慢性内脏痛敏及针刺缓解内脏痛的神经生物学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然现代医学科学有了长足进展,慢性疼痛仍然是临床医生深感棘手的一个挑战。慢性痛严重影响病人的生活质量,慢性痛的治疗疗效并不令人满意,而且费用高昂,这消耗了大量医疗和社会资源。慢性内脏痛是肠道功能紊乱疾病(如肠易激综合征,非心源性胸痛,慢性消化不良等),以及盆腔器官功能紊乱疾病(如慢性间质性膀胱炎等)的主要症状之一。肠道和盆腔器官功能紊乱疾病缺乏解剖结构、感染、代谢等指标异常,疼痛弥散无固定位点并易与内脏器官实质疾病相互混淆。
     在胃肠道功能紊乱疾病之中,IBS病人所占比例最大,发病率大约为18-20%。其症状主要有:腹痛,腹胀,便秘和/或腹泻。与之相似,大约15%的女性受到慢性盆腔痛的困扰[1]。肠道和盆腔器官功能紊乱疾病主要特点是下腹痛。这里有多种原因可能导致这些功能紊乱的疾病发生,如持续精神压力、有内脏器官感染和炎症病史、遗传背景、早期的负性事件(如虐待、创伤以及疼痛等)等。
     近年来对IBS发病机制的研究显示,在直肠气囊充气试验中,IBS患者以及IBS模型动物痛阈明显低于对照组,即内脏痛敏现象,而内脏痛敏可能是IBS病人慢性腹痛和不适的主要机制之一。一般认为,内脏痛敏可能与内脏传入神经和神经中枢出现了敏化(sensitization)现象有关。对动物和人的研究表明,以下三个中枢机制可能参与内脏痛敏的调制:1)脑内神经中枢对内脏感觉传导的易化作用;2)连续内脏传入信息刺激下所致脊髓感觉中枢处于敏化状态;3)来自于髓上中枢对脊髓或内脏器官感觉传输的易化调节。
     脊髓是痛觉信号进入中枢后的第一级整合中枢,是痛觉信息传人的中继站,既能直接调制痛觉,又能接受脊髓上中枢的下行调节信号,是疼痛刺激调节的关键部位。大量研究显示,脊髓背角很多递质、受体、细胞因子在痛觉过敏形成的外周和中枢机制中起着关键作用,这包括5-HT、P物质、降钙素基因相关肽(CGRP),也包括NMDA受体。
     延髓头端腹内侧核(RVM)是脊髓上神经中枢对内脏伤害刺激进行下行调制的共同通路。RVM对内脏痛具有双重调节作用:抑制和易化伤害输入。根据大量研究成果,Porreca等提出假设,RVM对于疼痛信息的下行调节功能紊乱,可能是疼痛感觉异常如IBS,纤维肌痛和神经性疼痛的重要原因,而RVM中谷氨酸递质及其受体,特别是NMDA受体,在内脏痛敏的调节中发挥了重要作用
     针刺镇痛是祖国医学的瑰宝之一,具有疗效确切,毒副作用少,经济简单等优点。国内外大量临床和基础研究表明,针刺治疗各类疼痛包括内脏痛具有显著镇痛作用。一般认为,由脊髓上多个神经中枢,如RVM、PAG、杏仁核、扣带回等组成的下行痛觉调制系统,对脊髓背角疼痛信息的传导有着强大的抑制作用,而针刺可能是激活下行痛觉调制系统而发挥其镇痛效应的。Al-Chaer于2001年报道了一种能够模拟临床IBS的大鼠模型。我们在成功复制了该IBS模型大鼠后,观察了电针对肠易激综合征的治疗作用,结果发现电针能明显缓解模型大鼠慢性内脏痛敏,并发现电针对IBS大鼠慢性内脏痛敏的治疗效应,可能是通过中枢NMDA受体发挥作用的。然而目前对于针刺治疗缓解IBS模型大鼠慢性内脏痛敏作用的机制研究,还有待于进一步的开展。
     鉴于慢性内脏痛的形成和发展与脊髓和RVM的谷氨酸递质受体系统有着密切的联系,电针能明显缓解模型大鼠慢性内脏痛敏,并发现电针对慢性内脏痛敏的治疗效应可能是通过中枢NMDA受体发挥作用的,本研究选择了脊髓背角和RVM中c-Fos和NR1受体为研究对象,运用免疫组化方法,观察和分析IBS大鼠脊髓背角和RVM中内脏反应神经元的兴奋性在针刺治疗前后的改变,以及二者中NR1受体在针刺缓解IBS模型大鼠慢性内脏痛敏中的参与机制。
     方法
     1.建立IBS大鼠模型
     参照Al-Chaer等报道的大鼠IBS模型和我们研究小组的改进,采用新生9天SD幼鼠分为两组,第一组通过结直肠机械扩张刺激制作IBS慢性内脏痛敏模型,持续两周;另一组仅轻柔肛周皮肤作为对照。
     2.IBS模型大鼠行为学评估
     饲养至6~8周后,分别通过测定模型大鼠腹部撤回反射(abdominal withdrawal reflex, AWR)和痛阈压力值(pain threshold pressure, PTP),对模型进行综合评估。
     3.对IBS模型大鼠进行电针治疗并用行为学评估治疗结果
     随机将IBS模型大鼠分为三组:模型组(M)、模型加电针组(EA)和模型加假电针组(SEA)。模型组不做任何治疗,电针组穴位取双侧“足三里”和“上巨虚”,连续隔日治疗四次,假电针不通电,余与电针组同。再次通过行为学评估电针治疗结果。
     4.固定和冰冻切片的制备
     大鼠在5%戊巴比妥麻醉下,用4%多聚甲醛约灌注30 min,取出延髓和脊髓,梯度蔗糖磷酸缓冲液脱水后,后将其制成30μm连续冰冻切片,分别置于不同标记的24孔板中。
     5.观察多次电针过程后脊髓T13-L2、L6-S2节段,以及RVM中c-Fos蛋白和NRl受体表达变化规律
     5.1运用免疫组化方法,观察脊髓T13-L2和L6-S2节段和RVM中c-Fos蛋白的表达,观察电针对IBS模型大鼠这些部位内脏反应神经元兴奋性的影响。
     5.2运用免疫组化方法,观察脊髓L6-S2节段和RVM中NR1受体的表达,观察在多次电针后IBS模型大鼠这些部位NMDA受体表达的变化规律。
     结果
     1.IBS大鼠PTP值明显下降,AWR评分异常升高
     与正正常对照组比较,模型组的PTP值明显下降。AWR评分结果显示,在不同强度(20、40、60、80mmHg)的CRD诱发内脏痛刺激下,模型组相比于正常对照组,AWR评分明显升高。
     2.电针缓解IBS大鼠内脏痛敏
     而电针组治疗后与治疗前及假电针组治疗后相比,AWR评分明显降低,PTP明显升高,而假电针组治疗后与治疗前AWR评分的差异无统计学意义。
     3.IBS模型大鼠脊髓背角c-Fos和NRl受体的表达显著升高
     在CRD刺激后,相对于正常对照组大鼠,IBS模型大鼠L6-S2节段浅层(the superficial laminae, SDH, laminaeⅠandⅡ)、固有层(nucleus proprius, NP, laminaeⅢandⅣ)、背角颈段(the neck of the dorsal horn, NECK, laminaeⅤandⅥ)中,c-FosI阳性神经元明显高于正常对照组,而在X层则无明显差别;而相对于正常对照组大鼠,IBS模型大鼠T13-L2节段除背角NECK层(laminae V)中c-Fos阳性神经元,明显高于高于对照组外,浅层、固有层及中央管周区的c-Fos阳性神经元数目无明显差异。NR1受体组化结果跟c-Fos结果类似,即IBS模型组L6-S2节段浅层、固有层神经元数目和IOD值明显高于正F常对照组。
     4.IBS模型大鼠RVM中c-Fos和NR1受体的表达显著升高
     在RVM各个亚核Gi (nucleus reticularis gigantocellularis), LPGi (nucleus lateralis paragigantocellulari), GiA (nucleus reticularis gigantocellularis pars alpha), NRM (nucleus raphe magnus)水平,IBS模型组c-Fos蛋白和NR1受体免疫阳性细胞的计数明显升高:RVM中NR1受体的IOD值与正常对照组相比明显升高。
     5.电针明显降低IBS模型大鼠脊髓背角c-Fos和NR1受体的表达
     在多次隔日电针治疗后,IBS模型大鼠L6-S2节段SDH、NP、NECK、X层中,c-Fos阳性神经元明显下降,而假电针则没有此效应。电针治疗后IBS大鼠T13-L2节段浅层、固有层、背角颈段及中央管周区的c-Fos阳性神经元数目无明显差异;在多次隔日电针治疗后,IBS模型大鼠L6-S2节段SDH、NP中,NR1阳性神经元数目和IOD值明显下降,NECK层中,NR1阳性神经元数目无明显差异,而IOD值明显下降,假电针则没有此效应。
     6.电针明显降低IBS模型大鼠RVM中c-Fos和NRI受体的表达
     IBS模型大鼠在连续四次电针治疗以后,RVM的亚核Gi, LPGi, GiA中c-Fos蛋白,以及Gi, LPGi, GiA, NRM中NR1受体免疫阳性细胞的计数明显下降;RVM整体水平NR1受体的IOD值也显著下降。但假电针组与模型组相比无明显变化。
     综上所述,本研究提示:
     1、PTP及AWR评分表明,IBS成年大鼠模型内脏痛敏表现明显,出现了内脏超敏和痛敏现象,较好地模拟了临床IBS病人肠道感觉过敏现象,是一个比较稳定的慢性内脏痛敏动物模型。
     2、我们实验室前期研究成果表明,隔日电针4-6次,达到最大治疗效应。本研究提示,第四次电针治疗后,PTP及AWR评分显示,多次电针治疗可以明显缓解慢性内脏痛敏。
     3、IBS模型大鼠L6-S2节段脊髓背角和RVM中c-Fos蛋白表达显著升高,这表巨额脊髓背角和RVM中内脏反应神经元兴奋性异常增高,可能是IBS模型大鼠内脏痛敏的发生的重要原因。
     4、IBS模型大鼠脊髓背角和RVM中NR1受体表达显著升高,这表明脊髓背角和RVM中内脏反应神经元上NR1受体异常表达,可能参与了IBS模型大鼠功能性慢性内脏痛敏的维持。
     5、电针可以明显抑制IBS模型大鼠L6-S2节段脊髓背角和RVM中c-Fos表达,从而使脊髓背角和RVM中内脏反应神经元异常增高兴奋性下降,这可能是针刺缓解慢性内脏痛敏的机制之一
     6、电针可以明显抑制IBS模型大鼠脊髓背角和RVM中NR1受体表达,这可能是脊髓背角和RVM中内脏反应神经元异常增高兴奋性下降的重要原因,这也可能是针刺缓解慢性内脏痛敏的机制之一。
