几种低温保护剂溶液玻璃化特性的分子模拟及机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃化是保存大尺寸组织和器官的有效方法,但溶液的热应力和渗透应力等引起的问题限制了玻璃化保存方法的广泛应用。因此,低温玻璃化保存方法的成功很大程度上取决于玻璃化溶液的性质,如临界升降温速率、玻璃化转变温度等热及力学性质。
     人们常用差示扫描量热法(DSC)、动态机械分析仪(DMA)和热机械分析仪(TMA)等仪器测量玻璃化溶液的性质,但要获得一种理想的玻璃化溶液,需要大量的实验。分子模拟不仅可以从微观上设计并控制各种条件,模拟玻璃化溶液的性质,而且可以分析宏观性质的分子机理,为选择合适的玻璃化溶液提供了一条捷径。
     应用gromacs3.3和Material Studio软件,本文对几种低温保护剂溶液的玻璃化性质进行了分子模拟和机理分析,主要工作如下:
     1、玻璃体的力学、热学性质与其结构有直接的关系,径向分布函数(radialdistribution function, RDF)反映了分子的聚集特性,是研究玻璃态结构的一个重要参数。本文研究了降温速率和压力对玻璃化转变温度和径向分布函数的影响,结果表明:降温速率对体系的RDF有影响,缩小温差并采取中间温度充分驰豫可减小这种影响;采用逐步冷却、直接冷却和两步法冷却时,Me_2SO溶液的RDF,RMSD(root mean squared diviation,均方根偏差)及氢键数量构成均表现不同的特征,但总氢键数目以及Me_2SO-H_2O的空间角位置没有明显变化,Me_2SO-H_2O的空间角位置关系有相似性和取向性和周期性的特征;对于30%、50%、70%Me_2SO溶液,在慢速降温时,RDF、RMSD及氢键数量构成表现不同的特征,其Me_2SO-H_2O空间角度分布也具有相似性,取向性和周期性的特点。
     2、氢键是影响很多物质的结构、热力学、力学及其他性质的关键因素。在溶液的冷却过程中,无论结冰,还是玻璃化,都与分子内、外的氢键网有密切关系。研究了降温速率(1×107K/s,1×1012K/s)对70%Me_2SO溶液玻璃化过程氢键的角度、距离、生命期和数量的影响,结果表明:玻璃化过程中系统氢键、Me_2SO-H_2O氢键以及H_2O-H_2O氢键的键长分布均呈现泊松分布,不同的冷却速度对氢键键长分布影响不显著;玻璃化过程的系统氢键角度、Me_2SO-H_2O氢键角度以及H_2O-H_2O氢键角度的分布均呈现泊松分布,降温速度对氢键角度分布曲线的影响显著。
     3、氢键生命期特性是氢键动力学重要特征之一,对保存在溶液中的细胞和组织的热及力的环境有较大的影响。研究了降温速率(1×107K/s,1×1012K/s)对70%Me_2SO溶液的玻璃化过程的氢键生命期分布的影响,结果表明:两种冷速下的系统氢键、Me_2SO-H_2O氢键、H_2O-H_2O氢键都表现出振荡变剧烈的特性;在时间大于大约3ps时,Me_2SO-H_2O氢键生命期分布在数值上要大于H_2O-H_2O的;氢键生命期以类似自变量系数为负的幂函数或者指数函数形式分布;不管是系统氢键、Me_2SO-H_2O氢键、还是H_2O-H_2O氢键的生命期分布,快速降温系统比慢速降温系统的生命期振幅要小得多,振幅变化也小很多。
     4、首次用分子模拟方法研究和预测低温保护液玻璃化转变温度。对70%甘油水溶液玻璃化过程中的内聚能密度、溶解度参数和体积模量进行了计算,结果表明:这些参数在玻璃化转变温度附近出现明确的拐点,用它们来预测玻璃化温度要比用比热、密度、容积和径向分布函数更准确,得到的玻璃化转变温度与实验值吻合较好。
Vitrification is assumed to be a potential method for the cryopreservation of largetissues and organs. But the thermal stress and osmotic stress may damage the cells,which limit the practical use of vitrification. The properties of vitrification solution,such as critical cooling rate, glass transition temperature, are key factors that affect itssuccessful application in cryopreservation.
     Differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA) andthermal mechanical analysis (TMA) are common equipments used to determine theproperties of vitrification solution. Lots of experiments must be peformed to obtain aoptimal solution. Molecular dynamic simulation can be used to predict the properties ofvitrification solution in molecular level. It provides a shortcut for selecting suitablevitrification solutions.
     Applying gromacs3.3andMaterial Studio software, the propeties of severalvitrification solutions were simulated and the mechanism was analyzed in molecularlevel.
     The thermal and dynamic properties of the material related to its structure. As theradial distribution functions(RDFs) reflects the collective property of molecules, it isregarded as an important factor affecting the structure of vitrification solutions. Theeffect of cooling rates and pressures on the glass transition temperature and RDF wereinvestigated in this study. The results show that cooling rate affects the RDFsof vitifiedwater. Three cooling methods were used to study the structure change of Me_2SOaqueous solution. The first is cooling to final temperature via a series of temperatureswith an interval of10K at a rate of1×1012K/s and sufficient relaxation time at eachtemperature. The second is cooling to final temperature directly at1×1012K/s. The thirdis a two-step cooling method using average between the intial and final temperature asmiddle temperature. The results show that RDF, root mean squared diviation(RMSDs)and the compostion of hydrogen bond show different patterns. Meanwhile, total numberof hydrogen bond and H_2O-Me_2SO space angles are characterized by similarity,directivity and periodicity without significant change during vitrification. Threeconcentrations (70%,50%and30%, wt%) of Me_2SO solutions are investigated toobserve their effects on RDFs, RMSDs, hydrogen bond number and H_2O-Me_2SO space angles. The results show that RDFs, RMSDsand hydrogen bond numbers at threeconcentrations also show different patterns.
     Hydrogen bond angles, hydrogen bond distances, hydrogen bond numbers andhydrogen bond lifes under three pressures (1bar,10bar,100bar) are calculated forwater separately. Their distributions are obtained by statistical method. The results showthat:(1)hydrogen bond angles distribute in a way similar to Poisson distribution. Whentemperature drops, distributing range become narrower, peak become higher, curves ofdistribution become higher when hydrogen bond angles is in the region between0and13°, but lower when hydrogen bond angles>13°.(2) hydrogen bond distances alsodistribute in a way similar to Poisson distribution with distributing region is bwtween0.14and0.27nm.(3) both hydrogen bond angles and hydrogen bond distances underthree pressures have no significant differences.(4) both the total number of hydrogenbonds and average hydrogen bonds number of each H_2O increase as temperature drop.During vitrifying process, the portion of free water became lowerand lower. Portion ofwater molecules with four hydrogen bonds forming tetrahedron get high dramaticallyfrom290K to260K, then shows little change. Portions of those with one, two or threehydrogen bonds show a overall tendency to get higher as temperature decrease.70%Me_2SO aqueous solution was cooled at1×107K/s and1×1012K/s. Hydrogen bonddistance, angle, n~n+i number are calculated. The results show that (1) the distances ofsystem hydrogen bonds, Me_2SO-H_2O hydrogen bonds and H_2O-H_2O hydrogen bondsall distribute in a manner similar to Poisson distribution. With the temperaturedecreasing, the distributing range became narrower, the peak became higher. Distanceof H_2O-H_2O hydrogen bond is longer than that of Me_2SO-H_2O hydrogen bond at thesame temperature and distribution.(2) the angles of system hydrogen bonds,Me_2SO-H_2O hydrogen bonds and H_2O-H_2O hydrogen bonds all distribute in a mannersimilar to Poisson distribution. With the temperature decreasing, the distributing rangebecame narrower, the peak bacame higher. There are differences in angle distribution ofH_2O-H_2O hydrogen bond and that of Me_2SO-H_2O hydrogen bond. Cooling rate haveweak effects on angle distribution of hydrogen bonds.(3) the number of hydrogen bondrespected by n+1~n+5became stable as temperature decreases, but the higher coolingrate results in stronger ability to get stable.
