油浸绝缘纸热老化机理的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2011年,发展特高压等大容量、高效率、远距离先进输电技术已经明确写入十二五规划,特高压输电已经上升为国家战略。电力电压等级的提高,对电力绝缘材料的绝缘性能提出了更为苛刻的要求。油纸复合绝缘介质作为电力变压器的重要绝缘材料,其性能的优劣直接决定着变压器的使用寿命,影响整个电网的运行安全。油纸绝缘在变压器的长期运行过程中,受热、电、机械等多种因素的影响逐渐劣化,导致其绝缘性能逐渐下降,给电网的安全运行造成重大隐患。变压器油纸绝缘老化机理研究是绝缘老化状态评估、寿命预测和制定抗老化措施的前提和基础,故油纸绝缘老化的微观机理及热特性研究具有重要工程价值和学术意义。
     热老化是变压器油纸绝缘的主要老化形式之一。在油油绝缘的热老化过程中,将会产生水分、酸等一系列有害物质,而它们又会在热场的作用下更一步加速油纸绝缘的老化。长期以来,国内外学者对油纸绝缘的热老化宏观特性进行了广泛的研究,而宏观现象背后的微观机制的基础理论研究,由于涉及到电气、物理、化学等多学科交叉,同时也受传统实验手段的制约,主要实验数据的总结和归纳为主。近年来飞速发展起来的模拟计算技术,为研究油纸绝缘老化的微观机理,提供了可行、有效的手段。本文充分利用分子动力学的优势,在考虑油纸复合绝缘介质的实际运行环境基础上,采用微观、介观、宏观多尺度联合的方法,研究热场对绝缘纸热稳定性的影响,以及由热老化产生的有机酸和水分在油纸绝缘中的扩散规律及分布特点,水分对绝缘纸热稳定性影响等基础问题。论文取得主要创新性成果有:
     ①利用分子动力学对纤维素非晶区和晶区的热稳定性能模拟计算表明,热场作用下纤维素非晶区的拉伸模量小,且随温度的升高,非晶区的力学模量和氢键结构被破坏程度均大于晶区。纤维素非晶区内氢键数随温度升高,下降明显,链运动增加明显,而晶区内氢键数和链运动变化不大。模拟与实验结果对比分析表明,变压器绝缘纸的热老化首先从非晶区开始,并随温度增高,非晶区的老化程度大于晶区。
     ②首次利用分子动力学对油和纤维素对其热老化生成的有机酸的束缚行为及有机酸与纤维素的相互作用进行了研究。油和纤维素对五种有机酸的束缚行为由以下两方面决定:一方面,纤维素的极性和介质中的相对自由体积共同作用下,导致油对有机酸的束缚远小于纤维素对有机酸的束缚;另一方面,小分子有机酸的在纤维素表面的形变能小于吸附能,其溶解度参数与纤维素溶解度参数相近,而大分子有机酸的形变能大于吸附能,其溶解度参数与油的溶解度参数相近。两方面综合,小分子酸将附着于纤维素表面或进入内部,进而对纤维素老化产生影响,大分子酸将吸附于油中,对绝缘纸的老化未形成影响。
     ③利用分子动力学研究了油和纤维素对其热老化生成的水分子的束缚行为以及水分子在油-纤维素复合介质中的扩散行为。油与纤维素均对水分有吸附作用,但由于介质极性的不同,油对水分的束缚作用远小于纤维素对水分的束缚作用,使水分子向纤维素绝缘纸中扩散并停留于纤维素绝缘纸中。模拟结果从微观上阐明了实验研究中绝大部分水份存在于绝缘纸中,油中水份含量很小的原因。
     ④首次利用分子动力学研究了水分对纤维素热稳定性的影响。水分含量对纤维素的稳定性有重要的影响:水分不但降低了纤维素的机械性能,而且影响了纤维素的结构稳定性;水分含量越大,纤维素的氢键被破坏程度越大,分子动力学模拟结果阐明了实验中随着水份含量增加,纤维素绝缘纸的聚合度加速下降的原因。
In the 12th five-year-plan scheme of China, it is firstly proposed to develop an advanced power network featured by high capacity, high efficiency and long-distance trans-regional transmission. It manifests that UHV power transmission is taken as a strategical cause for the modernization of China. Accompanying the setups of transmission voltage level, electrical materials are expected to have a superior insulation performance to meet such increasing challenges. Oil-paper composite material has been universally utilized as insulation in power transformers, rendering it play an important role in determining the lifespan of transformers, and furthermore, influencing the security of whole power network. However, Oil-paper composite material is susceptible to temperature, electrical field and mechanical stress in the long-term operation of power transformer, which would result in irreversible degradations of its insulation performance and subsequently cause damages to the safe operation of power network. The investigation on ageing mechanism of oil-paper composite materials is considered as the basis and prerequisite of some other study subjects, such as condition assessment, lifetime prediction and anti-ageing treatments. Ageing of insulating material is not only dependent on material’s intrinsic properties, such as molecular and supermolecular structure, but also closely correlated with the material’s physicochemical behaviors under thermal stress. Therefore, the work, which aims for elucidating the microcosmic mechanism of ageing and exploring the thermal behaviors of insulating materials, exhibits some important academic significance as well as a contribution to practical application.
