: 024012.
    [11] Koester H., Baur D., Uhl R., et al. Ca2+ fluorescence imaging with pico-and femtosecond two-photon excitation: signal and photodamage[J]. Biophysical journal, 1999 (4): 2226-2236.
    [12] Stosiek C., Garaschuk O., Holthoff K., et al. In vivo two-photon calcium imaging of neuronal networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003 (12): 7319.
    [13] Cumpston B., Ananthavel S., Barlow S., et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999 (6722): 51-54.
    [14] Kawata Y., Ishitobi H., Kawata S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory[J]. Optics letters, 1998 (10): 756-758.
    [15] Parthenopoulos D., Rentzepis P. Three-dimensional optical storage memory[J]. Science, 1989 (4920): 843.
    [16] Toriumi A., Kawata S., Gu M. Reflection confocal microscope readout system for three-dimensionalphotochromic optical data storage[J]. Optics letters, 1998 (24): 1924-1926.
    [17] Strickler J., Webb W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Optics letters, 1991 (22): 1780-1782.
    [18] Squirrell J., Wokosin D., White J., et al. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability[J]. Nature Biotechnology, 1999 (8): 763-767.
    [19] Kim K., Buehler C., So P. High-speed, two-photon scanning microscope[J]. Applied Optics, 1999 (28): 6004-6009.
    [20] Parasassi T., Yu W., Durbin D., et al. Two-photon microscopy of aorta fibers shows proteolysis induced by LDL hydroperoxides[J]. Free Radical Biology and Medicine, 2000 (11): 1589-1597.
    [21] Diaspro A., Schneider M., Bianchini P., et al. Two-photon excitation fluorescence microscopy[J]. Science of Microscopy, 2007: 751-789.
    [22] K nig K. Multiphoton microscopy in life sciences[J]. Journal of Microscopy, 2000 (2): 83-104.
    [23] Müller M., Squier J., Wolleschensky R., et al. Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives[J]. Journal of microscopy, 1998 (2): 141-150.
    [24] Diaspro A., Bianchini P., Vicidomini G., et al. Multi-photon excitation microscopy[J]. BioMedical Engineering OnLine, 2006 (1): 36.
    [25] Huang D., Swanson E., Lin C., et al. Optical coherence tomography[J]. Science, 1991 (5035): 1178-1181.
    [26] Fercher A., Hitzenberger C., Drexler W., et al. In vivo optical coherence tomography[J]. American journal of ophthalmology, 1993 (1): 113.
    [27] Schmitt J., Knuttel A., Yadlowsky M., et al. Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering[J]. Physics in Medicine and Biology, 1994: 1705.
    [28] Schmitt J., Yadlowsky M., Bonner R. Subsurface imaging of living skin with optical coherence tomography[J]. Dermatology, 1995: 93¨C98.
    [29]吴开杰.复谱频域OCT快速成像的若干关键技术研究[博士论文].天津:天津大学, 2005.
    [30] Schuman J., Hee M., Arya A., et al. Optical coherence tomography: a new tool for glaucoma diagnosis[J]. Current opinion in Ophthalmology, 1995 (2): 89.
    [31] Schuman J., Hee M., Puliafito C., et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study[J]. Archives of ophthalmology, 1995 (5): 586.
    [32] Schmid G. Axial and peripheral eye length measured with optical low coherence reflectometry[J]. Journal of Biomedical Optics, 2003: 655.
    [33] Fercher A., Mengedoht K., Werner W. Eye-length measurement by interferometry with partially coherent light[J]. Optics letters, 1988 (3): 186-188.
    [34] Colston Jr B., Everett M., Da Silva L., et al. OCT for diagnosis of periodontal disease[J]. Proceedings of SPIE, 1998: 52-58.
    [35] Warren Jr J., Gelikonov G., Gelikonov V., et al. Imaging and characterization of dental structure using optical coherence tomography[C], 2002: 128.
    [36] Wang X., Milner T., de Boer J., et al. Characterization of dentin and enamel by use of optical coherence tomography[J]. Applied Optics, 1999 (10): 2092-2096.
    [37] Izatt J., Kulkarni M., Yazdanfar S., et al. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography[J]. Optics letters, 1997 (18): 1439-1441.