Although with the advances of medical science, many chronic pain syndromes still remain a challenge for clinicians. Suffering from chronic pain can significantly deteriorate a person's quality of life and can often lead to disability. Such chronic pain in the viscera is observed in functional bowel disorders (e.g., noncardiac chest pain, chronic idiopathic dyspepsia, functional abdominal pain, irritable bowel syndrome; IBS) and chronic pelvic pain (e.g., chronic interstitial cystitis, painful bladder syndrome) that are multifaceted problems and still poorly understood. Functional bowel disorders and chronic pelvic pain represent unexplained symptoms that have no readily identifiable infectious, anatomical, ormetabolic basis. The pain is diffusing and poorly localized and often it is confused as originating from other visceral organs.
     Among all functional bowel disorders, IBS is the most common and prevalent gastrointestinal (GI) disorder (about 18-20% of the patient population), having symptoms of cramping, abdominal pain, bloating, constipation, and/or diarrhea. Similarly, chronic pelvic pain affects approximately 15% of women. Interstitial cystitis and painful bladder syndrome are the most common. All functional bowel disorder and chronic pelvic pain patients exhibit one common symptom-lower abdominal pain. There are different factors that can cause or modify these disorders, such as persistent mental and social stress, a previous episode of infection or inflammation, genetic background, and early-life adverse events (e.g., abuse, trauma, and painful experience). Presumably in all functional disorders, patients develop excessive pain to painful stimuli (e.g., hyperalgesia) and may also experience pain to a nonpainful stimulus (e.g., allodynia).
     The general notion for visceral hypersensitivity is the presence of sensitization of the neural pathway (includes primary sensory afferents and spinal ascending neurons) involved in primary sensory afferents and spinal neurons to visceral stimuli and their sensitization. Both animal and human studies of IBS clearly point to a spinal mechanism, consistent with the observation that IBS patients have enhanced responses to visceral and cutaneous stimuli throughout the pain matrix of the brain (including RVM). However, on the basis of the evidence presented so far, it is not entirely clear the extent to which these enhanced responses are the result of (1) a facilitating mechanism confined within the brain, (2) a spinal sensitization maintained by tonic impulse input from the rectum and/or colon, or (3) a mechanism of descending facilitation from the brain to the spinal cord and/or gut.
     Visceral hypersensitivity is the main mechanism underlying irritable bowel syndrome (IBS) patients with chronic visceral hyperalgesia, while the recurrent occurrence of visceral pain is a major cause of patients asking for medical treatment. The lack of understanding on visceral pain hindered the targeted treatment measures supposed, meanwhile the therapeutic effect of visceral pain is not satisfactory and the expense for visceral pain treatment has taken a large number of medical resources and community resources. To find effective and economical treatment methods has become an inevitable trend.
     It has been already known that rostral ventromedia medulla (RVM) has a dual role in descending modulation of nociception, that is, it is able to inhibit or facilitate the nociceptive input. Exposure of this region to higher intensity of electrical stimulation or higher concentration of stimulatory neurotransmitters can induce analgesia, while low-intensity electrical stimulation or low concentration of stimulatory neurotransmitters can result in hyperalgesia. Because facilitation of pain via the RVM has been implicated in the development of central sensitization, it has been supposed therefore that disordered descending influences from the brainstem on nociceptive afferent information may underlie abnormal pain perception in both functional pain disorders, such as irritable bowel syndrome and fibromyalgia, and neuropathic pain.
     The spinal cord, which is the first integration center in the transmission of pain, accepted the control signals from supraspinal centers, and plays a important role in direct modulation of pain. A large number of studies have shown that many of the spinal cord dorsal horn neurotransmitters, receptors and cytokines play a key role in the formation of peripheral hyperalgesia and central mechanisms, including 5-HT, substance P, calcitonin gene-related peptide (CGRP), and the NMDA receptor.