     Hydrogen bond life distributions and their average lifes are calculated for70%Me_2SO aqueous solution at two cooling rates. The results show that with temperature dropping,(1)life distributions of system, Me_2SO-H_2O and H_2O-H_2O hydrogen bonds alloscillate by higher and higher magnitude,(2) life distributions of Me_2SO-H_2O hydrogenbonds angle are greater than those of H_2O-H_2O when time>3ps,(3) life distribute in amanner similar to power or exponential functions in which independent variable ismultiplied by a negative factor,(4) average life distributes of Me_2SO-H_2O hydrogenbonds are bigger than those of H_2O-H_2O,(5) vibrating amplitudes of life distributionsof system, Me_2SO-H_2O and H_2O-H_2O hydrogen bonds in the system cooled by highercooling rate are lower than those by lower high cooling rate, so do the changes ofamplitudes. Hydrogen bond life distributions of water are calculated under threepressures. Average lifes of water are also calculted basing on the resules of lifedistribution. Average lifes under three pressures are compared. The results show that:(1)hydrogen bond life distribute in a way similar to power or exponential functions inwhich independent variable is multiplied by a negative factor, and with temperaturesdropping, both the range and the values of life distribution show significant differences,(2) pressure has weak effects on the life distributions, but oscillations of life distributioncurves show differences when temperatures is below a temperature, leading tosignificant differences of average life at different pressures.
     An isothermal-isobaric molecular simulation (NPT-MD) is employed to investigatethe vitrification transition and Tgof such vitrification solution. The cohesive energydensity (CED), solubility parameter (δ) and bulk modulus of the solution during theprocess of the glass transition are investigated as well. The results indicate that theseproperties as functions of temperature can give a definite inflexion, thus, theseproperties can be used to predict Tg more accurately than the heat capacity (Cp), density(ρ), volume (V) and radial distribution function (rdf). At the same time, the predictedvalues of Tg agree well with the experimental results. Therefore, molecular dynamicsimulation is a potential method for investigating the glass transition and (Tg) of thevitrification solutions.
引文
[1] Principles and practical issues for cryopreservation of nerve cells. Georgia Instituteof Technology,2008:13-19.
    [2] Leibo S.P.. Cryopreservation of oocytes and embryos: Optimization by theoreticalversus empirical analysis. Theriogenology,2008,69:37–47.
    [3] Mazur P. Principles of cryobiology. In: Life in the frozen state. Boca Raton,FL:CRC Press.,2004:3-65.
    [4] Toner M, Cravalho EG, Karel M. Cellular response of mouse oocytes to freezingstress: prediction of intracellular ice formation. J Biomech Eng,1993,115:169–74.
    [5] Gao DY, McGrath JJ, Tao J, et al. Membrane transport properties of mammalianoocytes: a micropipette perfusion technique. J Reprod Fertil,1994,102:385–92.
    [6] McGrath JJ. Quantitative measurement of cell membrane transport:technology andapplications. Cryobiology,1997,34:315-34.
    [7] Paynter SJ, Cooper A, Gregory L, et al. Permeability characteristics of hum-anoocytes in the presence of the cryoprotectant dimethylsulphoxide. HumReprod,1999,114:2338–2342.
    [8] Agca Y, Liu J, Critser ES, Critser JK. Fundamental cryobiology of rat imm-atureand mature oocytes: hydraulic conductivity in the presence of Me(2)-SO, Me(2)SO permeability, and their activation energies. J Exp Zool,2000,286:523–33.
    [9] Liu B.L.,McGrath J. Freezing osteoblast cells attached to hydroxyapatite discs andglass coverslips:Mechanisms of damage, Sci China Ser E-Tech Sci,2007,50:248-256.
    [10] Liu B.L., McGrath J. Effects of freezing on the cytoskeleton,focal adhesions andgap-junctions in murine osteoblast cultures, Conf Proc IEEE Eng Med Biol Soc,2005:4896-4899.
    [11] RabinY, Taylor M.J, Wolmark N, Thermal expansion measurements offrozenbiologial tissues at cryogenic temperatures, Journal of BiomechanicalEngin-eering,1998,120:259-266.
    [12] Jason W. J., Erica E. B., Keith H. Cryopreservation inducestemporal DNAmethylation epigenetic changes and differential transcriptionalactivity in Ribesgermplasm. Plant Physiology and Biochemistry,2009,47:123-131.
    [13] Angell C. A. Glass formation and glass transition in supercooled liquids, withinsights from study of related phenomena in crystals, Journal of Non-CrystallineSolids,2008,354:4703–4712.
    [14] Donth E.J., The Glass Transition: Relaxation Dynamics in Liquids and DisorderedMaterials. Berlin: Springer,2001:11-34.
    [15] Sieme H., Harrison R.A.P., Petrunkina A.M.. Cryobiological determinants offrozen semen quality, with special reference to stallion. AnimalReproductionScience,2008,107:276-292.
    [16] Muldrew K. The Water to Ice Transition: Implications for Living Cells, in Life inthe Frozen State. London:Taylor and Francis Books,2004:33-35.
    [17] Kuleshova L. Birth following vitrification of a small number of human oocytes:case report. Hum Reprod,1999,14(12):3077-3079.
    [18] Yoon T.K. Live births after vitrification of oocytes in a stimulated in vitrofertilization-embryo transfer program. Fertil Steril,2003,79(6):1323-1326.
    [19] Chian R.C. High survival rate of bovine oocytes matured in vitrofollowingvitrification. J Reprod Dev,2004,50(6):685-696.
    [20] Larman M.G..1,2-propanediol and the type of cryopreservation procedureadversely affect mouse oocyte physiology. Hum Reprod,2007,22(1):250-259.
    [21] Karlsson J.O.M.. Effects of solution composition on the theoretical prediction ofice nucleation kinetics and thermodynamics. Cryobiology,2010,60(1):43-51.
    [22] Taylor M.J. Vitrification fulfills its promise as an approach to reducingfre-eze-induced injury in a multicellular tissue. Advances in Heat and MassTransfer in Biotechnology,1999,44:93-102.
    [23] Wusteman M., Robinson M., and Pegg D. Vitrification of large tissues withdielectric warming: biological problems and some approaches to their sol-ution.Cryobiology,2004,48(2):179-189.
    [24] Sharma R. A novel method to measure cryoprotectant permeation into intactarticular cartilage. Cryobiology,2007,54(2):196-203.
    [25] Ainhoa M., Gorka O., Ma R. H. et al. Cryopreservation based on freezing protocolsfor the long-term storage of microencapsulated myoblasts. Biomaterials,2009,30:3495-3501.
    [26] Brockbank K.G.M., Walsh J.R., et al. Vitrification: Preservation of CellularImplants, in Topics in Tissue Engineering,2003:1-26.
    [27] Paynter, S. Cryopreservation of multicellular embryos and reproductive tissues, inReproductive Tissue Banking: Scientific Principles. Academic Press,1997:359-367.
    [28] Bodziony J., P. Schmitt G. F. In vitro function, morphology, and viabi-lity ofcryopreserved rat pancreatic islets: comparison of vitrification andsixcryopreservation protocols. Transplant Proc,1994,26(2):833-844.
    [29] Baust J.M. A molecular basis of cryopreservation failure and its modulationtoimprove cell survival. Cell Transplant,2001,10(7):561-571.