    [38] Yazdanfar S., Kulkarni M., Izatt J. High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography[J]. Optics Express, 1997 (13): 424-431.
    [39] Kulkarni M., Leeuwen T., Yazdanfar S., et al. Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography[J]. Optics letters, 1998 (13): 1057-1059.
    [40] Marquez G., Wang L., Lin S., et al. Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry[J]. Proceedings of SPIE, 1997: 306-317.
    [41] Bouma B., Tearney G., Compton C., et al. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography[J]. Gastrointestinal endoscopy, 2000 (4): 467-474.
    [42] Tearney G., Brezinski M., Bouma B., et al. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 1997 (5321): 2037-2039.
    [43] Tearney G., Brezinski M., Southern J., et al. Optical biopsy in human pancreatobiliary tissue using optical coherence tomography[J]. Digestive diseases and sciences, 1998 (6): 1193-1199.
    [44] Pitris C., Brezinski M., Bouma B., et al. High resolution imaging of the upper respiratory tract with optical coherence tomography. A feasibility study[J]. American journal of respiratory and critical care medicine, 1998 (5): 1640.
    [45] Fujimoto J., Boppart S., Tearney G., et al. High resolution in vivo intra-arterial imaging with optical coherence tomography[J]. British Medical Journal, 1999 (2): 128.
    [46] Schoenenberger K., Colston B., Maitland D., et al. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography[J]. Applied Optics, 1998 (25): 6026-6036.
    [47] Boppart S., Tearney G., Bouma B., et al. Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997 (9): 4256.
    [48] Boppart S., Brezinski M., Bouma B., et al. Investigation of Developing Embryonic Morphology Using Optical Coherence Tomography* 1[J]. Developmental biology, 1996 (1): 54-63.
    [49] Vakhtin A. B., Kane D. J., Wood W. R., et al. Common-path interferometer for frequency-domain optical coherence tomography[J]. Applied Optics, 2003 (34): 6953-6958.
    [50] Sharma U., Fried N., Kang J. All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2005 (4): 799-805.
    [51] Wang W., Zhang K., Ren Q., et al. Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe[J]. Optical Engineering, 2009 (10): 103001.
    [52] Yun S., Tearney G., de Boer J., et al. Motion artifacts in optical coherence tomography with frequency-domain ranging[J]. Optics Express, 2004 (13): 2977-2998.
    [53] Denk W., Svoboda K. Photon Upmanship: Techreview Why Multiphoton Imaging Is More than a Gimmick[J]. Neuron, 1997: 351-357.
    [54] Helmchen F., Denk W. Deep tissue two-photon microscopy[J]. Nature methods, 2005 (12): 932-940.
    [55] Zipfel W., Williams R., Webb W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 2003 (11): 1369-1377.
    [56] Mertz J. Nonlinear microscopy: new techniques and applications[J]. Current opinion in neurobiology, 2004 (5): 610-616.
    [57] Cahalan M., Parker I., Wei S., et al. Real-time imaging of lymphocytes in vivo[J]. Current opinion in immunology, 2003 (4): 372-377.
    [58] Bousso P., Robey E. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy[J]. Immunity, 2004 (3): 349-355.
    [59] Molitoris B., Sandoval R. Intravital multiphoton microscopy of dynamic renal processes[J]. American Journal of Physiology- Renal Physiology, 2005 (6): F1084.
    [60] Rubart M. Two-photon microscopy of cells and tissue[J]. Circulation research, 2004 (12): 1154.
    [61] Laiho L., Pelet S., Hancewicz T., et al. Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra[J]. Journal of Biomedical Optics, 2005: 024016.
    [62] Helmchen F., Denk W. New developments in multiphoton microscopy[J]. Current opinion in neurobiology, 2002 (5): 593-601.
    [63] Fork R. L., Martinez O. E., Gordon J. P. Negative dispersion using pairs of prisms[J]. Optics Letters, 1984 (5): 150-152.
    [64] Larson A. M., Yeh A. T. Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber[J]. Opt. Express, 2008 (19): 14723-14730.