     In east part of Asia, acupuncture as empirical medicine has long been used for patients with different kinds of diseases for thousands of years, especially in treating various types of pain. Recently, acupuncture has been focused on treatment particularly with chronic visceral pain, although a few of acupuncture trials demonstrated no efficacy or minimal superiority over placebo/control in treatment of patients or animal models. Compared with pharmacotherapy, the anti-hyperalgesia effects of acupuncture, which have a curative effect, economical and practical advantages, fewer side effects, may be beneficial to patients with chronic visceral pain.
     Al-Chaer et al. developed a rat model of chronic visceral hyperalgesia by repetitive colorectal distention (CRD) during the neonatal period. This chronic visceral hyperalgesia model provides a useful animal model with which to further study the mechanisms of chronic visceral pain. It has been shown that there is an analgesic effect of electro-acupuncture (EA) on chronic visceral hyperalgesia and possibility of N-methyl-D-aspartate receptor 1 (NR1) in the central nervous system underlying the effect of EA to reduce visceral pain condition. Because the glutamate neurotransmitter system in RVM and spinal dorsal horn is closely involved in the formation and development of chronic visceral pain, and c-Fos protein is a nuclear protein product encoded by the immediate-early gene c-fos, which has been widely used as a marker of increased neural activity in the central nerval system, we selected c-Fos and NR1 in the RVM and spinal dorsal horn to investigate the specific mechanism with acupuncture relieving chronic visceral hyperalgesia in this study.
     The experimental steps as follows:
     1. Production of IBS rat model
     Sprague-Dawley rats (9 days old) were randomly divided into 2 groups undergoing different treatments. Rats in group 1 (IBS model rats) received colon mechanical irritation, and rats in another group (normal rats or intact rats) were gently touched on the perineal area. The irritation period lasted on a daily basis between the ages of 9 and 22 days.
     2. Assessment of abdominal withdraw reflex and pain threshold pressure
     After a resting period of another 2~4 weeks, behavioral test of abdominal withdraw reflex (AWR) and pain threshold pressure (PTP) responded to colorectal distention (CRD) stimuli between two groups were observed.
     3. Administration of electro-acupuncture treatment
     the IBS model rats were randomly divided into 3 groups:IBS model group (M) without any treatment, model+EA group (EA) and model+sham EA group (SEA). Administration of EA consecutively repeated four times evcry other day at bilateral points of Zu-san-li (ST-36) and Shang-ju-xu (ST-37) in the hind limbs, while sham-EA at similar acupoints was done inserting needles without electrical stimulation. After the treatment, AWR and PTP were observed again.
     4. Tissue preparation
     5-8 hours after CRD stimulation, distended rats were deeply anesthetized with pentobarbital and intracardially perfused with 4% paraformaldehyde. The RVM and spinal cord subsequently allowed to equilibrate in 30% sucrose with PB. Thirty-μm transverse sections were cut on a cryostat.
     5. c-Fos and NR1 immuohistochemistry
     The RVM and spinal dorsal horn sections were stained for c-Fos, NR1 using strept-avidin-biotin complex (SABC) method. To measure the level of intensity of c-Fos and NR1 immunoreactivity, five slices for each rat were selected for the count of c-Fos and NR1 positive neurons. Both the integrated optical density (IOD) and the number of immunoreactive neurons of NR1 in RVM and spinal dorsal horn were counted with software image pro plus (IPP).
     results:
     1. PTP significantly decreased and AWR score abnormally increased in IBS rats
     PTP value siginificantly decreased from 48.7±5.4 mmHg in the control group to 32.7±6.5 mmHg in the irritated groups. Parallel to the PTP change, with graded CRD stimulation, there were significant increases in AWR scores in IBS rats compared with control rats, respectively, at distention pressures of 20,40,60 and 80 mmHg.
     2. Electro-acupuncture reversed abnormal PTP value and AWR score in IBS rats
     After 4 consecutive EA treatments to the IBS model rats, the decreased PTP in response to CRD was reversed to the level of normal rats. The average PTP of EA group was 45.0±6.8 mmHg, significantly higher than that of the IBS group at 32.7±6.5 mmHg. There were also significant differences in AWR scores compared before and after EA treatment. AWR scores of the EA-treated rats were significantly lower than those before EA treatment (EA-B), respectively, at distention pressures of 20,40,60, and 80 mmHg. There was no significant decrease in AWR scores of sham EA(SEA) treated rats compared with those before SEA treatment (SEA-B).
     3. Electro-acupuncture reduced hyper-expression of c-Fos and NR1 in IBS rats in spinal dorsal horn
     After CRD stimulation, the number of immunoreactive neurons of c-Fos protein increased significantly in L6-S2 segment of spinal dorsal horn of IBS model rats compared with those of normal rats, then decreased to normal level after EA treatment in laminaes of SDH, NP, NECK. Only the c-Fos positive neurons significantly in the laminae of NECK in T13-L2 segment of spinal dorsal horn of IBS model rats. Correlated with the expression of c-Fos protein, the number of immunoreactive neurons and IOD of NR1 receptor increased significantly in L6-S2 segment, then decreased to normal level after EA treatment in laminaes of SDH, NP. Only the IOD of NR1 receptor significantly in the laminae of NECK in L6-S2 segment of spinal dorsal horn of IBS model rats. Compared with IBS model rats, there was no difference observed after sham EA treatment with c-Fos and NR1 immunostaining.
     4. Electro-acupuncture reduced hyper-expression of c-Fos and NR1 in IBS rats in RVM
     the number of immunoreactive neurons of c-Fos protein and NR1 increased significantly in nucleus reticularis gigantocellularis (Gi), nucleus lateralis paragigantocellulari (LPGi), nucleus reticularis gigantocellularis pars alpha (GiA), nucleus raphe magnus (NRM) with IBS model rats, both the number of immunoreactive neurons of c-Fos and NR1 significantly decreased, respectively, in the Gi, LPGi, GiA and in Gi, LPGi, GiA, NRM. The IOD also significantly increased compared with those in normal rats, then decreased to normal level after EA treatment in RVM. Compared with IBS model rats, there was no difference observed after sham EA treatment with c-Fos and NR1 immunostaining.
     Conclusions
     1. Behavioral tests of AWR and PTP responded to CRD stimuli demonstrated that these rats received colon mechanical irritation produce visceral allodynia and visceral hyperalgesia in their adulthood. It demonstrated that the visceral vulnerability, induced by continuous mechanical damage at early birth, could be continued until the adulthood.
     2. As revealed in our previous report, repeated EA treatment gradually enhanced to its maximum within 8-12 days, AWR assessment was performed during 24 h after four EA treatments. We found that AWR score of EA treatment group was significantly decreased, and PTP value was significantly increased, while sham EA treatment didn't produce this effect.
     3. This study indicated that abnormally high neuronal excitability, especially the increased NR1 receptor expression in the spinal dorsal horn, may be important reasons underlying visceral hyperalgesia in IBS model rats. It demonstrated that EA treatment can relieve chronic visceral hyperalgesia in IBS rats, and such an effect might be correlated with the modulation of abnormal neuronal excitability and NR1 expression in the spinal dorsal horn of the rat's brain by EA.
     4. This study indicated that abnormally high neuronal excitability, especially the increased NR1 receptor expression in the RVM, may be important reasons underlying visceral hyperalgesia in IBS model rats. It demonstrated that EA treatment can relieve chronic visceral hyperalgesia in IBS rats, and such an effect might be correlated with the modulation of abnormal neuronal excitability and NR1 expression in the RVM of the rat's brain by EA.