    [30] Beere H.M. Death versus survival: functional interaction between the apopt-oticand stress-inducible heat shock protein pathways. J Clin Invest,2005,115(10):2633-2639.
    [31] Clarke D.M. Targeted induction of apoptosis via TRAIL and cryoablation: anovelstrategy for the treatment of prostate cancer. Prostate Cancer Prostatic Disease,2007,10(2):175-184.
    [32] Baust J.M., Van, B. Baust J.G.. Cell viability improves following inhibitionofcryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim,2000,36(4):262-270.
    [33] Baust, J.M., Van B., Baust J.G., Modulation of the cryopreservation cap: elevatedsurvival with reduced dimethyl sulfoxide concentration. Cryobiology,2002,45(2):97-108.
    [34] Baust J.M. Baust J.G.. The role of membrane-mediated apoptosis incryopr-eservation failure. Cryobiology,2006,53(3):387-388.
    [35] Paasch U. Cryopreservation and thawing is associated with varying extent ofactivation of apoptotic machinery in subsets of ejaculated human spermatozoa.Biological Reproductivity,2004,71(6):1828-1837.
    [36] Baust J.M., Van B., Baust J.G.. Gene activation of the apoptotic c-aspasecascade following cryogenic storage. Cell Preservation Technology,2002,1:63-80.
    [37] Vogel M.J., Baust J.M., Van B.. Apoptotic caspases are activated followingcryopreservation. Cryobiology,2000,41:390.
    [38] Yagi T. Caspase inhibition reduces apoptotic death of cryopreserved porcinehepatocytes. Hepatology,2001,33(6):1432-1440.
    [39] Sarkar S., Kalia V. Montelaro R.C.. Caspase-mediated apoptosis and cell death ofrhesus macaque CD4+T-cells due to cryopreservation of peripheral bloodmononuclear cells can be rescued by cytokine treatment after thawing.Cryobiology,2003,47(1):44-58.
    [40] Ware C., Nelson A.M., Blau C.A.. Controlled-rate freezing of human ES cells.Biological Techniques,2005,38:879–883.
    [41] Liebermann J., Tucker M.J.. Effect of carrier system on the yield of human oocytesand embryos as assessed by survival and developmental potential after vitrification,Reproduction,2002,124:483-489.
    [42] Huang CC, Lee TH, Chen SU, et al. Successful pregnancy following blastocystcryopreservation using super cooling ultrarapid vitrification. HumaneReproduction,2005,20:122–128.
    [43] Bielanski A., Lalonde A.. Effect of cryopreservation by slow cooling andvitrification on viral contamination of IVF embryos experimentally exposed tobovine viral diarrhea virus and bovine herpesvirus-1. Theriogenology,2009,72:919-925.
    [44] Campos-Chillon L.F., Suh T.K., Barcelo-Fimbres M., et al. Vitrification ofearly-stage bovine and equine embryos. Theriogenology,2009,71:349-354.
    [45] Gajadhar B., Lee K.H., Magalhaes R., et al. Cryoreservation of alginate-fibrinbeads involving bone marrow derived mesenchymal stromal cells by vitrification.Biomaterials,2009,30:336-343.
    [46] Gholami H., Chamani M., Towhidib A., et al. Effect of feeding a docosahexaenoicacid enriched nutriceutical on the quality of fresh and frozen-thawed semen inHolstein bulls. Theriogenology,2010,74(9):1548-58.
    [47] Naing S.W., Wahid H., MohdAzam K., et al. Effect of sugars on characteristics ofBoer goat semen after cryopreservation. Animal Reproduction Science,2010,122(1-2):23-8.
    [48] Holovati J.L., Gyongyossy-Issa M.I.C., Acker J.P.. Effects of trehalose-loadedliposomes on red blood cell response to freezing and post-thaw membrane quality.Cryobiology,2009,58:75-83.
    [49] Jan M.J., Janina B.P., Silke A., et al. Follicle survival and growth to antralstages in short-term murine ovarian cortical transplants after Cryologic solidsurface vitrification or slow-rate freezing. Cryobiology,2008,57:163-169.
    [50] Dinnyes A., Dai Y., Jiang S., et al. High developmental rates of vitrified bovineoocytes following parthenogenetic activation, in vitro fertilization, and somatic cellnuclear transfer, Biologicl Reproduction,2000,63:513–518.
    [51] Fry R., Earl C., Fry K., et al. Pregnancy rates in the field after the transfer ofbovine IVP embryos vitrified by the cryologic vitrification method. Reprod. Fertil.Dev.,2005,17:272.
    [52] Hochi S, Akiyama M., Minagawa G., et al. Effects of cooling and warmingratesduring vitrification on fertilization of in vitro-matured bovine oocytes.Cryobiology,2001,42:69-73.
    [53] Kuleshova L.L., Shaw J.M.. A strategy for rapid cooling of mouse embryoswithin adouble straw to eliminate the risk of contamination during storage in liquidnitrogen, Humane. Reproduction,2000,15:2604–2609.
    [54] Gal F. Le, Massip A.. Cryopreservation of cattle oocytes: effects of meioticstage,cycloheximide treatment, and vitrification procedure, Cryobiology,1999,38:290–300.
    [55] Lindemans W., Sangalli L., Kick A., et, al. Vitrification of bovine embryos usingthe CLV method. Reprod. Fertil. Dev.,2004,16:174.
    [56] Peachey B., Hartwich K., Cockrem K., et al. Assessment of viability of in vitroproduced bovine embryos following vitrification by CVM or slow freezing withethylene glycol and triple transfer. Reprod. Fertil. Dev.,2005,17:199.
    [57] Zhang J.X., Nedambale T.L., Yang M., et al. Improved development of ovinematured oocyte following solid surface vitrification (SSV): Effect of cumulus cellsand cytoskeleton stabilizer. Animal Reproduction Science,2009,110:46-55.
    [58] Sakai A. E., Vitrification F., encapsulation vitrification and droplet-vitrification: areview. CryoLetters,2007,28,151–172.
    [59] Sanchez-Osorio J., Cuello C., Gil M.A., et al. Vitrification and warming of invivo–derived porcine embryos in a chemically defined medium. Therioge-nology,2010,73:300-308.
    [60] He X.M., Eric Y.H. Park, Alex Fowler, et al. Vitrification by ultra-fast cooling at alow concentration of cryoprotectants in a quartz micro-capillary: A study usingmurine embryonic stem cells. Cryobiology,2008,56:223-232.
    [61] Ehrhart F., Schulz J.C., Katsen-Globa A., et al. A comparative study of freezingsingle cells and spheroids: Towards a new model system for optimizing freezingprotocols for cryobanking of human tumours. Cryobiology,2009,58:119-127.
    [62] Zhou X.L., Naib A. A., Sun D.W., et al. Bovine oocyte vitrification using theCryotop method: Effect of cumulus cells and vitrification protocol on survival andsubsequent development. Cryobiology,2010,61:66-72.
    [63] Robbins R.J., Torres-Aleman I., Leranth C., et al. Cryopreservation of human braintissue, Experimental Neurol,2008,107:208–213.
    [64] Zhu L., Liu W., Cui L., et al. Tissue-engineered bone repair of goat femur defectswith osteogenically induced bone marrow stromal cells. Tissue Engineering,2006,12:423-433.
    [65] Arinzeh T.L., Peter S.J., Archambault M.P., et al. Allogeneic mesenchymal stemcells regenerate bone in a critical-sized canine segmental defect. The Journal ofBone and Joint Surgery(am),2003,85A:1927-1935.
    [66] Dai K.R., Xu X.L., Tang T.T., et al. Repairing of goat tibial bone defects withBMP-2gene-modified tissue-engineered bone. Calcified Tissue International,2005,77:55-61.