    [65] Proctor B., Wise F. Quartz prism sequence for reduction of cubic phase in a mode-locked Ti: Al_2O_3 laser[J]. Optics letters, 1992 (18): 1295-1297.
    [66] Sherriff R. Analytic expressions for group-delay dispersion and cubic dispersion in arbitrary prism sequences[J]. Journal of the Optical Society of America B, 1998 (3): 1224-1230.
    [67] Wang W., Liu Y., Xi P., et al. Origin and effect of high-order dispersion in ultrashort pulse multiphoton microscopy in the 10 fs regime[J]. Applied Optics, 2010 (35): 6703-6709.
    [68] Meshulach D., Silberberg Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse[J]. Nature, 1998 (6708): 239-242.
    [69] Xi P., Andegeko Y., Weisel L. R., et al. Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses[J]. Optics Communications, 2008 (7): 1841-1849.
    [70] Fork R., Cruz C., Becker P., et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation[J]. Optics Letters, 1987 (7): 483-485.
    [71] Larson A. M., Yeh A. T. Ex vivo characterization of sub-10-fs pulses[J]. Optics Letters, 2006 (11): 1681-1683.
    [72] Xi P., Andegeko Y., Pestov D., et al. Two-photon imaging using adaptive phase compensated ultrashort laser pulses[J]. J. Biomed. Opt, 2009 (1): 014002.
    [73] Xu C., Webb W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm[J]. J. Opt. Soc. Am. B, 1996 (3): 481-491.
    [74] Tang S., Krasieva T. B., Chen Z., et al. Effect of pulse duration on two-photon excited fluorescenceand second harmonic generation in nonlinear optical microscopy[J]. J. Biomed. Opt., 2006 (2): 020501.
    [75] Pang S., Yeh A. T., Wang C., et al. Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10-fs (Journal Paper)[J]. J. Biomed. Opt., 2009 (05): 054041.
    [76] Liang X., Hu W., Fu L. Pulse compression in two-photon excitation fluorescence microscopy[J]. Opt. Express, 2010 (14): 14893-14904.
    [77] Campagnola P., Loew L. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms[J]. Nature Biotechnology, 2003 (11): 1356-1360.
    [78] Squier J., Muller M., Brakenhoff G., et al. Third harmonic generation microscopy[J]. Opt. Express, 1998 (9): 315¨C324.
    [79] Oron D., Yelin D., Tal E., et al. Depth-resolved structural imaging by third-harmonic generation microscopy[J]. Journal of Structural biology, 2004 (1): 3-11.
    [80] Mohler W., Millard A., Campagnola P. Second harmonic generation imaging of endogenous structural proteins[J]. Methods, 2003 (1): 97-109.
    [81] Dombeck D., Kasischke K., Vishwasrao H., et al. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003 (12): 7081.
    [82] Svoboda K., Block S. Biological applications of optical forces[J]. Annual review of biophysics and biomolecular structure, 1994 (1): 247-285.
    [83] Majewska A., Yiu G., Yuste R. A custom-made two-photon microscope and deconvolution system[J]. Pfl¨1gers Archiv European Journal of Physiology, 2000 (2): 398-408.
    [84] Mainen Z., Maletic-Savatic M., Shi S., et al. Two-photon imaging in living brain slices[J]. Methods, 1999 (2): 231-239.
    [85] Gosnell T., Taylor A. Selected papers on ultrafast laser technology[J], 1991.
    [86] Treacy E. Optical pulse compression with diffraction gratings[J]. IEEE Journal of quantum Electronics, 1969 (9): 454-458.
    [87] Diels J., Fontaine J., McMichael I., et al. Control and measurement of ultrashort pulse shapes(in amplitude and phase) with femtosecond accuracy[J]. Applied Optics, 1985 (9): 1270-1282.
    [88] Beaurepaire E., Mertz J. Epifluorescence collection in two-photon microscopy[J]. Applied Optics, 2002 (25): 5376-5382.
    [89] Birge R. Two-photon spectroscopy of protein-bound chromophores[J]. Accounts of Chemical Research, 1986 (5): 138-146.
    [90] Wang H., Backus S., Chang Z., et al. Generation of 10-W average-power, 40-TW peak-power, 24-fs pulses from a Ti: sapphire amplifier system[J]. Journal of the Optical Society of America B, 1999 (10): 1790-1794.