     Thermal degradation is a major ageing process of oil-paper insulation. It generates some hazardous substances which in reverse accelerate the ageing rate, such as moisture and acids. A large amount of researches were conducted to study the macroscopic characteristics of oil-paper insulation thermal degradation, with various extents of achievements. Nevertheless, due to the complicated multidisciplinary problems and limitations of conventional experimental resorts, the corresponding microscopic mechanism underlying macroscopic phenomenon is still far from being acknowledged. Computer simulation seems to be an effective technique to solve above questions. Thus, molecular dynamics simulation is adopted in this work. By utilizing a combination of microscopic, mesoscopic and macroscopic interpreting scales, the thermal stability of insulating paper when exposed to thermal stress and water is investigated. Moreover, the diffusion and distribution laws of organic acids and water molecules are discussed as well. All simulation parameters are rigorously according to practical experiences. The innovative results obtained by this paper are as follows:
     ①Molecular dynamics simulation were performed on amorphous and crystalline cellulose, respectively. Results show that the tension modulus of amorphous cellulose is comparatively small. The mechanical modulus and hydrogen bonds structure of amorphous cellulose are much more vulnerable to thermal stress than those of crystalline cellulose. As temperature rises, amount of hydrogen bonds inside amorphous cellulose declines sharply and mobility of cellulose chain is strengthened greatly. By contrast, the amount of hydrogen bonds and mobility of cellulose chain inside crystalline cellulose seem not obviously varied. Simulation results imply that thermal degradation of insulating paper occurs firstly at amorphous region and the ageing extent of amorphous cellulose is increasingly greater than crystalline cellulose as temperature goes higher, which is highly coincident with experimental results.
     ②The bonding effects of cellulose and oil towards organic acids were studied by molecular dynamics simulation, it is found that there are two predominant factors that influence the bonding behaviors. The first factor is polarity effect and free volume, which makes the bonding energy of cellulose is much greater than that of oil towards acids. The other factor is solubility parameter. The deformation energy of low weight acid is smaller than the absorption energy between cellulose and low weight acid; and solubility parameter of low weight acid is approximate to that of cellulose. Contrarily, the deformation energy of high weight acid is greater than the absorption energy between cellulose and low weight acid; and solubility parameter of high weight acid is approximate to that of oil. Due to above impacting factors, it is concluded that low weight acid is more readily absorbed to cellulose, either staying at the surface or penetrating into the inside of cellulose; while for high weight acid, it would absorbed to oil and has a weak influence on paper’s aging.
     ③The bonding effects of cellulose and oil towards water molecules, as well as diffusion behaviors of water molecules in oil-cellulose composite system were studied by molecular dynamics simulation. Both oil and cellulose could absorb water molecules. However, bonding effect of oil is notably lower than that of cellulose towards water molecules. Such a difference is largely attributed to polarity effect. The observation can be taken advantage of to explain the experimental phenomenon that majority of water would reside in cellulosic paper while oil’s water content is much lower.
     ④The influence of moisture on thermal stability of cellulose was studied. Result shows water exerts a detrimental influence on stability of cellulose. Moisture not only weakens cellulose’s mechanical strength but also destroy cellulose’s structural stability. The larger the water content is, the more serious the hydrogen bonds of cellulose are destroyed. Simulation results explain why the degree of polymerization of cellulosic paper will undergo an accelerated declination process when water content keeps increasing.
引文
[1]廖瑞金,冯运,杨丽君,向彬,刘刚.油纸绝缘老化特征产物生成速率研究[J].中国电机工程学报, 2008, 28(10): 142-147.
    [2]廖瑞金,杨丽君,孙才新,李剑.基于局部放电主成分因子向量的油纸绝缘老化状态统计分析[J].中国电机工程学报, 2006, 26(14): 114-119.
    [3]杨丽君,廖瑞金,孙会刚,孙才新,李剑.油纸绝缘热老化特性及生成物的对比分析[J].中国电机工程学报, 2008, 28(22): 53-58.
    [4]廖瑞金,梁帅伟,周天春,杨丽君,孙会刚.天然酯-纸绝缘热老化速度减缓及其原因分析[J].电工技术学报, 2008, 23(9): 32-37.
    [5] S. Ingebrigtsen, M. Dahlund, W. Hansen, D. Linhjell, L. E. Lundgaard. Solubility of Carboxylic acids in paper (Kraft)-oil insulation system[C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2004: 253-257.
    [6]刘玉仙.油纸绝缘变压器中水分的聚积及其对热老化寿命的影响[J].变压器, 2004, 41(2): 8-12.
    [7] Rui-jin Liao, Chao Tang, Li-jun Yang, Yun Feng, Cai-xin Sun. Influence of the copper ion on aging rate of oil–paper insulation in a power transformer[J]. IET Electrical Power Applications, 2009, 3(5): 407-412.