    [67] Kon E., Muraglia A., Corsi A., et al. Autologous bone marrow stromal cells loadedonto porous hydroxyapatite ceramic accelerate bone repair in critical size defectsof sheep long bones. Journal of Biomedical Materials Research,2000,49:328-337.
    [68] Toma J. G., Akhavan M., Fernandes K. J. L., et al. Nature Cell Biology,2001,3:778.
    [130] Kimelman N, Pelled G, Helm GA, et al. Review: geneand stem cell-basedtherapeutics for bone regeneration and repair. Tissue Engineering,2007,13(6):1135-1150.
    [69]章庆国,赵士芳,林鹤.超低温冻存同种异体成骨细胞与异种脱钙骨复合异位组织工程化骨.第二军医大学学报,2003,24(7):15-19.
    [70]谈万业,孙明霞,魏奉才等.成骨细胞超低温冻存前后生物学功能变化的研究.华西口腔医学杂志,2006,24(5):53-61.
    [71]蓝旭,葛宝丰,刘雪梅.冻存保护剂对低温保存的组织工程骨修复骨缺损的影响.创伤外科杂志,9(4),2007.
    [72]王永春,沈尊理,钱蓥等.冻干骨和PLGA材料表面.软骨细胞增殖的形态学观察比较.组织工程与重建外科杂志,2007,3(1):81-88.
    [73] Yua H.B., Shen G.F., Wei F.C.. Effect of Cryopreservation on the Immunogenicityof Osteoblasts. Journal of Oral and Maxilofacial Surgery,2007,39(10):3030-3031.
    [74] Nicol A.,Nieda M., Donaldson C., et al.Cryopreserved human bone marrowstorma is fully functional in vitor.British Journal of Haematology,1996,94(2):258-265.
    [75] Yoshikawa T, Nakajima H, Takakura Y, et al.Osteogenesis with cryopreservedmarrow mesenchymalcells.Tissue Engineering,2005,11(1-2):152-160.
    [76] Reuther T., Ketmann C., Scheer M., et al.Cryopreservation of osteoblsat-likecells:viability and differentiation with replacement of fetal bovine serum in vitro.Cells tissues Organs,2006,183(1):32-40.
    [77] Rust PA, Costas C, Cannon SR, et al.Characterisation of cryopreserved cellsfreshly isolated from human bone marrow. CryoLetters,2006,27(1):17-28.
    [78] Kotobuki N, Hirose M, Machida H, et a1. Viability and osteogenic potentialofcryoperserved human bone marrow-derived mesenchymal cells. TissueEn-gineering,2005,11(5-6):663-673.
    [79] Papaccio G, Graziano A. Long-term cryopreservaiton of dental pulp stemcells(SBP-DPSCs) and their differentiated osteoblasts:a cell source for tissuerepair. Journal of Cellular Physiology,2006,208(2):319-25.
    [80] Susanne Wolbank, Marc Fahrner, Simone Hennerbichler, et al. Dose-DependentImmunomodulatory Effect of Human Stem Cells from Amniotic Membrane: AComparison with Human Mesenchymal Stem Cells from Adipose Tissue. TissueEngineering,2007,13(6):1173-1183.
    [81] Shimakura Y, Yamzaki Y, Uchinuma E. Experimental study on bone formationpotential of cryopreserved human bone marrow mesenchymal cell/hydroxyapatitecomplex in the presence of recombinant human bone morphogenetic protein. TheJournal Of Craniofacial Surgery,2003,14(1):108-116.
    [82] Arnhold, Stefan J, Goletz, Iris, et al. Isolation and characterization of bonemarrow-derived equine mesenchymal stem cells. American Journal of VeterinaryResearch,2007,68(10):1095-1105.
    [83] Lee MW, Yang MS, Park JS, et al. Isolation of mesenchymal stem cells fr-omcryopreserved human umbilical cord blood. International Journal Of Hematology,2005,81(2):126-130.
    [84] Ikeda, Etsuko, Hirose, Motohiro, et al. Osteogenic differentiation of human dentalpapilla mesenchymal cells. Biochemical&Biophysical Research Communications,2006,342(4):1257-1262.
    [85] Tan WY, Sun MX, Wei FC, et al. Preliminary study on transformation of thebiological function of the cryopreserved osteoblasts cultured in vitro. Jo-urnal OfStomatology,2006,24(5):462-465.
    [86] Wei FC, Tan WY, Sun SZ, et al. The experimental study of cryopreservedosteoblasts combined with BGC repairing mandibular defects in rabbits. Jou-rnalOf Stomatology,2003,12(3):178-182.
    [87] Pang Y, Cui P, Chen W. Incipient establishment of human bone marrowm-esenchymal stem cells bank. Journal Of Reparative And Reconstructive Surgery,2005,19(7):578-582.
    [88] Jomha N. M., Lavoie G., Muldrew K., et al. Cryopreservation of intact hu-manarticular cartilage. Journal of Orthopaedic Research,2007,20(6):1253-1255.
    [89] Michelle D, Kofrona, Natalie C, et al. Cryopreservation of tissue engineer-edconstructs for bone. Journal of Orthopaedic Research,2003,21(6):1005-1010.
    [90] Kiefer G. N., Sundby K., McAllister D., et al. The effect of cryopreservation on thebiomechanical behavior of bovine articular cartilage. Journal of OrthopaedicResearch,2004,7(4):494-501.
    [91] Shaw-Ruey Lyu, Wei Te Wu, Chien Chih Hou, et al. Study of cryopreservation ofarticular chondrocytes using the Taguchi method. Cryobiology,2010,60:165-176.
    [92] Liu G.P., Shu C.F., Lei C., et.al.Tissue-engineered bone formation withcryopreserved human bone marrow mesenchymal stem cells.Cryobiology,2008,56(3):209-215.
    [93] Hasson R. C.. Damage modes responsible for low post-cryopre-servation viability of osteoblast cells. Tucson: the University of Arizona,2004:118-137.
    [94]程光煦.拉曼布里渊散射原理及应用.北京:科学出版社,2001:33-40.
    [95]王凤霞,张卓勇,张存林.太赫兹时域光谱技术在化学领域中应用的新进展.分析化学,2006,34:576-580.
    [96] Shen Y C, Upadhya P C, Linfield E H, et al.. Vibrational Spectroscopy,2004,35:111-114.
    [97] Baudot A., V.Odagescu. Thermal properties of ethylene glycol aqueous solutions.Cryobiology,2004,48:283-294.
    [98] Takao Furuki, Rika Abe, Hitoshi Kawaji, et al. Thermodynamic functions ofα,α-trehalose dihydrate and ofα,β-trehalose monohydrate at temperatur-esfrom13K to300K. J. Chem. Thermodynamics,2006,38:1612-1619.
    [99] Murthy S. S. N.. Some Insight into the Physical Basis of the Cryoprotective Actionof Dimethyl Sulfoxide and Ethylene Glycol. CRYOBIOLOGY,1998,36:84–96.
    [100] Zdenek Hubalek. Protectants used in the cryopreservation of microorganisms.Cryobiology,2003,46:205-229.
    [101] Baudot A., Constanca Cacela, Maria Leonor Duarte. Thermal study of simpleamino-alcohol solutions. Cryobiology,2002,44:150-160.
    [102].Chen T., Sankha Bhowmick, Andreas Sputtek. The glass transition temp-eratureof mixtures of trehalose and hydroxyethyl starch. Cryobiology,2002,44:301-306.
    [103] Yuji Ike, Yuichi Seshimo, Seiji Kojima. Crystallization and vitrification ofcryoprotectants studied by Raman scattering, Brillouin scattering and THz-TDS.Journal of Molecular Structure,2009,924-926(30):127-130.