    [91] Beaurepaire E., Oheim M., Mertz J. Ultra-deep two-photon fluorescence excitation in turbid media[J]. Optics Communications, 2001 (1-4): 25-29.
    [92] Theer P., Hasan M., Denk W. Two-photon imaging to a depth of 1000 |ìm in living brains by use of a Ti: Al< sub> 2 O< sub> 3 regenerative amplifier[J]. Optics letters, 2003 (12): 1022-1024.
    [93] Feierabend M., R¨1ckel M., Denk W. Coherence-gated wave-front sensing in strongly scattering samples[J]. Optics letters, 2004 (19): 2255-2257.
    [94] Booth M., Neil M., Ju kaitis R., et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002 (9): 5788.
    [95] Svoboda K., Denk W., Kleinfeld D., et al. In vivo dendritic calcium dynamics in neocortical pyramidal neurons[J]. Nature, 1997 (6612): 161-165.
    [96] Helmchen F., Svoboda K., Denk W., et al. In-Vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons[J]. nature neuroscience, 1999: 989-996.
    [97] Mizrahi A., Crowley J., Shtoyerman E., et al. High-resolution in vivo imaging of hippocampal dendrites and spines[J]. Journal of Neuroscience, 2004 (13): 3147.
    [98] Jung J., Schnitzer M. Multiphoton endoscopy[J]. Optics letters, 2003 (11): 902-904.
    [99] G bel W., Kerr J., Nimmerjahn A., et al. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective[J]. Optics letters, 2004 (21): 2521-2523.
    [100] Coello Y., Lozovoy V., Gunaratne T., et al. Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses[J]. JOSA B, 2008 (6): A140-A150.
    [101] Walowicz K., Pastirk I., Lozovoy V., et al. Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases[J]. J. Phys. Chem. A, 2002 (41): 9369-9373.
    [102] Lozovoy V., Pastirk I., Walowicz K., et al. Multiphoton intrapulse interference. II. Control of two-and three-photon laser induced fluorescence with shaped pulses[J]. The Journal of Chemical Physics, 2003: 3187.
    [103] Xu B., Gunn J., Cruz J., et al. Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses[J]. JOSA B, 2006 (4): 750-759.
    [104] Lozovoy V., Xu B., Coello Y., et al. Direct measurement of spectral phase for ultrashort laser pulses[J]. Opt. Express, 2008 (2): 592-597.
    [105] Lozovoy V., Pastirk I., Dantus M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation[J]. Optics letters, 2004 (7): 775-777.
    [106] Cruz J., Pastirk I., Lozovoy V., et al. Multiphoton intrapulse interference 3: Probing microscopic chemical environments[J]. J. Phys. Chem. A, 2004 (1): 53-58.
    [107] Coello Y., Xu B., Miller T., et al. Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan[J]. Applied Optics, 2007 (35): 8394-8401.
    [108] Lozovoy V., Dantus M. Coherent control in femtochemistry[J]. Chemphyschem, 2005 (10): 1970-2000.
    [109] Born M., Wolf E., Bhatia A. Principles of optics. Pergamon press Oxford, 1975.
    [110] Wolleschensky R., Feurer T., Sauerbrey R., et al. Characterization and optimization of a laser-scanning microscope in the femtosecond regime[J]. Applied Physics B: Lasers and Optics, 1998 (1): 87-94.
    [111] Guild J. B., Xu C., Webb W. W. Measurement of group delay dispersion of high numerical apertureobjective lenses using two-photon excited fluorescence[J]. Applied optics, 1997 (1): 397-401.
    [112] Zhang X. High-repetition-rate femtosecond optical parametric oscillators based on KTP and PPLN. Department of Physics and Materials Science Center. University of Marburg, 2002: thesis Charpter 2.
    [113] Diels J., Rudolph W., Corporation E. Ultrashort laser pulse phenomena. Elsevier London, 2006.
    [114] Lozovoy V. V., Dantus M. Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses[J]. Chem. Phys. Chem, 2005 (10): 1970-2000.
    [115] Arridge S., Schweiger M. Image reconstruction in optical tomography[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997 (1354): 717.