    [8] T. A. Prevost, T. V. Oommen. Cellulose Insulation in Oil-filled Power Transformers: part I-History and Development[J]. IEEE Electrical Insulation Magazine, 2006, 22(1): 28-35.
    [9] T. V. Oommen, T. A. Prevost. Cellulose Insulation in Oil-filled Power Transformers: part: Maintaining Insulation Integrity and Life[J]. IEEE Electrical Insulation Magazine, 2006, 22(2): 5-14.
    [10] G. T. Kohman. Cellulose as an insulating material[J]. Industrial & Engineering Chemistry Research, 1939, 31(7): 807–817.
    [11] A. D. Pablo, B. Pahlavanpour. Furanic Compounds Analysis: A Tool For Predictive Maintenance of Oil-Filled Electrical Equipment[J]. Electra, 1997, 175(3): 9-31.
    [12] A. M. Emsley, X. Xiao, R. J. Heywood, M. Ali. Degradation of cellulosic insulation in power transformers. Part 3: Effects of oxygen and water on ageing in oil, IEE Proceedings: Science, Measurement and Technology[J]. 2000, 147(3): 115-119.
    [13] E. L. Graminski. The Stress-strain behavior of accelerated and naturally aged papers[J]. TAPPI Journal. 1970, 53(3): 406-410.
    [14] E. L. Morrison. Evaluation of the thermal stability of electrical insulating paper[J]. IEEETransactions on Electrical Insulation. 1968, EI-3(3): 76-82.
    [15] A. Koura, A. Krause. Ageing of papers[J]. Papier, 1977, 31(l): 9-16.
    [16] S. Yasufuku, Y. Ishioka, K. Morita. Tube ageing of oil filled transformer insulation and ageing of oil filled distribution transformers[C]. Proceedings of 14th Electrical / Electronic Insulation Conference, 1979: 1-4.
    [17]刘玉仙.变压器油纸绝缘的含湿分析及其对运行安全的影响[J].变压器, 2002, 39(5): 1-5.
    [18] T. V. Oommen. Moisture Equilibrium Charts for Insulation Drying Practice[J]. IEEE Transactions on Power Apparatus and Systems, 1984, 103(10): 3063-3067.
    [19] M. Arshad, S. M. Islam. Power transformer critical diagnostics for reliability and life extension[C]. 2004 Canadian Conference on Electrical and Computer Engineering, 2004, 2: 625-628.
    [20]崔立丽,王乃庆.水份对变压器油纸绝缘沿面放电影响的探讨[J].电网技术, 1987, 4: 54-61.
    [21]何伯俭,钱之银.油浸纸板爬电性能的研究[J].高电压技术, 1991, 3:51-54.
    [22] K. Ota, M. Miura, M. Sone, H. Mitsui. Conduction of water clusters in modified aged oil[J]. Electrical Engineering in Japan. 2003, 145(2): 21-27.
    [23] S. Itahashi, H. Mitsui, T. Sato, M. Sone. State of water in hydrocarbon liquids and its effect on conductivity[J]. IEEE Transactions on Dielectrics and Electrical Insulation. 1995, 2(6): 1117-1122.
    [24] F. B. Megherbi, S. Osmani, M. Megherbi. The moisture effect on dielectric losses of insulating paper[J]. IEEE International Conference on Solid Dielectrics (ICSD 2004), 2004, 1: 443- 446.
    [25] R. Jeffries. The Sorption of Water by Cellulose and Eight Other Textile Polymers[J]. Jonrnal of the Textile Institute Transactions, 1960, 51(9): 339-374.
    [26] L. E. Lundgaard, W. Hansen, D. Linhjell. Aging of oil-impregnated paper in power transformers[J]. IEEE Transactions on Power Delivery. 2004, 19(1): 230-239.
    [27] T. V. Oommen. Moisture equilibrium in paper-oil systems[J]. Electrical/Electronics Insulation Conference, 1983: 162-166.
    [28] M. K. Pradhan, T. S. Ramu. On the estimation of elapsed life of oil-immersed power transformers[J]. IEEE Transactions on Power Delivery. 2005, 20(3): 1962-1969.
    [29] L. J. Zhou, G. N. Wu, J. Liu. Modeling of transient moisture equilibrium in oil-paper insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation. 2008, 15(3): 872-878.
    [30] Y. Du, M. Zahn, B. C. Lesieutre. Moisture equilibrium in transformer paper-oil systems. Electrical Insulation Magazine[J]. 1999, 15(1): 11-20.
    [31] Y. Du, M. Zahn, A. V. Mamishev. Moisture dynamics measurements of transformer board using a three-wavelength dielectrometry sensor[C]. IEEE International Symposium on Electrical Insulation, 1996: 53-56.
    [32] B. Garcia, J. C. Burgos, A. Alonso. A moisture-in-oil model for power transformer monitoring-part II: Experimental verification[J]. IEEE Transactions on Power Delivery. 2005, 20(2): 1423-1429.
    [33] P. J. Baird, H. Herman, G. C. Stevens, P. N. Jarman. Spectroscopic measurement and analysis of water and oil in transformer insulating paper[J]. IEEE Transactions on Dielectrics and Electrical Insulation. 2006, 13(1): 293-308.