    [104] Shiraz A. Markarian, Sergio Bonora, Karine A. Bagramyan. Glass-formingproperty of the system diethyl sulphoxide/water and its cryoprotective action onEscherichia coli survival. Cryobiology,2004,49:1-9.
    [105] Wang H.Y., Lu S.S., Lun Z.R.. Glass transition behavior of the vitrificationsolutions containing propanediol, dimethyl sulfoxide and p olyvinyl alcohol.Cryobiology,2009,58:115-117.
    [106] Gao Cai, Zhou Guo-Yan, Xu Yi. Glass transition and enthalpy relaxation ofethylene glycol and its aqueous solution. Thermochimica Acta,2005,435:38-43.
    [107] Lerbret Adrien, Patrice Bordat, Frederic Affouard, et,al. Influence of homologousdisaccha-rides on the hydrogen-bond network of water: complementary Ramanscattering experiments and molecular dynamics simulations. Car-bohydrateResearch,2005,340:881-887.
    [108] Sitaula Ranjan, Bhowmick Sankha. Moisture sorption characteristics and th-ermophysical properties of trehalose-PBS mixtures. Cryobiology,2006,52:369-385.
    [109] Willem F. Wolkers, Oldenhof Harriette, et,al. Preservation of dried liposomes inthe presence of sugar and phosphate. Biochimica et Biophysica Acta,2004,1661:125-134.
    [110] Inaba Akira, Ove Andersson. Multiple glass transitions and two step cryst-allization for the binary system of water and glycerol. Thermochimica Acta,2007,461:44-49.
    [111] Christensen Dennis, Kirby Daniel, Foged Camilla, et,al.α,α′-trehalose,6,6′-dibehenate in non-phospholipid-based liposomes enables direct interac-tionwith trehalose, o-ffering stability during freeze-drying. Biochimicaet BiophysicaActa,2008,1778:1365-1373..
    [112] Christensen Dennis, Foged Camilla, Rosenkrands Ida, et al. Trehalose preservesDDA/TDB liposomes and their adjuvant effect during freeze-drying. Biochimica-et Biophysica Acta,2007,1768:2120-2129.
    [113] Elias M.E., Elias A.M.. Trehalose+water fragile system: properties and glasstransition. Journal of Molecular Liquids,1999,83:303-310.
    [114] Takahashi Hiroshi, Ohmae Hiroyuki, Hatta Ichiro. Trehalose-InducedDesta-bilization of Interdigitated Gel Phase in Dihexadecylphosphatidylcholine.Bi-ophysical Journal,1997,73:3030-3038.
    [115] Banerjee Debamalya, Bhat S.V.. Vitrification, relaxation and free volumeinglycerol-water binary liquid mixture: Spin probe ESR studies. Journal ofNon-Crystalline Solids,2009,355:2433-2438.
    [116] Gharsallaoui Adem, Roge′Barbara, Mathlouthi Mohamed. Water–disacchari-desinteractions in saturated solution and the crystallisation conditions.FoodChemistry,2008,106:1329-1339.
    [117] Elena A. Golovina, Andrey V. Golovin, Folkert A. Hoekstra. Water ReplacementHypothesis in Atomic Detail—Factors Determining the Structure of DehydratedBilayer Stacks. Biophysical Journal,2009,97:490-499.
    [118] Cristina S. Pereira, Roberto D. Lins, Indira Chandrasekhar, et,al. Interaction of theDisacch-aride Trehalose with a Phospholipid Bilayer: A Molecular DynamicsStudy. Biophysical Journal,2004,96(4):2273-2285.
    [119]Yuji Ike, Seiji Kojima.. Brillouin scattering study of liquid–glass transitions ofaminopropanols. Journal of Molecular Structure,2005,744-747:521-524.
    [120] Feng Ping, Wan Q. Cao. Congregation model of glassy transition in supercooledliquids. Journal of Non-Crystalline Solids,2010.[121] Giachini Lisa, FranciaFrancesco, Cordone Lorenzo, et.al. Cytochrome c in a Dry Trehalose Matrix:Structural and Dynamical Effects Probed by X-Ray Absorption Spectroscopy.Biophysical Journal,2007,92(8):1350-1360.
    [122] Kasapis Stefan, Desbrie`res Jacques, Insaaf M. Al-Marhoobi. Disentanglingαfromβmechanical relaxations in the rubber-to-glass transition ofhigh-sugar–chitosan mixtures. Carbohydrate Research,2002,337:595-605.
    [123] Takahiro Takekiyo, Yukihiro Yoshimura. Drastic change in the conformationalequilibria of tetraethylammonium bromide in the glassy aqueoussolution.Chemical Physics Letters,2006,420:8-11.
    [124] You Yumin, Richard D. Ludescher. Effect of gelatin on molecular mobility inamorphous sucrose detected by erythrosin B phosphorescence. CarbohydrateResearch,2008,343:2657-2666.
    [125] Staluszka Justyna, Plonka Andrzej, Szajdzinska-Pietek Ewa. ESR study ofg-irradiated hyperquenched glassy water doped with thymine and its nucleoside.Radiation Physics and Chemistry,2003,67:247-250.
    [126] Kyunil Rah. Excluded volume effect on entropy and clustering behaviors insupercooled liquids and glasses. Physica A,2010,389:27-39.
    [127] Willart J.F., Descamps N., Caron V., et al. Formation of lactose-mannitolmolecular alloys by solid state vitrification. Solid State Communications,2006,138:194-199.
    [128] Nagahama Maki, Suga Hiroshi, Andersson Ove. Formation of molecular alloysby solid-state vitrification. Thermochimica Acta,2000,363:165-174.
    [129] Kiyoshi Kawai, Toru Suzuki, Masaharu Oguni. Low-Temperature GlassTransitions of Quenched and Annealed Bovine Serum Albumin AqueousSolutions. Biophysical Journal,2006,90(3):3732-3738.
    [130] Fumi Hidaka, Hitoshi Kanno. Raman OD stretching spectral differences betweenaqueous and alcoholic tetraalkylammonium chloride solutions. Chemical PhysicsLetters,2003,379:216-222.
    [131] Y.Guinet, A. Amazzal, A. Hedoux. Raman scattering investigations in mo-nomethylhydrazine-water molecular glass-former system. Journal of Non-Crystalline Solids,2003,325:213-223.
    [132] Feldstein M.M., Shandryuk G.A., Plate N.A.. Relation of glass transitiontemperature to the hydrogen-bonding degree and energy in poly(N-vinylpyrrolidone) blends with hydroxyl-containing plasticizers. Part1. Effects ofhydroxyl group number in plasticizer molecule. Polymer,2001,42:971-979.
    [133] Hajime Tanaka. Relationship among glass-forming ability, fragility, andshort-range bond ordering of liquids. Journal of Non-Crystalline Solids,2005,351:678-690.
    [134] Deszczynski Marcin, Kasapis Stefan, John R. Mitchell. Rheologicalinvestigation of the structural properties and aging effects in theagarose/co-solute mixture. Carbohydrate Polymers,2003,53:85-93.
    [135] Baran J., Davydova N.A., Drozd M.. Structural organizations in supercooledliquid2-biphenylmethanol. Journal of Molecular Liquids,2006,127:109-112.
    [136] Kanno H., Yonehama K., Somraj A.. Structure-making ions become structurebreakers in glassy aqueous electrolyte solutions. Chemical Physics Letters,2006,427:82-86.
    [137] Li J.C., Kolesnikov A.I.. The first observation of the boson peak from watervapour deposited amorphous ice. Physica B,2002,316-317:493-496,.