引文
[1]Sengupta J N. Visceral pain:the neurophysiological mechanism[J]. Handb Exp Pharmacol,2009(194):31-74.
    [2]Hungin A P, Whorwell P J, Tack J, et al. The prevalence, patterns and impact of irritable bowel syndrome:an international survey of 40,000 subjects[J]. Aliment Pharmacol Ther,2003,17(5):643-650.
    [3]潘国宗,鲁素彩.北京地区肠易激综合征的流行病学研究:一个整群,分层,随?…[J].中华流行病学杂志,2000,21(1):26-29.
    [4]Verne G N, Robinson M E, Price D D. Hypersensitivity to visceral and cutaneous pain in the irritable bowel syndrome[J]. Pain,2001,93(1):7-14.
    [5]Sengupta J N. Visceral pain:the neurophysiological mechanism[J]. Handb Exp Pharmacol,2009(194):31-74.
    [6]Talley N J, Gabriel S E, Harmsen W S, et al. Medical costs in community subjects with irritable bowel syndrome[J]. Gastroenterology,1995,109(6):1736-1741.
    [7]Cash B, Sullivan S, Barghout V. Total costs of IBS:employer and managed care perspective.[J]. Am J Manag Care,2005,11(1 Suppl):S7-S16.
    [8]Longstreth G F, Thompson W G, Chey W D, et al. Functional bowel disorders[J]. Gastroenterology,2006,130(5):1480-1491.
    [9]Mckee D P, Quigley E M. Intestinal motility in irritable bowel syndrome:is IBS a motility disorder? Part 2. Motility of the small bowel, esophagus, stomach, and gall-bladder[J]. Dig Dis Sci,1993,38(10):1773-1782.
    [10]Mckee D P, Quigley E M. Intestinal motility in irritable bowel syndrome:is IBS a motility disorder? Part 1. Definition of IBS and colonic motility[J]. Dig Dis Sci,1993,38(10):1761-1772.
    [11]Mearin F, Balboa A, Badia X, et al. Irritable bowel syndrome subtypes according to bowel habit: revisiting the alternating subtype[J]. Eur J Gastroenterol Hepatol,2003,15(2):165-172.
    [12]Aziz Q, Botha C, Willert R. Pharmacology of visceral pain:central factors[J]. Dig Dis,2009,27 Suppl 1:31-41.
    [13]Spiller R, Aziz Q, Creed F, et al. Guidelines on the irritable bowel syndrome:mechanisms and practical management[J]. Gut,2007,56(12):1770-1798.
    [14]Brown G W. Life events, psychiatric disorder and physical illness[J]. J Psychosom Res,1981,25(5):461-473.
    [15]Hertig V L, Cain K C, Jarrett M E, et al. Daily stress and gastrointestinal symptoms in women with irritable bowel syndrome[J]. Nurs Res,2007,56(6):399-406.
    [16]Levy R L, Cain K C, Jarrett M. et al. The relationship between daily life stress and gastrointestinal symptoms in women with irritable bowel syndrome[J]. J Behav Med,1997,20(2):177-193.
    [17]Fukudo S, Suzuki J. Colonic motility, autonomic function, and gastrointestinal hormones under psychological stress on irritable bowel syndrome[J]. Tohoku J Exp Med,1987,151(4):373-385.
    [18]Drossman D A, Sandler R S, Mckee D C, et al. Bowel patterns among subjects not seeking health care. Use of a questionnaire to identify a population with bowel dysfunction[J]. Gastroenterology,1982,83(3):529-534.
    [19]Longstreth G F, Hawkey C J, Mayer E A, et al. Characteristics of patients with irritable bowel syndrome recruited from three sources:implications for clinical trials[J]. Aliment Pharmacol Ther,2001,15(7):959-964.
    [20]Shen B, Liu W, Remzi F H, et al. Enterochromaffin cell hyperplasia in irritable pouch syndrome[J]. Am J Gastroenterol,2008,103(9):2293-2300.
    [21]Wang L H, Fang X C, Pan G Z. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis[J]. Gut,2004,53(8):1096-1101.
    [22]Gwee K A, Collins S M, Read N W, et al. Increased rectal mucosal expression of interleukin lbeta in recently acquired post-infectious irritable bowel syndrome[J]. Gut,2003,52(4):523-526.
    [23]Cervero F, Laird J M. Understanding the signaling and transmission of visceral nociceptive events[J]. J Neurobiol,2004,61(1):45-54.
    [24]Delvaux M. Role of visceral sensitivity in the pathophysiology of irritable bowel syndrome[J]. Gut,2002,51 Suppl 1:i67-i71.
    [25]Mertz H. Review article:visceral hypersensitivity[J]. Aliment Pharmacol Ther,2003,17(5):623-633.
    [26]Smith D J, Hawranko A A, Monroe P J, et al. Dose-dependent pain-facilitatory and -inhibitory actions of neurotensin are Pevealed by SR 48692, a nonpeptide neurotensin antagonist:influence on the antinociceptive effect of morphine.[J]. J Pharmacol Exp Ther,1997,282(2):899-908.
    [27]Coutinho S V, Urban M O, Gebhart G F. Role of glutamate receptors and nitric oxide in the rostral ventromedial medulla in visceral hyperalgesia.[J]. Pain,1998,78(l):59-69.
    [28]Coutinho S V, Urban M O, Gebhart G F. The role of CNS NMDA receptors and nitric oxide in visceral hyperalgesia.[J]. Eur J Pharmacol,2001,429(1-3):319-325.
    [29]Zhuo M, Sengupta J N, Gebhart G F. Biphasic modulation of spinal visceral nociceptive transmission from the rostroventral medial medulla in the rat.[J]. J Neurophysiol,2002,87(5):2225-2236.
    [30]Zhuo M, Gebhart G F. Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat.[J]. Gastroenterology,2002,122(4):1007-1019.
    [31]Porreca F, Ossipov M H, Gebhart G F. Chronic pain and medullary descending facilitation.[J]. Trends Neurosci,2002,25(6):319-325.
    [32]Xiao W B, Liu Y L. Rectal hypersensitivity reduced by acupoint TENS in patients with diarrhea-predominant irritable bowel syndrome:a pilot study[J]. Dig Dis Sci,2004,49(2):312-319.
    [33]Schneider A, Weiland C, Enck P, et al. Neuroendocrinological effects of acupuncture treatment in patients with irritable bowel syndrome[J]. Complement Ther Med,2007,15(4):255-263.
    [34]Rohrbock R B, Hammer J, Vogelsang H, et al. Acupuncture has a placebo effect on rectal perception but not on distensibility and spatial summation:a study in health and IBS.[J]. Am J Gastroenterol,2004,99(10):1990-1997.
    [35]Musial F, Tao I, Dobos G. [Is the analgesic effect of acupuncture a placebo effect?][J]. Schmerz,2009,23(4):341-346.
    [36]Wu J C, Ziea E T, Lao L, et al. Effect of electroacupuncture on visceral hyperalgesia, serotonin and fos expression in an animal model of irritable bowel syndrome[J]. J Neurogastroenterol Motil,2010,16(3):306-314.