    [34]陈伟根,甘德刚,刘强.变压器油中水分在线监测的神经网络计算模型[J].高电压技术. 2007, 33(05): 73-78.
    [35] J. Fabre, A. Pichon. Deteriorating processes and products of paper in oil. Application to transformers[C]. CIGRE, Pairs, 1960:137.
    [36] A. M. Emsley, G. C. Stevens. Review of chemical indicators of degradation of cellulosic electrical Paper insulation in oil-filled transformers[J]. IEE Proceedings: Science, Measurement and Technology, 1994, 141(5): 324-334.
    [37] L. E. Lundgaard, W. Hansen, S. Ingebrigtsen. Aging of Kraft paper by acid catalyzed hydrolysis[C]. 2005 IEEE International Conference on Dielectric Liquids, 2005: 381-384.
    [38]冯运.电力变压器油纸绝缘老化特性及机理研究[D].重庆大学硕士学位论文, 2007.
    [39] L. E. Lundgaard, W. Hansen, S. Ingebrigtsen. Ageing of mineral oil impregnated cellulose by acid catalysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(2):540-546.
    [40] S. Ingebrigtsen, M. Dahlund, W. Hansen. Solubility of carboxylic acids in paper (Kraft)-oil insulation systems[C]. 2004 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. 2004: 253– 257.
    [41] M. D. S. Ingebrigsen, W. Hansen, D. Linhjell, L. E. Lundgaard. Solubility of Carboxylic acids in paper(Kraft)-oil insulation system, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2004: 253 - 257.
    [42]廖瑞金,郝建,杨丽君,梁帅伟,马志钦.变压器油纸绝缘频域介电谱特性的仿真与实验研究[J].中国电机工程学报, 2010, 30(22): 113-119.
    [43]郝建,杨丽君,廖瑞金,李剑,尹建国.混合绝缘油对油–纸绝缘热老化速率的延缓原因分析.中国电机工程学报, 2010, 30(19): 120-126.
    [44] Ruijin Liao, Shuaiwei Liang. A comparative study of thermal aging of transformer insulation paper impregnated in natural ester and in mineral oil[J]. European Transactions on Electrical Power. 2009, 11(3): 140 -156.
    [45]梁帅伟,廖瑞金,杨丽君.天然酯与矿物油纸绝缘的加速热老化特性研究[J].中国电机工程学报. 2008, 28(25): 20-24.
    [46] B. J. Alder, T. E. Wainwright. Phase transition for a hard sphere system[J]. Journal of Chemical Physics, 1957, 27: 1208-1209.
    [47] S. Nishikawa, S. Ono. Transmission of X- rays through fibrous, lamellar and granular substances[J]. Proc. Tokyo Math. Phys. Soc., 1913, 7: 131-138.
    [48] K. H. Meyer, H. Mark. uber den Bau des krystallisierten Anteils der Cellulose[J]. Ber. Dtsch. Chem. Ges., 1928, 61: 593-614.
    [49] K. H. Meyer, L. Misch, Positions des atomes dans le nouveau modèle spatial de la cellulose, HelV. Chim. Acta., 1937, 20: 232-244.
    [50] W. G. Ferrier. The crystal and molecular structure ofβ-D-glucose[J]. Acta Crystallographica, 1963, 16: 1023-1031.
    [51] P. H. Hermans, J. DeBooys, C.Mann, Kolloid Z. 1943, 102: 169.
    [52] D. W. Jones. Crystalline modifications of cellulose. Part III. The derivation and preliminary study of possible crystal structures[J]. Journal of Polymer Science, 1958, 32(125): 371-394.
    [53] C. Y. Liang, R. H. Marchessault, Infrared spectra of crystalline polysaccharides I: Hydrogen bonds in native cellulose[J]. Journal of Polymer Science, 1959, 37: 385-395.
    [54] K. H. Gardner, J. Blackwell, The structure of native cellulose[J]. Biopolymers, 1974, 13(10): 1975-2001.
    [55] A. Sarko, R. Muggli, Packing Analysis of Carbohydrates and Polysaccharides III. Valonia Cellulose and Cellulose II[J] , Macromolecules, 1974, 7(4): 486-494.
    [56] A. J. Stipanovic, A. Sarko, Packing Analysis of Carbohydrates and Polysaccharides. 6. Molecular and Crystal Structure of Regenerated Cellulose II, Macromolecules, 1976, 9(5): 851-857.
    [57] F. J. Kolpak, J. Blackwell, Determination of the Structure of Cellulose 2[J]. Macromolecules, 1976, 9(2): 273-278.
    [58] A. Sarko, J. Southwick, J. Hayashi. Packing Analysis of Carbohydrates and Polysaccharides. 7. Crystal Structure of Cellulose IIII and Its Relationship to Other Cellulose Polymorphs[J]. Macromolecules, 1976, 9(5): 857-863.
    [59] E. S. Gardiner, A. Sarko. Packing analysis of carbohydrates and polysaccharides. XVI: The crystal strucutres of celluloses IVI and IVII, Canadian Journal of Chemistry, 1985, 63:173-180.