    [138] Johari G.P.. Thermal relaxation of water due to interfacial processes and phaseequilibria in1.8nm pores of MCM-41. Thermochimica Acta,2009,492:29-36.
    [139] Kets E.P.W., Ijpelaar P.J., Hoekstra F.A., et.al. Citrate increases glass transitiontemperature of vitrified sucrose preparations. Cryobiology,2004,48:46-54.
    [140] Kasapis Stefan, Shyam S. Sablani. The effect of pressure on the structuralproperties of biopolymer/co-solute. Part II: The example of gelling polys-accharides. Carbohydrate Polymers,2008,72:537-544.
    [141] Debenedetti P.G., Stillinger F.H.. Supercooled liquids and the glass transition,Nature,2001,410:259-267.
    [142] Mishima O., Stanley H.E.. The relationship between supercooled and glassywater. Nature,1998,396:329-335.
    [143] Finney J.L., Hallbrucker A., Kohl I., et al. Structures of high and low densityamorphous ice by neutron diffraction, Phys. Rev. Lett.,2002,88,225503:1-4.
    [144] Hubalek Zdenek. Protectants used in the cryopreservation of microorganisms.Cryobiology,2003,46:205-229.
    [145] Sandia National Laboratories, LAMMPS USERS MANNUAL. US: SandiaCorporation,2004:33-36.
    [146] Padro M P, Bako J. Computer Simulation of Binary mixtures. Oxford:ClarendonPress,2000:13-19.
    [147] Rabin Yoed, Bell Ernest. Thermal expansion measurements of cryoprotectiveagents.Part II: measurements of DP6and VS55.and comparison with Me2SO.Cryobiology,2003,46:264-270.
    [148] Sudhakar S. Dhondge, Chandrashekhar, et al. Thermodynamic studies of some non-electrolytes in aqueous solutions at low temperatures. J.Chem.-Thermodynamics,2008,40:1-15.
    [149] Maroulis, Z. B., Saravacos, G. D., Krokida, M. K., et al (2002). Thermalconductivity prediction for foodstuffs: effect of moisture content and tempe-rature. International Journal of Food Properties,2002,5:231–245.
    [150] Mombelli, E., R. Morris, W. Taylor, and F. Fraternali. Hydrogenbondingpropensities of sphingomyelin in solution and in a bilayer assembly: a mo-lecular dynamics study. Biophysical Journal,2003,84:1507-1517.
    [151] Li B.Q., Prevosto D., Capaccioli S., et,al. Does the entropy and volumedependence of the structural a-relaxationoriginate from the Joh-ari–Goldsteinb-relaxation. Journal of Non-Crystalline Solids,2009,355:705-711.
    [152] Weik M., Lehnert U., Zaccai G.. Liquid-Like Water Confined in Stacks ofBiological Membranes at200K and Its Relation to Protein Dynamics.Biophysical Journal,2005,89(9):3639-3646.
    [153] Drichko N.V., Kerenskaia G.Yu., Schreiber V.M.. Medium and temperatureeffects on the infrared spectra and structure of carboxylic acid–pyridinecomplexes: acetic acid. Journal of Molecular Structure,1999,477:127-141.
    [154] Wright W.W., Baez Juan Carlos, Vanderkooi Jane M.. Mixed trehalose/sucroseglasses used for protein incorporation as studied by infrared and opticalspectroscopy. Analytical Biochemistry,2002,307:167-172.
    [155] Juszynskaa E., Massalska-Arodza M., Natkaniec I., et,al. Neutron scatteringstudies of solid-state polymorphism in dimethyl butanol glass formers. PhysicaB,2008,403:109-114.
    [156] Wolkers W. F., Harriette Oldenhof, Tablin Fern, et,al. Preservation of driedliposomes in the presence of sugar and phosphate. Biochimica et BiophysicaActa,2004,1661:125-134.
    [157] Santivarangkna C., Higl B., Foerst P.. Protection mechanisms of sugars duringdifferent stages of preparation process of dried lactic acid starter cultures. FoodMicrobiology,2008,25:429-441.
    [158] Charton Christophe, Falka V′eronique, Marchal Philippe. Influence of Tg,viscosity and chemical structure of monomers on shrinkage stress in light-cureddimethacrylate-based dental resins. dental materials,2007,23:1447-1459.
    [159] Jiang Q., Lu H.M.. Size dependent interface energy and its applications. SurfaceScience Reports,2008,63:427-464.
    [160] Baran J., Davydova N.A., Pietraszko A.. Spectroscopic study of the formation ofmolecular glasses. Journal of Molecular Structure,2005,744-747:301-305.
    [161] Izabela M. B.. Structure-property relationships in dimethacrylate networks basedon Bis-GMA, UDMA and TEGDMA. dental materials,2009,25:1082-1089.
    [162] Patrick M.M.. Suppression of crystallization in the binary system1,2-p-ropanediol-deuterium oxide. Comparison with light water as solvent.Therm-ochimica Acta,1995,255:297-317.
    [163] Lakshmanan Muthuselvi, Dhathathreyan A., Miller Reinhard. Synergy betweenHofmeister effect and coupled water in proteins: Unusual dilational moduli ofBSA at air/solution interface. Colloids and Surfaces A: Physicochem. Eng.Aspects,2008,324:194-201.
    [164] Gonda Takehiko, Sei Tadanori. The inhibitory growth mechanism of saccharideson the growth of ice crystals from aqueous solutions. Progress in Crystal Growthand Characterization of Materials,2005,51:70-80.
    [165] Rebecca Notman, Wouter K. den Otter, Massimo G. Noro. The PermeabilityEnhancing Mechanism of ME2SO in Ceramide Bilayers Simulated by MolecularDynamics. Biophysical Journal,2007,93(9):2056-2068.
    [166] Lu C.H., Su Y.C., Wang C.F.. Thermal properties and surface energycharacteristics of interpenetrating polyacrylate and polybenzoxazine networks.Polymer,2008,49:4852-4860.
    [167] Baudot A., Odagescu V.. Thermal properties of ethylene glycol aqueoussolutions. Cryobiology,2004,48:283-294.
    [168] Baudot Anne, Cacela Constanca, Duarte M.L.. Thermal study of simpleamino-alcohol solutions. Cryobiology,2002,44:150-160.
    [169] Takao Furuki,Rika Abe,Hitoshi Kawaji. Thermodynamic functions ofα,α-trehalose dihydrate and ofα,β-trehalose monohydrate at temperaturesfrom13K to300K. J. Chem. Thermodynamics,2006,38:1612-1619.
    [170] Kaushal A. M. Bansal A. K.. Thermodynamic behavior of glassy state ofstructurally related compounds. European Journal of Pharmaceutics andBiopharmaceutics,2008,69:1067-1076.
    [171] Banerjee Debamalya, Bhat S.V.. Vitrification, relaxation and free volume inglycerol–water binary liquid mixture: Spin probe ESR studies. Journal ofNon-Crystalline Solids,2009,355:2433-2438.
    [172] Lewicki P. P.. Water as the determinant of food engineering properties. A review.Journal of Food Engineering,2004,61:483-495.
    [173] Campillo-Fernández A. J., Manuel Salmerón Sánchez, Roser Sabater i Serra.Water-induced (nano) organization in poly(ethyl acrylate-co-hydroxyethylacrylate) networks. European Polymer Journal,2008,44:1996-2004.
    [174] Yu Z.W., Quinn P.J., The effect of dimethyl sulphoxide on the structure andphase behaviour of palmitoleoylphosphatidylethanolamine, Biochim. Biophys.Acta,2000,1509:440-450.
    [175] Mohammed A. R., Allan G.A. Coombes, Yvonne Perrie. Amino acidsascryoprotectants for liposomal delivery systems. european journal ofphar-maceutical sciences,2007,30:406-413.