    [116] Li X., Durduran T., Yodh A., et al. Diffraction tomography for biochemical imaging with diffuse-photon density waves[J]. Optics letters, 1997 (8): 573-575.
    [117] Fercher A. Ophthalmic interferometry[J]. Optics in Medicine, Biology and Environmental Research, Selected Contributions to OWLS I, Garmisch-Partenkirchen, Germany, 1990: 221¨C235.
    [118] Hitzenberger C. Optical measurement of the axial eye length by laser Doppler interferometry[J]. Investigative ophthalmology & visual science, 1991 (3): 616.
    [119] Swanson E., Izatt J., Hee M., et al. In vivo retinal imaging by optical coherence tomography[J]. Optics letters, 1993 (21): 1864-1866.
    [120] Chinn S., Swanson E., Fujimoto J. Optical coherence tomography using a frequency-tunable optical source[J]. Optics letters, 1997 (5): 340-342.
    [121] H?usler G., Lindner M. "Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis[J]. Journal of Biomedical Optics, 1998: 21.
    [122] Drexler W. Ultrahigh-resolution optical coherence tomography[J]. Journal of Biomedical Optics, 2004: 47.
    [123] Chen Z., Milner T., Dave D., et al. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media[J]. Optics letters, 1997 (1): 64-66.
    [124] De Boer J. F., Milner T. E., Van Gambert M. J. C., et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography[J]. Optics letters, 1997 (12): 934-936.
    [125] Wojtkowski M., Bajraszewski T., Targowski P., et al. Real-time< i> in vivo imaging by high-speed spectral optical coherence tomography[J]. Optics letters, 2003 (19): 1745-1747.
    [126] Wang L., Ku G. Frequency-swept ultrasound-modulated optical tomography of scattering media[J]. Optics letters, 1998 (12): 975-977.
    [127] Beaurepaire E., Moreaux L., Amblard F., et al. Combined scanning optical coherence and two-photon-excited fluorescence microscopy[J]. Optics letters, 1999 (14): 969-971.
    [128] Tearney G., Brezinski M., Southern J., et al. Optical biopsy in human gastrointestinal tissue using optical coherence tomography[J]. The American journal of gastroenterology, 1997 (10): 1800-1804.
    [129] Brand S., Poneros J., Bouma B., et al. Optical coherence tomography in the gastrointestinal tract[J]. Endoscopy, 2000 (10): 796-803.
    [130] Welzel J. Optical coherence tomography in dermatology: a review[J]. Skin Research and Technology, 2001 (1): 1-9.
    [131] Pierce M., Strasswimmer J., Park B., et al. Advances in optical coherence tomography imaging for dermatology[J]. Journal of Investigative Dermatology, 2004 (3): 458-463.
    [132] Baumgartner A., Dichtl S., Hitzenberger C., et al. Polarization¨CSensitive Optical Coherence Tomography of Dental Structures[J]. Caries Research, 2000 (1): 59-69.
    [133] Sergeev A., Gelikonov V., Gelikonov G., et al. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa[J]. Optics Express, 1997 (13): 432-440.
    [134] Grube E., Gerckens U., Buellesfeld L., et al. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery[J]. Circulation, 2002 (18): 2409-2410.
    [135] Xie T., Mukai D., Guo S., et al. Fiber-optic-bundle-based optical coherence tomography[J]. Optics letters, 2005 (14): 1803-1805.
    [136] Chen Y., Herz P. R., Hsiung P. L., et al. Ultrahigh-resolution endoscopic optical coherence tomography for gastrointestinal imaging[J]. Proceedings of SPIE, 2005: 4-10.
    [137] Xie T., Guo S., Chen Z., et al. GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking[J]. Optics Express, 2006 (8): 3238-3246.
    [138] Zhang K., Kang J. U. Self-adaptive common-path Fourier-domain optical coherence tomography with real-time surface recognition and feedback control[C]. CLEO 2009, 2009: 1-2.
    [139] Zhang K., Wang W., Han J., et al. A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography[J]. IEEE Transactions on Biomedical Engineering, 2009 (9): 2318-2321.