    [60] R. H. Atalla, D. L. VanderHart, Native Cellulose: A Composite of Two Distinct Crystalline Forms[J]. Science, 1984, 223(4633): 283-285.
    [61] T. Imai, J. Sugiyama, T. Itoh, F. Horii, Almost Pure IαCellulose in the Cell Wall of Glaucocystis[J]. Journal of Structural Biology, 1999, 127(3): 248-257.
    [62] Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and Hydrogen-bonding system in cellulose Iβform synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2002, 124(31): 9074–9082.
    [63] V. L. Finekenstadt, R. P. Millane, Crystal Structure of Valonia Cellulose Iβ[J]. Macromolecules, 1998, 31(22): 7776–7783.
    [64] K. Mazeau and L. Heux. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2003, 107(10): 2394-2403.
    [65] H. P. Fink, B. Philipp, D. Paul., R. Serimaa, T. Paakkari. The structure of amorphous cellulose as revealed by wide-angle X-ray scattering[J]. Polymer, 1987, 28(8): 1265.
    [66] H. Grigoriew, A. G. Chmielewski, Capabilities of X-ray methods in studies of processes of permeation through dense membranes[J]. Journal of Membrane Science, 1998, 142(1): 87-95.
    [67] K. Wickholm, P. T. Larsson, T. Iversen, Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy[J]. Carbohydrate Research, 1998, 312(2): 123-129.
    [68] P. T. Larsson, K. Wickholm, T. Iversen, A CP/MAS 13C NMR investigation of molecular ordering in celluloses[J]. Carbohydrate Research, 1997, 302(1,2): 19-25.
    [69] J. Sugiyama, R. Vuong, H. Chanzy, Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall[J]. Macromolecules, 1991, 24(14): 4168-4175.
    [70] Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan, Crystal structure and Hydrogen-bonding system in cellulose Iαform synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2003, 125(47): 14300–14306.
    [71] H. Yamamoto, F. Horii, H. Odani, Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures[J]. Macromolecules, 1989, 22(3): 4132-4134.
    [72] A. P. Heiner, O. Teleman, Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity[J]. Langmuir, 1997, 13(3): 511-518.
    [73] A. P. Heiner, L. Kuutti, O. Teleman, Comparison of the interface between water and foursurfaces of native crystalline cellulose by molecular dynamics simulations[J]. Carbohydrate Research, 1998, 306(1): 205-220.
    [74] F. James. Computer simulation studies of microcrystalline cellulose Iβ[J]. Carbohydrate Research, 2006, 341(1): 138-152.
    [75] C. J. Houtman, R. H. Atalla, Cellulose–lignin interactions: a computational study[J]. Plant Physiology, 1995, 107(3): 977–984.
    [76] D. D. S. Perez, R. Ruggiero, L. C. Morais, A. E. H. Machado, K. Mazeau. Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose surfaces[J]. Langmuir, 2004, 20(8): 3151–3158.
    [77] S. Besombes, K. Mazeau. The cellulose/lignin assembly assessed by molecular modeling. Part 1: adsorption of a threo guaiacylβ-O-4 dimer onto a Iβcellulose whisker[J]. Plant Physiology and Biochemistry, 2005, 43(3): 299-308.
    [78] S. Besombes, K. Mazeau, The cellulose/lignin assembly assessed by molecular modeling. Part 2: seeking for evidence of organization of lignin molecules at the interface with cellulose[J]. Plant Physiology and Biochemistry, 2005, 43(3): 277-286.
    [79] M. S. Baird, J. D. Hamlin, A. Osullivan, A, Whiting. An insight inte the mechanism of the cellulose dyeing process: Molecular modeling and simulations of cellulose and its interactions with water, urea, aromatic azo-dyes and aryl ammonium compounds[J]. Dyes and Pigments, 2008, 76(2): 406-416.
    [80] K. Mazeau, C. Vergelati. Atomistic modeling of the adsorption of benzophenone onto cellulosic surfaces[J]. Langmuir, 2002, 18(5): 1919–1927.
    [81] J. H. Wakelin, A. Sutherland, L. R. Beck. Linear thermal expansion coefficients for the crystalline phase in high polymers[J]. Journal of Polymer Science, 1960, 42: 278-230.
    [82] S. Seitsonen, I. Mikkonen. X-Ray Study on the Thermal Expansion of Cotton Cellulose[J]. Polymer journal, 1973, 5: 263-267.
    [83] M. Takahashi, H. Takenaka. X-Ray Study of Thermal Expansion and Transition of Crystalline Cellulose[J]. Polymer journal, 1982, 14(9): 675-679.
    [84] F. Horii, H. Yamamoto, R. Kitamaru, M. Tanahashi, T. Higuchi. Transformation of native cellulose crystals induced by saturated steam at high temperatures, Macromolecules, 1987, 20(3): 2946-2949.
    [85] M. Wada. Lateral thermal expansion of cellulose Iβand IIII polymorphs[J]. Journal of Polymer Science Part B: Polymer Physics, 2002, 40(11): 1095-1102.