    [176] Zhang S.Z., Fan J.L., Xu X.G., et,al. An experimental study of the use ofultrasound to facilitate the loading of trehalose into platelets. Cryobiology,2009,59:135-140.
    [177] Elversson Jessica, Millqvist-Fureby Anna. Aqueous two-phase systems as aformulation concept for spray-dried protein. International Journal ofPhar-maceutics,2005,294:73-87.
    [178] Wang J. H.. A Comprehensive Evaluation of the Effects and Mechanisms ofAntifreeze Proteins during Low-Temperature Preservation. Cryobiology,2000,41,1-9:1-7.
    [179] Hubel A., Darr T.B., Chang A., et,al. Cell partitioning during the directionalsolidification of trehalose solutions. Cryobiology,2007,55:182-188.
    [180] Ananta E., Volkert M., Knorr D.. Cellular injuries and storage stability ofspray-dried Lactobacillus rhamnosus GG. International Dairy Journal,2005,15:399-409.
    [181] Zhou Z.W., Tian S.P.. Combined effects of endo-and exogenous trehalose onstress tolerance and biocontrol efficacy of two antagonistic yeasts. BiologicalControl,2008,46:187-193.
    [182] Pereira C. S., Philippe H. Hunenberger. Effect of Trehalose on a PhospholipidMembrane under Mechanical Stress. Biophysical Journal,2008,95(8):3525-3534.
    [183] Abdelwahed Wassim, Degobert Ghania, Stainmesse Serge. Freeze-drying ofnanoparticles: Formulation, processand storage considerations. Advanced DrugDelivery Reviews,2006,58:1688-1713.
    [184] Lerbret Adrien, Bordat Patrice, Affouard Frederic, et,al. Influence of homologous disaccharides on the hydrogen-bond network of water: complement-ary Raman scattering experiments and molecular dynamics simulations. Ca-rbohydrate Research,2005,340:881-887.
    [185] Cristina S. Pereira, Roberto D. Lins, Indira Chandrasekhar, et,al. Interaction ofthe Disaccharide Trehalose with a Phospholipid Bilayer: A Molecular DynamicsStudy. Biophysical Journal,2004,86(4):2273-2285.
    [186] Meng Q.Q., Wang J.X., Ma G. H.. Lyophilization of CNBr-activated agarosebeads with lactose and PEG. Process Biochemistry,2009,44:562-571.
    [187] Juszynskaa E., Massalska-Arodza M., Natkaniec I., et,al. Neutron scatteringstudies of solid-state polymorphism in dimethyl butanol glass formers. PhysicaB,2008,403:109-114.
    [188] Saragusty J., Gacitua H., Rozenboim I., et,al. Protective effects of iodixanolduring bovine sperm cryopreservation. Theriogenology,2009,71:1425-1432.
    [189] leach AR. Molecular Modelling-Principles and Aplication.Harlow,England:Pearson Education Limited,2001:35-37.
    [190]早稻田嘉夫.固体物理,1977,181:12.
    [191] Mayo SL, Olafaon BD, Godard WAⅢ. DREIDING: a generic focefield. J PhysChem,1990,94:8897-8909.
    [192] Johari G.P., Andersson Ove. Vibrational and relaxational properties ofcrystalline and amorphous ices. Thermochimica Acta,2007,461:14-43.
    [193] Anatoliy I.F., Nikolay P.M.. The role of the H-bond network in the creat-ion of the life-giving properties of water. Chemical Physics,345:164–172,2008.
    [194] Netz P A, Starr F W, Stanley H E, Barbosa M C. Static and dynamic propertiesof stretched water. J.Chem.Phys.,2001,115:344.
    [195] Netz P A, Starr F W, Stanley H E. et al. Relation between structural anddynamical anomalies in supercooled water. Physica A,2002,314:470.
    [196] Schoen P. A.E., Michel Bruno, Curioni Alessandro. Hydrogen-bond enhancedthermal energy transport at functionalized, hydrophobic and hydrophilicsilicawater interfaces. Chemical Physics Letters,2009,476:271-276.
    [197] Tromp R. H., Parker R., Ring S. G.. A neutron scattering study of thestructure of amorphous glucose. J. Chem. Phys.,1997,107:6039-6048.
    [198] Fried J.R., Ren P.. Molecular simulation of the glass transition ofpolyphos-phazenes. Computational and Theoretical Polymer Science,1999,9:111-116.
    [199] CHEN Cong, LI WeiZhong. Molecular Dynamics Simulation of HydrogenBonding Characteristics in Aqueous Glycerol Solutions. Acta Physico-ChimicaSinica,2009,25(3):507-512.
    [200] SUN Wei, CHEN Zhong, HUANG Su-Yi. Molecular dynamics simulation ofstructural and dynamic properties of methanol under influence of externalelectric field. Journal of Chemical Industry and Engineering,2005,56(5):763-768.
    [201] SUN Wei, CHEN Zhong,HUANG Su-Yi.Microscopic structure of liquidmethanol: a molecular dynamics simulation. J.Huazhong Univ.of Sci&Tech.(Nature Science Edition),2005,33(11):51-53.
    [202] Wang, X. et al. Fertility after intact ovary transplantation. Nature,2002,385:415.
    [203] Liu, B.L., McGrath, J.J. Effects of two-step freezing on the ultra-structuralcomponents of murine osteoblast cultures. Cryoletters,2006,27:369-374.
    [204] Fahy, G.M., Macfarlane, D.R., Angell, C.A.,et al. Vitrification as an Approachto Cryopreservation. Cryobiology,1984,21:407-426.
    [205] de Graaf, I.A.M.. Cryopreservation of rat precision-cut liver and kidney slices byrapid freezing and vitrification. Cryobiology,2007,54:1-12.
    [206] Rall, W.F., Fahy, G.M. Ice-Free Cryopreservation of Mouse Embryos at-196-Degrees-C by Vitrification. Nature,1985,313:573-575.
    [207] Fraga, F., Salgado, T., Anon, J.A.R.,et al. Determination of Physical andStructural Parameters by Dma and Dsc-Application to an Epoxidic Formulation.Journal of Thermal Analysis,1994,41:1543-1550.
    [208] Kheirabadi, B.S., Fahy, G.M. Permanent life support by kidneys perfused with avitrifiable (7.5molar) cryoprotectant solution. Transplantation,2000,70:51-57.
    [209] Hu, Y., Zhang, Y., Li, B.Y., et al. Application of sample-sampletwo-dimensional correlation spectroscopy to determine the glass transitiontemperature of poly(ethylene terephthalate) thin films. AppliedSpectroscopy,2007,61:60-67.
    [210] Weuts, I. et al. Evaluation of different calorimetric methods to determine theglass transition temperature and molecular mobility below T-g for amorphousdrugs. International Journal of Pharmaceutics,2003,259:17-25.
    [211] Tamai, Y. A practical method to determine glass transition temperature inmolecular dynamics simulation of mixed ionic glasses. Chemical Physics Letters,2002,351:99-104.
    [212] Ganeriwala, S.N.,Hartung, H.A. Fourier-Transform Mechanical Analysis (Ftma)to Determine Dynamic Mechanical-Properties and Glass-Transition Temperatureof Polymers. Abstracts of Papers of the American Chemical Society,1989,197:124-PMSE.
    [213] Baudot, A. et al. Towards whole sheep ovary cryopreservation. Cryobiolo-gy,2007,55:236-248.
    [214] Berejnov, V., Husseini, N.S., Alsaied, O.A.,et al. Effects of cryoprotectantconcentration and cooling rate on vitrification of aqueous solutions. JournalofApplied Crystallography,2006,39:244-251.
    [215] Katkov, I.I.,Levine, F. Prediction of the glass transition temperature of watersolutions: comparison of different models. Cryobiology,2004,49:62-82.