    [140] Pan Y., Xie H., Fedder G. K. Endoscopic optical coherence tomography based on a microelectromechanical mirror[J]. Optics letters, 2001 (24): 1966-1968.
    [141] Jung W., McCormick D. T., Zhang J., et al. Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror[J]. Applied physics letters, 2006: 163901.
    [142] Tran P. H., Mukai D. S., Brenner M., et al. In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe[J]. Optics letters, 2004 (11): 1236-1238.
    [143] Herz P., Chen Y., Aguirre A., et al. Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography[J]. Optics Express, 2004 (15): 3532-3542.
    [144] G?bel W., Kerr J. N. D., Nimmerjahn A., et al. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective[J]. Optics letters, 2004 (21): 2521-2523.
    [145] Gmitro A. F., Aziz D. Confocal microscopy through a fiber-optic imaging bundle[J]. Optics letters, 1993 (8): 565-567.
    [146] Jung J. C., Mehta A. D., Aksay E., et al. In vivo mammalian brain imaging using one-and two-photon fluorescence microendoscopy[J]. Journal of neurophysiology, 2004 (5): 3121-3133.
    [147] Knittel J., Schnieder L., Buess G., et al. Endoscope-compatible confocal microscope using a gradient index-lens system[J]. Optics Communications, 2001 (5): 267-273.
    [148] Oh W. Y., Bouma B. E., Iftimia N., et al. Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging[J]. Optics Express, 2006 (19): 8675-8684.
    [149] Ford H., Tatam R. P. Fibre imaging bundles for full-field optical coherence tomography[J]. Measurement Science and Technology, 2007: 2949-2957.
    [150] Pyhtila J. W., Boyer J. D., Chalut K. J., et al. Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy[J]. Optics letters, 2006 (6): 772-774.
    [151] Li X., Han J. H., Liu X., et al. Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography[J]. Applied Optics, 2008 (27): 4833-4840.
    [152] Bouma B. E., Tearney G. J. Handbook of optical coherence tomography. New York: Marcel Dekker 2002: 613-647.
    [153] Jafri M. S., Tang R., Tang C. M. Optical coherence tomography guided neurosurgical procedures in small rodents[J]. Journal of Neuroscience Methods, 2009 (2): 85-95.
    [154] Low A. F., Tearney G. J., Bouma B. E., et al. Technology insight: optical coherence tomography--current status and future development[J]. Nature Clinical Practice Cardiovascular Medicine, 2006 (3): 154-162.
    [155] Boppart S. A., Brezinski M. E., Pitris C., et al. Optical coherence tomography for neurosurgical imaging of human intracortical melanoma[J]. Neurosurgery, 1998 (4): 834-841.
    [156] Ikeda F., Iida T., Kishi S. Resolution of retinoschisis after vitreous surgery in X-linked retinoschisis[J]. Ophthalmology, 2008 (4): 718-722.
    [157] Iftimia N., Bouma B., De Boer J., et al. Adaptive ranging for optical coherence tomography[J]. Optics Express, 2004 (17): 4025-4034.
    [158] Maguluri G., Mujat M., Park B., et al. Three dimensional tracking for volumetric spectral-domain optical coherence tomography[J]. Optics Express, 2007 (25): 16808-16817.
    [159] Kettler D. T., Plowes R. D., Novotny P. M., et al. An active motion compensation instrument for beating heart mitral valve surgery[C]. Proc. 2007 IEEE/RSJ Int. Conf. Intell. Robots Syst., 2007: 1290-1295.
    [160] Yuen S. G., Novotny P. M., Howe R. D. Quasiperiodic predictive filtering for robot-assisted beating heart surgery[C]. Proc. Int. Conf. Robot. Autom. (ICRA), 2008: 3875-3880.
    [161] Koch P., Boller D., Koch E., et al. Ultrahigh-resolution FDOCT system for dermatology[J]. Proceedings of SPIE, 2005: 24-30.
    [162]朱水泉.关于光学相干层析成像时域与频域系统的研究[硕士论文].天津:天津大学, 2004.
    [163] Lutomirski R., Yura H. Propagation of a finite optical beam in an inhomogeneous medium[J]. Applied Optics, 1971 (7): 1652-1658.
    [164] Helgason S. The radon transform. Birkhauser, 1999.