    [37]Rong P J, Zhu B, Huang Q F, et al. Acupuncture inhibition on neuronal activity of spinal dorsal horn induced by noxious colorectal distention in rat[J]. World J Gastroenterol,2005,11(7):1011-1017.
    [38]Cao X. Scientific bases of acupuncture analgesia[J]. Acupunct Electrother Res,2002,27(1):1-14.
    [39]Xu K D, Liang T, Wang K, et al. Effect of pre-electroacupuncture on p38 and c-Fos expression in the spinal dorsal horn of rats suffering from visceral pain[J]. Chin Med J (Eng1),2010,123(9):1176-1181.
    [40]余炜昶,黄光英,张明敏,等.敲除缝隙连接蛋白Cx43对针刺抑制内脏痛小鼠脊髓背角c-fos表达的影响[J].针刺研究,2008.33(3):179-182.
    [41]Al-Chaer E D, Kawasaki M, Pasricha P J. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. [J]. Gastroenterology,2000,119(5):1276-1285.
    [42]Cui K M, Li W M, Gao X, et al. Electro-acupuncture relieves chronic visceral hyperalgesia in rats.[J]. Neurosci Lett,2005,376(1):20-23.
    [43]李为民,崔可密,吴根诚.电针治疗肠易激综合征大鼠作用观察[.上海针灸杂.志,2006,25(3):43-47.
    [44]周娟,李为民.电针对肠易激综合征大鼠脊髓NMDA受体表达的影响[.上海针灸杂志,2008,27(6):38-40.
    [45]Sagar S M, Sharp F R, Curran T. Expression of c-fos protein in brain:metabolic mapping at the cellular level[J]. Science,1988,240(4857):1328-1331.
    [46]Lin C, Al-Chaer E D. Differential effects of glutamate receptor antagonists on dorsal horn neurons responding to colorectal distension in a neonatal colon irritation rat mode][J]. World J Gastroenterol,2005,11(41):6495-6502.
    [47]Bianchi R, Rezzani R, Borsani E, et al. mG1u5 receptor antagonist decreases Fos expression in spinal neurons after noxious visceral stimulation[J]. Brain Res,2003.960(1-2):263-266.
    [48]Ji Y, Traub R J. Differential effects of spinal CNQX on two populations of dorsal horn neurons responding to colorectal distension in the rat[J]. Pain,2002,99(1-2):217-222.
    [49]Ali D W, Salter M W. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity[J]. Curr Opin Neurobiol,2001,11(3):336-342.
    [50]王智君,李为民.电针对肠易激综合征大鼠肠道运动异常的调节作用[J].中西医结合学报,2010,8(9).
    [51]The Rat Brain in Stereotaxic Coordinates:Compact 6th Edition[M].
    [52]Mayer E A, Collins S M. Evolving pathophysiologic models of functional gastrointestinal disorders[J]. Gastroenterology,2002,122(7):2032-2048.
    [53]Pattinson D, Fitzgerald M. The neurobiology of infant pain:development of excitatory and inhibitory neurotransmission in the spinal dorsal horn[J]. Reg Anesth Pain Med,2004,29(1):36-44.
    [54]Fitzgerald M. The development of nociceptive circuits[J]. Nat Rev Neurosci,2005,6(7):507-520.
    [55]Wissow L S. Child abuse and neglect[J]. N Engl J Med,1995,332(21):1425-1431.
    [56]Brown G R, Anderson B. Psychiatric morbidity in adult inpatients with childhood histories of sexual and physical abuse[J]. Am J Psychiatry,1991,148(1):55-61.
    [57]Chitkara D K, van Tilburg M A, Blois-Martin N, et al. Early life risk factors that contribute to irritable bowel syndrome in adults:a systematic review[J]. Am J Gastroenterol,2008,103(3):765-774,775.
    [58]Hislop I G. Childhood deprivation:an antecedent of the irritable bowel syndrome[J]. Med J Aust,1979,1(9):372-374.
    [59]Hill O W, Blendis L. Physical and psychological evaluation of 'non-organic' abdominal pain[J]. Gut,1967,8(3):221-229.
    [60]Ladd C O, Huot R L, Thrivikraman K V, et al. Long-term behavioral and neuroendocrine adaptations to adverse early experience[J]. Prog Brain Res,2000,122:81-103.
    [61]Barreau F, Cartier C, Ferrier L, et al. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats[J]. Gastroenterology,2004,127(2):524-534.
    [62]Chung E K, Zhang X J, Xu H X, et al. Visceral hyperalgesia induced by neonatal maternal separation is associated with nerve growth factor-mediated central neuronal plasticity in rat spinal cord[J].Neuroscience,2007,149(3):685-695.
    [63]Plotsky P M, Thrivikraman K V, Nemeroff C B, et al. Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring[J]. Neuropsychopharmacology,2005,30(12):2192-2204.
    [64]Ladd C O, Huol R L, Thrivikraman K V, et al. Long-term behavioral and neuroendocrine adaptations to adverse early experience[J]. Prog Brain Res,2000,122:81-103.
    [65]Caldji C, Diorio J, Meaney M J. Variations in maternal care in infancy regulate the development of stress reactivity[J]. Biol Psychiatry,2000,48(12):1164-1174.
    [66]Coutinho S V, Plotsky P M, Sablad M, et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat[J]. Am J Physiol Gastrointest Liver Physiol,2002,282(2):G307-G316.
    [67]Barreau F, Ferrier L, Fioramonti J, et al. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats[J]. Gut,2004,53(4):501-506.
    [68]Barreau F, Ferrier L, Fioramonti J, et al. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats[J]. Gut.2004.53(4):501-506.
    [69]Schwetz I, Mcroberts J A, Coutinho S V, et al. Corticotropin-releasing factor receptor 1 mediates acute and delayed stress-induced visceral hyperalgesia in maternally separated Long-Evans rats[J]. Am J Physio] Gastrointest Liver Physiol,2005,289(4):G704-G712.
    [70]Irwin C, Falsetti S A, Lydiard R B, et al. Comorbidity of posttraumatic stress disorder and irritable bowel syndrome[J]. J Clin Psychiatry,1996,57(12):576-578.
    [71]Stam R, Akkermans L M, Wiegant V M. Trauma and the gut:interactions between stressful experience and intestinal function[J]. Gut,1997,40(6):704-709.
    [72]Foa E B, Street G P. Women and traumatic events[J]. J Clin Psychiatry,2001,62 Suppl 17:29-34.
    [73]Yehuda R, Mcfarlane A C, Shalev A Y. Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event[J]. Biol Psychiatry.1998,44(12):1305-1313.
    [74]Yule W. Posttraumatic stress disorder in the general population and in children[J]. J Clin Psychiatry,2001,62 Suppl 17:23-28.
    [75]Kessler R C, Sonnega A, Bromet E, et al. Posttraumatic stress disorder in the National Comorbidity Survey[J]. Arch Gen Psychiatry,1995,52(12):1048-1060.
    [76]Kanai S, Asakura M, Nakano M, et al. [Long-lasting sensitization to footshock after chronic variable stress on the acoustic startle reflex][J]. Nihon Shinkei Seishin Yakurigaku Zasshi,2007,27(1):13-18.
    [77]Henry C, Guegant G, Cador M, et al. Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens[J]. Brain Res,1995,685(1-2):179-186.
    [78]Schwetz I, Bradesi S, Mcroberts J A, et al. Delayed stress-induced colonic hypersensitivity in male Wistar rats:role of neurokinin-1 and corticotropin-releasing factor-1 receptors[J]. Am J Physiol Gastrointest Liver Physiol,2004,286(4):G683-G691.