    [216] Wowk, B., Darwin, M., Harris, S.B., et al. Effects of solute methoxylation onglass-forming ability and stability of vitrification solutions. Cryobiology,1999,39:215-227.
    [217] Derrick, J.B., Lind, M., Rowe, A.W. Metabolic Integrity of Human Red CellsSubjected to a Low Glycerol-Rapid Freeze Cryopreservation Procedure.Cryobiology,1969,6:260.
    [218] Derrick, J.B., Lind, M.,Rowe, A.W. Studies of Metabolic Integrity ofHuman Red Blood Cells after Cryopreservation.I. Effects of Low-Glycerol-Rapid-Freeze Preservation on Energy Status and Intracellular Sodium andPotassium. Transfusion,1969,9:317.
    [219] Derrick, J.B., Mcconn, R., Sorovacu, M.L.,et al. Studies of Metabolic Int-egrity of Human Red Blood-Cells after Cryopreservation.2. Effects ofLow-Glycerol-Rapid-Freeze Preservation on Glycolysis. Transfusion,1972,12:400-404.
    [220] Dayian, G.,Rowe, A.W. Cryopreservation of Human Platelets for Transfusion-Glycerol-Glucose, Moderate Rate Cooling Procedure. Cryobiology,1976,13:1-8.
    [221] Frim, J.,Mazur, P. Cryopreservation of Human-Granulocytes Using Glycerol.Cryobiology,1979,16:598-598.
    [222] Vonglander, H.J.,Colditz, U. Comparison between Cryoprotective Potentials ofGlycerol, Dimethylsulfoxide, Dimethylformamide, and Ethylene-Glycol inCryopreservation of Human-Semen. Zentralblatt Fur Gynakologie,1981,103:840-848.
    [223] Bernard, H.E., Fuller, B.J., Craft, I. Recovery of2-Cell Mouse Embryos afterCryopreservation Using Low Glycerol Concentrations and NormothermicCryoprotectant Equilibration. Cryo-Letters,19823:326-326.
    [224] Bernard, A.,Fuller, B. The Effect of Glycerol on Cryopreservation of MouseOocytes. Cryobiology,1983,20:717-717.
    [225] Taylor, M.J.,Duffy, T.J. Cryopreservation of Isolated Pancreatic-Islets-thePattern of Insulin-Secretion after Slow Cooling and Warming in the Presenceof Either Dimethylsulfoxide or Glycerol. Transplantation Proceedings,1983,15:2196-2196.
    [226] Mutetwa, S.M., James, E.R. Cryopreservation of Plasmodium-Chabaudi.1.Protection by Glycerol and Dimethylsulfoxide during Cooling and by GlucoseFollowing Thawing. Cryobiology,1984,21:329-339.
    [227] Fiser, P.S., Fairfull, R.W. Interaction of Glycerol Level, Cooling Velocity, andthe Osmolality of Skim-Milk Diluents Used for Cryopreservation of R-amSpermatozoa. Cryobiology,1984,21:711-712.
    [228] Takeda, T. Cryopreservation of Mouse Morulae in Propylene-Glycol or Glycerol.Theriogenology,1987,27:282-282.
    [229] Areman, E.M., Simonis, T., Carter, C., et al. Bulk Cryopreservation ofLymphocytes in Glycerol. Transfusion,1987,27:508-508.
    [230] Fisher, R. et al. Cryopreservation of Pig and Human Liver Slices.Cryobio-logy,1991,28:131-142.
    [231] Hovatta, O. Cryopreservation of testicular tissue in young cancer patients.Human Reproduction Update,2001,7:378-383.
    [232] Kami, D., Uenohata, M., Suzuki, T.,et al. Cryopreservation of black chokeberryin vitro shoot apices. Cryoletters,2008,29:209-216.
    [233] Farshad, A., Akhondzadeh, S. Effects of Sucrose and Glycerol during theFreezing Step of Cryopreservation on the Viability of Goat Spermatozoa.Asian-Australasian Journal of Animal Sciences,2008,21:1721-1727.
    [234] Konstantinow, A., Muhlbauer, W., Hartinger, A., et al. Skin Banking-a SimpleMethod for Cryopreservation of Split-Thickness Skin and Cultured HumanEpidermal-Keratinocytes. Annals of Plastic Surgery,1991,26:89-97.
    [235] Hartshorne, G.M., Elder, K., Crow, J., Dyson, H., et al. The Influence of InvitroDevelopment Upon Postthaw Survival and Implantation of CryopreservedHuman Blastocysts. Human Reproduction,1991,6:136-141.
    [236] Abou-Rachid, H. et al. On the correlation between miscibility and solubilityproperties of energetic plasticizers/polymer blends: Modeling and simulationstudies. Propellants Explosives Pyrotechnics,2008,33:301-310.
    [237] Maitra, A., Bagchi, S. Study of solute-solvent and solvent-solvent interactions inpure and mixed binary solvents. Journal of Molecular Liquids,2008,137:131-137.
    [238] Jawalkar, S.S., Raju, K.V.S.N., Halligudi, S.B., et al, T.M. Molecular modelingsimulations to predict compatibility of poly(vinyl alcohol) and chitosan blends:A comparison with experiments. Journal of Physical Chemistry B,2007,111:2431-2439.
    [239] Jawalkar, S.S., Aminabhavi, T.M. Molecular modeling simulations andthermodynamic approaches to investigate compatibility/incompatibility ofpoly(L-lactide) and poly(vinyl alcohol) blends. Polymer,2006,47:8061-8071.
    [240] Rycerz, Z.A., Jacobs, P.W.M. Ewald Summation in the Molecular-DynamicsSimulation of Large Ionic Systems-the Cohesive Energy. MolecularSimulation,1992,8:197-213.
    [241] Pramanik, R., Das, P.K., Bagchi, S. Solubility and solvation interaction in neatand mixed binary solvents. Indian Journal of Chemistry Section a-InorganicBio-Inorganic Physical Theoretical&Analytical Chemistry,1999,38:906-912.
    [242] Sun, C.Q. Size dependence of nanostructures: Impact of bond order deficiency.Progress in Solid State Chemistry,2007,35:1-159.
    [243] Li, D.X., Liu, B.L., Liu, Y.S., et al. Predict the glass transition temperature ofglycerol-water binary cryoprotectant by molecular dynamic simulation.Cryobiology,2008,56:114-119.
    [244] Dantchev, D., Diehl, H.W., Gruneberg, D. Excess free energy and Casimirforces in systems with long-range interactions of van der Waals type: Generalconsiderations and exact spherical-model results. Physical Review E,2006:73.
    [245] Lim,T.C. On the applicability of mathematical constants and sequences inintermolecular potential energy functions. Journal of Mathematical Chemis-try,2007,41:381-391.
    [246] Ewald, P.P. The calculation of optical and electrostatic grid potential. AnnalenDer Physik,1921,64:253-287.
    [247] Wang, J.Y., Deng, Y.Q., Roux, B. Absolute binding free energy calculationsusing molecular dynamics simulations with restraining potentials. BiophysicalJournal,2006,91:2798-2814.
    [248] Stefanis, E., Tsivintzelis, L., Panayiotou, C. The partial solubility parameters:An equation-of-state approach. Fluid Phase Equilibria,2006,240:144-154.
    [249] Loubeyre, P., LeToullec, R., Wolanin, E., et al. Modulated phases and protoncentring in ice observed by X-ray diffraction up to170GPa. Nature,1999,397:503-506.
    [250] Soldera, A. Comparison between the glass transition temperatures of the twoPMMA tacticities: A molecular dynamics simulation point of view.Ma-cromolecular Symposia,1998,133:21-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700