    [165] Kak A., Slaney M. Principles of computerized tomographic imaging. 1988[J]. IEEE, New York.
    [166] Wolf E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Optics Communications, 1969 (4): 153-156.
    [167] Frankl D. Electromagnetic theory. Prentice Hall, 1986.
    [168] Fercher A., Hitzenberger C., Kamp G., et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 1995 (1-2): 43-48.
    [169] Leitgeb R., Hitzenberger C., Fercher A. Performance of fourier domain vs. time domain opticalcoherence tomography[J]. Optics Express, 2003 (8): 889-894.
    [170] Choma M., Sarunic M., Yang C., et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 2003 (18): 2183-2189.
    [171] Choma M. A., CHANGHUEI Y., Izatt J. A. Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers[J]. Optics letters, 2003 (22): 2162-2164.
    [172] Yun S., Tearney G., Bouma B., et al. High-speed spectral-domain optical coherence tomography at 1.3 |ìm wavelength[J]. Optics Express, 2003 (26): 3598-3604.
    [173] Huber R., Adler D., Fujimoto J. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s[J]. Optics letters, 2006 (20): 2975-2977.
    [174] Huber R., Wojtkowski M., Fujimoto J., et al. Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm[J]. Optics Express, 2005 (26): 10523-10538.
    [175] Izatt J. A., Hee M. R., Swanson E. A., et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography[J]. Archives of ophthalmology, 1994 (12): 1584-1589.
    [176] Schmitt J. M. Optical coherence tomography (OCT): a review[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 1999 (4): 1205-1215.
    [177] Povazay B., Bizheva K., Unterhuber A., et al. Submicrometer axial resolution optical coherence tomography[J]. Optics letters, 2002 (20): 1800-1802.
    [178] Bizheva K., Pova ay B., Hermann B., et al. Compact, broad-bandwidth fiber laser for sub-2-|ìm axial resolution optical coherence tomography in the 1300-nm wavelength region[J]. Optics letters, 2003 (9): 707-709.
    [179] Izatt J. A., Kulkarni M. D., Yazdanfar S., et al. In vivo color Doppler flow imaging of picoliter blood volumes using optical coherence tomography[J]. Optics letters, 1997 (18): 1439-1441.
    [180] Chen Z., Milner T. E., Dave D., et al. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media[J]. Optics letters, 1997 (1): 64-66.
    [181] Morgner U., Drexler W., K rtner F., et al. Spectroscopic optical coherence tomography[J]. Optics letters, 2000 (2): 111-113.
    [182] Bush J., Davis P., Marcus M. A. All-fiber optic coherence domain interferometric techniques[J]. Proceedings of SPIE, 2001: 71-80.
    [183] Chen Y., Li X., Cobb M., et al. Full dispersion compensation in real-time optical coherence tomography involving a phase/frequency modulator[C]. CLEO 2004, 2004.
    [184] Casaubieilh P., Ford H. D., Tatam R. P. Optical fibre Fizeau-based OCT[J]. Proceedings of SPIE, 2004: 338-341.
    [185] Fu L., Gu M. Fiber-optic nonlinear optical microscopy and endoscopy[J]. Journal of Microscopy, 2007 (3): 195-206.
    [186] Yaqoob Z., Wu J., McDowell E. J., et al. Methods and application areas of endoscopic optical coherence tomography[J]. Journal of Biomedical Optics, 2006: 063001.
    [187] Liu X., Li X., Kim D. H., et al. Fiber-optic Fourier-domain common-path OCT[J]. Chinese Optics Letters, 2008 (12): 899-901.
    [188] Drexler W., Fujimoto J. G. Optical coherence tomography: technology and applications.Berlin/Heidelberg: Springer Verlag, 2008.
    [189] Rave E., Nagli L., Katzir A. Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers[J]. Optics letters, 2000 (17): 1237-1239.
    [190] Ortega-Quijano N., Arce-Diego J., Fanjul-Velez F. Quality limiting factors of imaging endoscopes based on optical fiber bundles[J]. Proceedings of SPIE, 2008: 69910U.
    [191] Gonzalez R. C., Woods R. E. Digital image processing. Singapore: Pearson, 2008: 665-680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700