    [79]Bradesi S, Lao L, Mclean P G, et al. Dual role of 5-HT3 receptors in a rat model of delayed stress-induced visceral hyperalgesia[J]. Pain,2007,130(1-2):56-65.
    [80]Geerse G J, van Gurp L C, Wiegant V M, et al. Individual reactivity to the open-field predicts the expression of cardiovascular and behavioural sensitisation to novel stress[J]. Behav Brain Res,2006,175(1):9-17.
    [81]Francis D D, Caldji C, Champagne F, et al. The role of corticotropin-releasing factor--norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress[J]. Biol Psychiatry,1999,46(9):1153-1166.
    [82]Claes S J. Corticotropin-releasing hormone (CRH) in psychiatry:from stress to psychopathology[J]. Ann Med,2004,36(1):50-61.
    [83]Chitkara D K, Rawat D J, Talley N J. The epidemiology of childhood recurrent abdominal pain in Western countries:a systematic review[J]. Am J Gastroenterol,2005,100(8):1868-1875.
    [84]Bakker J M, Kavelaars A, Kamphuis P J, et al. Neonatal dexamethasone treatment increases susceptibility to experimental autoimmune disease in adult rats[J]. J Immunol.2000,165(10):5932-5937.
    [85]Shanks N, Windle R J, Perks P A, et al. Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation[J]. Proc Natl Acad Sci U S A,2000,97(10):5645-5650.
    [86]Miranda A, Nordstrom E, Mannem A, et al. The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis[J]. Neuroscience,2007,148(4):1021-1032.
    [87]Randich A, Uzzell T, Deberry J J. et al. Neonatal urinary bladder inflammation produces adult bladder hypersensitivity[J]. J Pain,2006,7(7):469-479.
    [88]Lin C, Al-Chaer E D. Long-term sensilization of primary afferents in adult rats exposed to neonatal colon pain[J]. Brain Res,2003,971(1):73-82.
    [89]Gwee K A, Leong Y L, Graham C, et al. The role of psychological and biological factors in postinfective gut dysfunction[J]. Gut,1999,44(3):400-406.
    [90]Gwee K A, Graham J C, Mckendrick M W, et al. Psychometric scores and persistence of irritable bowel after infectious diarrhoea[J]. Lancet,1996,347(8995):150-153.
    [91]Spiller R C, Jenkins D, Thornley J P, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome[J], Gut,2000,47(6):804-811.
    [92]Swain M G, Blennerhassett P A, Collins S M. Impaired sympathetic nerve function in the inflamed rat intestine[J]. Gastroenterology,1991,100(3):675-682.
    [93]Swain M G, Agro A, Blennerhassett P, et al. Increased levels of substance P in the myenteric plexus of Trichinella-infected rats[J]. Gastroenterology.1992,102(6):1913-1919.
    [94]Vallance B A. Collins S M. The effect of nematode infection upon intestinal smooth muscle function[J]. Parasite Immunol,1998,20(5):249-253.
    [95]Marzio L, Blennerhassett P, Chiverton S, et al. Altered smooth muscle function in worm-free gut regions of Trichinella-infected rats[J]. Am J Physiol,1990,259(2 Pt 1):G306-G313.
    [96]Vallance B A, Blennerhassett P A, Collins S M. Increased intestinal muscle contractility and worm expulsion in nematode-infected mice[J]. Am J Physiol,1997,272(2 Pt 1):G321-G327.
    [97]Gue M, Del R C, Eutamene H, et al. Stress-induced visceral hypersensitivity to rectal distension in rats:role of CRF and mast cells[J]. Neurogastroenterol Motil,1997,9(4):271-279.
    [98]Chen J J, Li Z, Pan H, et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter:Abnormal intestinal motility and the expression of cation transporters[J]. J Neurosci,2001,21(16):6348-6361.
    [99]Drossman D A. Chronic functional abdominal pain[J]. Am J Gastroenterol,1996,91(11):2270-2281.
    [100]Winston J, Shenoy M, Medley D, et al. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats.[J]. Gastroenterology,2007,132(2):615-627.
    [101]Chung E K, Bian Z X, Xu H X, et al. Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system.[J].Neurosignals,2009,17(3):213-221.
    [102]Traub R J. Evidence for thoracolumbar spinal cord processing of inflammatory, but not acute colonic pain[J]. Neuroreport,2000,11(10):2113-2116.
    [103]Ness T J, Metcalf A M, Gebhart G F. A psychophysiological study in humans using phasic colonic distension as a noxious visceral stimulus[J]. Pain,1990,43(3):377-386.
    [104]Bernstein C N, Niazi N, Robert M, et al. Rectal afferent function in patients with inflammatory and functional intestinal disorders[J]. Pain,1996,66(2-3):151-161.
    [105]Lembo T, Munakata J, Mertz H, et al. Evidence for the hypersensitivity of lumbar splanchnic afferents in irritable bowel syndrome[J]. Gastroenterology,1994,107(6):1686-1696.
    [106]Accarino A M, Azpiroz F, Malagelada J R. Selective dysfunction of mechanosensitive intestinal afferents in irritable bowel syndrome[J]. Gastroenterology,1995,108(3):636-643.
    [107]Baron R, Janig W. Afferent and sympathetic neurons projecting into lumbar visceral nerves of the male rat[J]. J Comp Neurol,1991,314(3):429-436.
    [108]de Groat W C. Neuropeptides in pelvic afferent pathways[J]. Experientia,1987,43(7):801-813.
    [109]Keast J R, De Groat W C. Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats[J]. J Comp Neurol,1992,319(4):615-623.
    [110]Cervero F, Tattersall J E. Somatic and visceral inputs to the thoracic spinal cord of the cat: marginal zone (lamina I) of the dorsal horn[J]. J Physiol,1987,388:383-395.
    [111]Cervero F. Somatic and visceral inputs to the thoracic spinal cord of the cat:effects of noxious stimulation of the biliary system[J]. J Physiol,1983,337:51-67.
    [112]Ness T J, Gebhart G F. Interactions between visceral and cutaneous nociception in the rat. I. Noxious cutaneous stimuli inhibit visceral nociceptive neurons and reflexes[J]. J Neurophy siol,1991,66(1):20-28.
    [113]Traub R J. Evidence for thoracolumbar spinal cord processing of inflammatory, but not acute colonic pain[J]. Neuroreport,2000,11(10):2113-2116.
    [114]Berkley K J, Robbins A, Sato Y. Functional differences between afferent fibers in the hypogastric and pelvic nerves innervating female reproductive organs in the rat[J]. J Neurophysiol,1993,69(2):533-544.
    [115]Su X, Sengupta J N, Gebhart G F. Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension[J]. J Neurophysiol,1997,78(2):1003-1012.
    [116]Brierley S M, Jones R R, Gebhart G F, et al. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice[J]. Gastroenterology,2004,127(1):166-178.
    [117]Lynn P A, Blackshaw L A. In vitro recordings of afferent fibres with receptive fields in the serosa, muscle and mucosa of rat colon[J]. J Physiol,1999,518 (Pt 1):271-282.
    [118]Gold M S, Traub R J. Cutaneous and colonic rat DRG neurons differ with respect to both baseline and PGE2-induced changes in passive and active electrophysiological properties[J]. J Neurophysiol,2004,91(6):2524-2531.