    [86] A. Watanabe, S. Morita, Y. Ozaki. Study on Temperature-Dependent Changes in Hydrogen Bonds in Cellulose Iβby Infrared Spectroscopy with Perturbation-CorrelationMoving-Window Two-Dimensional Correlation Spectroscopy[J]. Biomacromolecules, 2006, 7(11): 3164-3170.
    [87] A. Watanabe, S. Morita, Y. Ozaki. Temperature-Dependent Structural Changes in Hydrogen Bonds in Microcrystalline Cellulose Studied by Infrared and Near-Infrared Spectroscopy with Perturbation-Correlation Moving-Window Two-Dimensional Correlation Analysis[J]. Applied Spectroscopy, 2006, 60(6): 611-618.
    [88] M. Bergenstahle, L. A. Berglund, K. Mazeau. Thermal response in crystalline Iβcellulose: A molecular dynamics study[J]. The Journal of Physical Chemistry B, 2007, 111(30): 9138-9145.
    [89]廖瑞金,胡舰,杨丽君,朱孟兆,唐超.基于分子模拟的变压器绝缘纸热老化降解微观机理研究[J].高电压技术. 2009, 35(7): 1565-1570.
    [90]胡舰,廖瑞金,朱孟兆,杨丽君.分子动力学模拟技术在变压器油裂解微观机理的应用[C].中国电机工程学会2008年学术会议论文集.中国西安, 2008: 97-100.
    [91]朱孟兆,廖瑞金,杨丽君,胡舰.水分对变压器绝缘纸性能影响的分子动力学模拟[J].西安交通大学学报. 2009, 43(4): 111-116.
    [92]廖瑞金,陆云才,杨丽君,李剑,孙才新.聚合物电介质中空间电荷陷阱深度的模拟计算[J].绝缘材料. 2006, 39(6): 51-54.
    [93]陆云才,廖瑞金,杨丽君.基于分子模拟的聚合物电介质陷阱特性研究[C].重庆市电机工程学2006年学术年会, 2006: 245-248.
    [94] A. R. Leach. Molecular Modeling-Principles and Applications[M]. Pearson Education Limited: Harlow, England, 2001.
    [95]杨小震,分子模拟与高分子材料[M].北京,科学出版社. 2004.
    [96]欧阳芳平,徐慧,郭爱敏,李燕峰.分子模拟方法及其在分子生物学中的应用[J].生物信息学, 2005, 3(1): 33-36.
    [97]陈正国,朱申敏,程时远.分子模拟方法及在高聚物中的应用[J].材料导报, 1997, 11(6): 49-51.
    [98] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model[J]. journal of the american chemical society, 1985, 107(13): 3902-3909.
    [99]王俊,朱宇,陆小华.分子模拟在聚合物膜研究中的应用[J].现代化工, 2003, 23(10): 59~62
    [100] L. Verlet. Computer experiments on classical fluids: thermodynamical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1): 98~103
    [101] J. Gao, W. D. Luedtke, U. Landman. Origins of Solvation Forces in Confined Films[J] The Journal of Physical Chemistry B, 1997, 101(20): 4013-4023.
    [102] S. Balasubramanian, M. L. Klein. Simulation Studies of Ultrathin Films of Linear and Branched Alkanes on a Metal Substrate[J]. Journal of Physical Chemistry, 1996, 100(29): 11960-11963.
    [103] R. J. Lin, K. Song, W. L. Hase. Molecular Dynamics Simulations of the Structures of Alkane/Hydroxylatedα-Al2O3(0001) Interfaces[J]. Journal of Physical Chemistry B, 2000, 104(12): 2692-2701.
    [104] B. L. Bhargava, S. Balasubramanian. Ab Initio Molecular Dynamics Simulation Studies of 1-ethyl-3-methylimidazolium fluoride - hydrogen fluoride mixture[J]. Journal of Physical Chemistry B, 2008, 112(25): 7566-7673.
    [105] A. Rahman. Correlations in the motion of atoms in liquid argon[J]. Physical Review, 1964, 136(2A): 405-411
    [106] L. Verlet. Computer‘experiments’on classical fluids I. thermodynamical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1): 98-103.
    [107] C.W. Gear. Numerical initial value problems in ordinary differential equations[M]. Englewood Cliffs: Prentice-Hall. 1971.
    [108] A. M. Emsley, R. J. Heywood, M. Ali. Degradation of cellulosic insulation in power transformers Part 2: formation of furan products in insulating oil[J]. IEE Proceedings: Science, Measurement and Technology, 2000, 147(3): 110-114.
    [109] D. J. T. Hill, T. T. Le, M. Darveniza. A study of degradation of cellulosic insulation materials in a power transformer part 1: Molecular weight study of cellulose insulation paper[J]. Polymer Degradation and Stability, 1995, 48(1): 79-87.
    [110]刘枫林,徐魏.石蜡基和环烷基变压器油的性能比较[J].变压器, 2004, 41(7): 27-30.
    [111] D. N. Theodorou, U.W Suter. Detailed molecular structure of a vinyl polymer glass[J]. Macromolecules, 1985, 18(7): 1467-1478.