    [119]Ness T J, Gebhart G F. Characterization of neuronal responses to noxious visceral and somatic stimuli in the medial lumbosacral spinal cord of the rat[J]. J Neurophysiol,1987,57(6):1867-1892.
    [120]Ness T J, Gebhart G F. Acute inflammation differentially alters the activity of two classes of rat spinal visceral nociceptive neurons[J]. Neurosci Lett,2000,281(2-3):131-134.
    [121]Ness T J, Gebhart G F. Inflammation enhances reflex and spinal neuron responses to noxious visceral stimulation in rats[J]. Am J Physiol Gastrointest Liver Physiol,2001,280(4):G649-G657.
    [122]Wang G, Tang B, Traub R J. Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat[J]. J Neurophysiol,2005,94(6):3788-3794.
    [123]Traub R J, Pechman P, Iadarola M J, et al. Fos-like proteins in the lumbosacral spinal cord following noxious and non-noxious colorectal distention in the rat[J]. Pain,1992,49(3):393-403.
    [124]Sun Y N, Luo J Y. Effects of tegaserod on Fos, substance P and calcitonin gene-related peptide expression induced by colon inflammation in lumbarsacral spinal cord[J]. World J Gastroenterol,2004,10(12):1830-1833.
    [125]Tong C, Ma W, Shin S W, et al. Uterine cervical distension induces cFos expression in deep dorsal horn neurons of the rat spinal cord[J]. Anesthesiology,2003,99(1):205-211.
    [126]Buritova J, Besson J M. Effects of flurbiprofen and its enantiomers on the spinal c-Fos protein expression induced by noxious heat stimuli in the anaesthetized rat[J]. Eur J Pharmacol,2000,406(1):59-67.
    [127]Catheline G, Le Guen S, Besson J M. Effects of U-69,593, a kappa-opioid receptor agonist, on carrageenin-induced peripheral oedema and Fos expression in the rat spinal cord[J]. Eur J Pharmacol,1999,370(3):287-296.
    [128]Traub R J, Murphy A. Colonic inflammation induces fos expression in the thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway[J]. Pain,2002,95(1-2):93-102.
    [129]Payne J A, Rivera C, Voipio J, et al. Cation-chloride co-transporters in neuronal communication, development and trauma[J]. Trends Neurosci,2003,26(4):199-206.
    [130]Sung K W, Kirby M, Mcdonald M P, et al. Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2C1 cotransporter null mice[J]. J Neurosci,2000,20(20):7531-7538.
    [131]Laird J M, Garcia-Nicas E, Delpire E J, et al. Presynaptic inhibition and spinal pain processing in mice:a possible role of the NKCC1 cation-chloride co-transporter in hyperalgesia[J]. Neurosci Lett,2004,361(1-3):200-203.
    [132]Galan A, Cervero F. Painful stimuli induce in vivo phosphorylation and membrane mobilization of mouse spinal cord NKCC1 co-transporter[J]. Neuroscience,2005,133(1):245-252.
    [133]Pitcher M H, Price T J, Entrena J M, et al. Spinal NKCC1 blockade inhibits TRPV1-dependent referred allodynia[J]. Mol Pain,2007,3:17.
    [134]Caterina M J, Schumacher M A, Tominaga M, et al. The capsaicin receptor:a heat-activated ion channel in the pain pathway[J]. Nature,1997,389(6653):816-824.
    [135]Szallasi A, Blumberg P M. Vanilloid (Capsaicin) receptors and mechanisms[J]. Pharmacol Rev,1999,51(2):159-212.
    [136]Premkumar L S, Ahern G P. Induction of vanilloid receptor channel activity by protein kinase C[J]. Nature,2000,408(6815):985-990.
    [137]Chuang H H, Prescott E D, Kong H, et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition[J]. Nature,2001,411(6840):957-962.
    [138]Ferreira J, Da S G, Calixto J B. Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice[J]. Br J Pharmacol,2004,141(5):787-794.
    [139]Caterina M J, Leffler A, Malmberg A B, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor[J]. Science,2000,288(5464):306-313.
    [140]Carlton S M, Coggeshall R E. Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization[J]. Neurosci Lett,2001,310(1):53-56.
    [141]Luo H, Cheng J, Han J S, et al. Change of vanilloid receptor 1 expression in dorsal root ganglion and spinal dorsal horn during inflammatory nociception induced by complete Freund's adjuvant in rats[J]. Neuroreport,2004,15(4):655-658.
    [142]Kelly S, Chapman V. Spinal administration of capsazepine inhibits noxious evoked responses of dorsal horn neurons in non-inflamed and carrageenan inflamed rats[J]. Brain Res,2002,935(1-2):103-108.
    [143]Kolhekar R, Gebhart G F. Modulation of spinal visceral nociceptive transmission by NMDA receptor activation in the rat[J]. J Neurophysiol,1996,75(6):2344-2353.
    [144]Castroman P J, Ness T J. Ketamine, an N-methyl-D-aspartate receptor antagonist, inhibits the spinal neuronal responses to distension of the rat urinary bladder[J]. Anesthesiology,2002,96(6):1410-1419.
    [145]Traub R J, Zhai Q, Ji Y, et al. NMDA receptor antagonists attenuate noxious and nonnoxious colorectal distention-induced Fos expression in the spinal cord and the visceromotor reflex[J]. Neuroscience,2002,113(1):205-211.
    [146]Mayer M L, Westbrook G L, Guthrie P B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones[J]. Nature,1984,309(5965):261-263.
    [147]Woolf C J, Salter M W. Neuronal plasticity:increasing the gain in pain[J]. Science,2000,288(5472):1765-1769.
    [148]Grosshans D R, Browning M D. Protein kinase C activation induces tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDA receptor[J]. J Neurochem,2001,76(3):737-744.
    [149]Ness T J, Piper J G, Follett K A. The effect of spinal analgesia on visceral nociceptive neurons in caudal medulla of the rat[J]. Anesth Analg,1999,89(3):721-726.
    [150]Kozlowski C M, Bountra C, Grundy D. The effect of fentanyl, DNQX and MK-801 on dorsal horn neurones responsive to colorectal distension in the anaesthetized rat[J]. Neurogastroenterol Motil,2000,12(3):239-247.
    [151]Ness T J, Gebhart G F. Differential effects of morphine and clonidine on visceral and cutaneous spinal nociceptive transmission in the rat[J]. J Neurophysiol,1989,62(l):220-230.
    [152]Ness T J, Gebhart G F. Acute inflammation differentially alters the activity of two classes of rat spinal visceral nociceptive neurons[J]. Neurosci Lett,2000,281(2-3):131-134.
    [153]Bearcroft C P, Perrett D, Farthing M J. Postprandial plasma 5-hydroxytryptamine in diarrhoea predominant irritable bowel syndrome:a pilot study[J]. Gut,1998,42(1):42-46.
    [154]Kerckhoffs A P, Ter Linde J J, Akkermans L M, et al. Trypsinogen IV, serotonin transporter transcript levels and serotonin content are increased in small intestine of irritable bowel syndrome patients[J]. Neurogastroenterol Motil,2008,20(8):900-907.
    [155]Camilleri M, Northcutt A R, Kong S, et al. Efficacy and safety of alosetron in women with irritable bowel syndrome:a randomised, placebo-controlled trial[J]. Lancet,2000,355(9209):1035-1040.