    [112] J. Brandrup, E.H Immergut, E.A Grulke. Polymer Handbook[M]. New York: Wiley-Interscience Publication, 1999: 476-479.
    [113] A. A Baker, W. Helbert, J. Sugiyama, M. J Miles. New insight into cellulose structure by atomic force microscopy shows the Iαcrystal phase at near-atomic resolution[J]. Biophysical Journal, 2000, 79 (2): 1139–1145.
    [114] L. Kuutti, J. Peltonen, J. Pere, O. Teleman. Identification and surface structure of crystalline cellulose studied by atomic force microscopy[J]. Journal of Microscopy, 1995, 178 (1): 1–6.
    [115] A. A. Baker, W. Helbert, J. Sugiyama, M. J. Miles. High-resolution atomic force microscopyof native Valonia cellulose I microcrystals[J]. Journal of Structural Biology, 1997, 119 (2): 129–138.
    [116] A. A. Baker, W. Helbert, J. Sugiyama, M.J. Miles. Surface structure of native cellulose microcrystals by AFM[J]. Applied Physics A Materials Science & Processing, 1998, 66 (S1): 559–563.
    [117] J. Maple , U,Dinur, A. T. Hagler, Derivation of forcefields for molecular mechanics and dynamics from ab initio energy surfaces[J]. Proceedings of the National Academy of Sciences, USA, 1988, 85(15): 5350-5354.
    [118] J. R. Maple, M. J. Hwang, T. P. Stockfisch, U. Dinur, M. Waldman, C. S. Ewig, A. T. Hagler. Derivation of Class II force fields. 1. Methodology and quantum forcefield for the alkyl functional group and alkane molecules[J]. Journal of Computational Chemistry, 1994, 116(6): 162-182.
    [119] J. R. Maple, M. J. Hwang, T. P. Stockfisch, A. T. Hagler. Derivation of Class II forcefields. 3. Characterization of a quantum forcefield for the alkanes[J]. Israel Journal of Chemistry, 1994, 34: 195 -231.
    [120] H. Sun, S. J. Mumby, J. R. Maple, A. T. Hagler. An ab initio CFF93 all-atom forcefield for polycarbonates[J]. Journal of the American Chemical Society, 1994, 116(7): 2978-2987.
    [121] H. Sun. Ab initio calculations and forcefield development for computer simulation of polysilanes[J]. Macromolecules, 1995, 28(3): 701–712.
    [122] T. A. Andrea, W. C. Swope, H. C. Andersen. The Role of Long Ranged Forces in Determining the Structure and Properties of Liquid Water[J]. Journal of Chemical Physics, 1983, 79(9): 4576-4584.
    [123] H. J. C. Berendsen, J. P. M. Postma, W. F. Funsteren. Molecular Dynamics with Coupling to an External Bath[J]. Journal of Chemical Physics, 1984, 81(8): 3684-3690.
    [124] P. P. Ewald. Ann Phys. (Liepzig), 1921, 64, 253-287.
    [125] Materials Studio 4.0, discover/Accelrys: San Diego, Ca, 2005.
    [126] K. Mazeau, C. Vergelati. Atomistic modeling of the adsorption of benzophenone onto cellulosic surfaces[J]. Langmuir, 2002, 18(5): 1919-1927.
    [127] D. D. S. Perez, R. Ruggiero, L. C. Morais. Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose[J]. Langmuir, 2004, 20(8): 3151-3158.
    [128] W. Chen, C. G. Lickfield, Q. C. Yang, Molecular modeling of cellulose in amorphous state. Part 1: model building and plastic deformation study[J]. polymer, 2004, 45(3): 1063-1071.
    [129] W. Chen, C. G. Lickfield, Q. C. Yang, Molecular modeling of cellulose in amorphous state. Part 2:effects of rigid and flexible crosslinks on cellulose[J]. polymer, 2004, 45(21):7357-7365.
    [130]吴家龙,弹性力学[M].同济大学出版社,上海, 1993.
    [131] F. Tanaka, T. Iwata. Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation[J]. Cellulose, 2006, 13(5): 509-517.
    [132] V. L. Finkenstadt, R. P. Millane. Crystal Structure of Valonia cellulose I-beta[J]. Macromolecules, 1998, 31(22): 7776-7783.
    [133] H. Sun. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications -Overview with Details on Alkane and Benzene Compounds[J]. Journal of Physical Chemistry B, 1998, 102(38): 7338-7364.
    [134] T. Nishino, K. Takano, K. J. Nakamae. Elastic modulus of the crystalline regions of cellulose polymorphs[J]. Polymer Sci. B: Polymer Phy, 1995, 33(11): 1647-1651.
    [135] T. Inagaki, H. W. Siesler, K. Mitsui, S. Tsuchikawa. Difference of the Crystal Structure of Cellulose in Wood after Hydrothermal and Aging Degradation: A NIR Spectroscopy and XRD Study[J]. Biomacromolecules, 2010, 11(9): 2300–2305.
    [136] W. Kohn. Nobel Lecture: Electronic structure of matter-wave functions and density functionals[J]. Reviews of Modern Physics, 1999, 71(5): 1253-1266.
    [137] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas[J]. Physical Review, 1964, 136(3B): B864-B871.
    [138] W. Kohn, L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
    [139] R. O. Jones, O. Gunnarsson. The density functional formalism, its applications and prospects[J]. Reviews of Modern Physics, 1989 , 61(3): 689-746.
    [140] M. D. Segall, M. C. Payne, S. W. Ellis, G. T. Tucker. First principles calculation of the activity of cytochrome P450[J]. Physical Review E, 1998, 57(4): 4618-4621.
    [141] R. Shah, J. D. Gale, M. C. Payne, M. H. Lee. Understanding the catalytic behaviour of zeolites: a First-principles study of the adsorption of methanol[J]. Science, 1996, 71(5254): 1395-1397.
    [142] M. J. Rutter, V. J. Heine. Phonon free energy and devil’s staircases in the origin of polytypes[J]. Journal of Physics: Condensed Matter, 1997 , 9(9): 2009-2024.
    [143] W. S. Zeng, V. Heine, O. Jepsen. The structure of barium in the hcp phase under high pressure[J]. Journal of Physics: Condensed Matter, 1997, 9(17): 3489-3502.
    [144] F. Kirchhoff, M. J. Gillan, J. M. Holender. Structure and bonding of liquid Se[J]. Journal of Physics: Condensed Matter, 1996, 8(47): 9353-9357.
    [145] M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler. Density-functional theory calculationsfor poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics[J]. Computer Physics Communications, 1997,107(1): 187-222.
    [146] J. Pattanayak, T. Kar, S. Scheiner. Boron?Nitrogen (BN) Substitution Patterns in C/BN Hybrid Fullerenes: C60-2x(BN)x (x = 1?7)[J]. Journal of Physical Chemistry A, 2001, 105(36): 8376-8384.
    [147] A. D. Becke. A new mixing of Hartree–Fock and local density-functional theories[J]. Journal of Chemical Physics, 1993, 98(2): 1372-1377.
    [148] E. I. Proynov, E. Ruiz, A.Vela. Determining and extending the domain of exchange and correlation functionals[J]. Quantum Chemistry, 1995, 56(s29): 61-78.
    [149] B. Hammer, K. W. Jacobsen, J. K. Norskov. Role of nonlocal exchange correlation in activated adsorption[J]. Physical Review Letters, 1993, 70(25): 3971-3974.
    [150] D. R. Hamann. Generalized Gradient Theory for Silica Phase Transitions[J]. Physical Review Letters, 1996 , 76(4): 660-663.
    [151] B. Delley. From molecules to solids with the Dmol3 approach[J]. Journal of Chemical Physics, 2000, 113(18), 7756-7764.
    [152]雷武,赵维,夏明珠.含硫缓蚀剂基于量化参数的定量构效-活性相关研究[J].计算机与应用化学, 2003, 20(5): 706-708.
    [153]张军,胡松青,王勇,郭文跃,刘金祥,尤龙. 1-(2-羟乙基)-2-烷基-咪唑啉缓蚀剂缓蚀机理的理论研究[J].化学学报, 2008, 66(22): 2469-2475.
    [154]石文艳,王风云,夏明珠,雷武,张曙光.羧酸共聚物与方解石晶体相互作用的MD模拟[J].化学学报, 2006, 64(17): 1817-1823.
    [155]胡松青,胡建春,郁金华,刘建成,张军,石鑫.抗CO2腐蚀咪唑啉衍生物缓蚀性能的密度泛函理论[J].中国石油大学学报, 2009, 33(6):128-131.
    [156] L. Y. Carl. Thermophysical Properties of Chemicals and hydrocarbons[M]. William Andrew Publishing, New York, 2008: 312-400.
    [157] T. G. Fox, P. J. Flory. 2nd-Order Transition Temperatures and Related Properties of Polystyrene .1. Influence of Molecular Weight[J]. Journal of Applied Physics, 1950, 21: 581-591.
    [158] A. Lehmann, G. Konig, K. H. Rieder. Water adsorption on perfect CaF2 (111) studied with He scattering: Experimental evidence for ordering of nanoclusters[J]. Physical Review Letters, 1994, 73(23): 3125-3128.
    [159] S. L. Mayo, B. D. Olafson, W. A. Goddard. DREIDING: A generic forcefield for molecular simulations[J]. Journal of Physical Chemistry, 1990, 94(26): 8897-8909.
    [160]尹建国.油纸绝缘热老化过程中水分转移规律及其对热老化特性的影响[D].重庆大学硕士学位论文, 2010.
    [161] J. R. Fried, M. S. Akhavi, J. E. Mark. Molecular simulation of gas permeability poly ( 2, 6-dimethyl-1, 4-phenylene oxide)[J]. Journal of Membrane Science, 1998, 149(1): 115-126.
    [162] Kunio Nakamura, Tatsuko Hatakeyama, Hyoe Hatakeyama. Effect of bound water on tensile properties of native cellulose[J]. Textile Research Journal, 1983, 53(11): 682-688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700