    [156]Gyermek L. Pharmacology of serotonin as related to anesthesia[J]. J Clin Anesth,1996,8(5):402-425.
    [157]Geranton S M, Fratto V, Tochiki K K, et al. Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn[J]. Mol Pain,2008,4:35.
    [158]Sun Y N, Luo J Y. Effects of tegaserod on Fos, substance P and calcitonin gene-related peptide expression induced by colon inflammation in lumbarsacral spinal cord[J]. World J Gastroenterol,2004,10(12):1830-1833.
    [159]Ren T H, Wu J, Yew D, et al. Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome[J]. Am J Physiol Gastrointest Liver Physiol,2007,292(3):G849-G856.
    [160]Perry M J, Lawson S N. Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves[J]. Neuroscience,1998,85(1):293-310.
    [161]Marvizon J C, Martinez V, Grady E F, et al. Neurokinin 1 receptor internalization in spinal cord slices induced by dorsal root stimulation is mediated by NMDA receptors[J]. J Neurosci,1997,17(21):8129-8136.
    [162]Okano S, Ikeura Y, Inatomi N. Effects of tachykinin NK1 receptor antagonists on the viscerosensory response caused by colorectal distention in rabbits[J]. J Pharmacol E.xp Ther,2002,300(3):925-931.
    [163]Bradesi S, Kokkotou E, Simeonidis S, et al. The role of neurokinin 1 receptors in the maintenance of visceral hyperalgesia induced by repeated stress in rats[J]. Gastroenterology,2006,130(6):1729-1742.
    [164]Ishigooka M, Zermann D H, Doggweiler R, et al. Spinal NK1 receptor is upregulated after chronic bladder irritation[J]. Pain,2001,93(1):43-50.
    [165]Palecek J, Paleckova V, Willis W D. Postsynaptic dorsal column neurons express NK1 receptors following colon inf]ammation[J]. Neuroscience,2003,116(2):565-572.
    [166]Laird J M, Olivar T, Roza C, et al. Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene[J]. Neuroscience,2000,98(2):345-352.
    [167]Bradesi S, Svensson C I, Steinauer J, et al. Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress[J]. Gastroenterology,2009,136(4):1339-1348, e1-e2.
    [168]Svensson C I, Yaksh T L. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing[J]. Annu Rev Pharmacol Toxicol.2002,42:553-583.
    [169]Yamamoto T, Sakashita Y. The role of the spinal opioid receptor likel receptor, the NK-1 receptor, and cyclooxygenase-2 in maintaining postoperative pain in the rat[J]. Anesth Analg,1999,89(5):1203-1208.
    [170]Sternini C. Enteric and visceral afferent CGRP neurons. Targets of innervation and differential expression patterns[J]. Ann N Y Acad Sci,1992,657:170-186.
    [171]Harmann P A, Chung K, Briner R P, et al. Calcitonin gene-related peptide (CGRP) in the human spinal cord:a light and electron microscopic analysis[J]. J Comp Neurol,1988,269(3):371-380.
    [172]Plourde V, St-Pierre S, Quirion R. Calcitonin gene-related peptide in viscerosensitive response to colorectal distension in rats[J]. Am J Physiol,1997,273(1 Pt 1):G191-G196.
    [173]Gschossmann J M, Coutinho S V, Miller J C, et al. Involvement of spinal calcitonin gene-related peptide in the development of acute visceral hyperalgesia in the rat[J]. Neurogastroenterol Motil,2001,13(3):229-236.
    [174]Wick E C, Pikios S, Grady E F, et al. Calcitonin gene-related peptide partially mediates nociception in acute experimental pancreatitis[J]. Surgery,2006,139(2):197-201.
    [175]Qiao L Y, Grider J R. Colitis induces calcitonin gene-related peptide expression and Akt activation in rat primary afferent pathways[J]. Exp Neurol,2009,219(1):93-103.
    [176]Wang L Z, Liu X, Wu W X, et al. Phosphorylation of spinal signaling-regulated kinases by acute uterine cervical distension in rats[J]. Int J Obstet Anesth,2010,19(1):50-55.
    [177]Berkley K J. Sex differences in pain[J]. Behav Brain Sci,1997,20(3):371-380,435-513.
    [178]Unruh A M. Gender variations in clinical pain experience[J]. Pain,1996,65(2-3):123-167.
    [179]Mathias J R, Clench M H, Reeves-Darby V G, et al. Effect of leuprolide acetate in patients with moderate to severe functional bowel disease. Double-blind, placebo-controlled study[J]. Dig Dis Sci,1994,39(6):1155-1162.
    [180]Prior A, Stanley K M, Smith A R, et al. Relation between hysterectomy and the irritable bowel:a prospective study[J]. Gut,1992,33(6):814-817.
    [181]Fillingim R B, Edwards R R. The association of hormone replacement therapy with experimental pain responses in postmenopausal women[J]. Pain,2001,92(1-2):229-234.
    [182]Shughrue P J, Lane M V, Merchenthaler I. Comparative distribution of estrogen receptor-alpha and-beta mRNA in the rat central nervous system[J]. J Comp Neurol,1997,388(4):507-525.
    [183]Sugiura Y, Terui N, Hosoya Y. Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers[J]. J Neurophysiol,1989,62(4):834-840.
    [184]Ji Y, Tang B, Traub R J. Modulatory effects of estrogen and progesterone on colorectal hyperalgesia in the rat[J]. Pain,2005,117(3):433-442.
    [185]Tang B, Ji Y, Traub R J. Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat[J]. Pain,2008,137(3):540-549.
    [186]Peng H Y, Chen G D, Lai C Y, et al. PI3K modulates estrogen-dependent facilitation of colon-to-urethra cross-organ reflex sensitization in ovariectomized female rats[J]. J Neurochem,2010,113(1):54-66.
    [187]Peng H Y, Chen G D, Lee S D, et al. Neuroactive steroids inhibit spinal reflex potentiation by selectively enhancing specific spinal GABA(A) receptor subtypes[J]. Pain,2009,143(1-2):12-20.
    [188]Giamberardino M A, Berkley K J, Affaitati G, et al. Influence of endometriosis on pain behaviors and muscle hyperalgesia induced by a ureteral calculosis in female rats[J]. Pain,2002,95(3):247-257.
    [189]Giamberardino M A. Recent and forgotten aspects of visceral pain[J]. Eur J Pain,1999,3(2):77-92.
    [190]Pezzone M A, Liang R, Fraser M O. A model of neural cross-talk and irritation in the pelvis: implications for the overlap of chronic pelvic pain disorders[J]. Gastroenterology,2005,128(7):1953-1964.
    [191]Qin C, Foreman R D. Viscerovisceral convergence of urinary bladder and colorectal inputs to lumbosacral spinal neurons in rats[J]. Neuroreport,2004,15(3):467-471.
    [192]Monga A K, Marrero J M, Stanton S L, et al. Is there an irritable bladder in the irritable bowel syndrome?[J]. Br J Obstet Gynaecol,1997,104(12):1409-1412.
    [193]Terruzzi V, Magatti F, Quadri G, et al. Bladder dysfunction and irritable bowel syndrome[J]. Am J Gastroenterol,1992,87(9):1231-1232.
    [194]Whorwell P J, Lupton E W, Erduran D, et al. Bladder smooth muscle dysfunction in patients with irritable bowel syndrome[J]. Gut,1986,27(9):1014-1017.
    [195]Giamberardino M A, Valente R, Affaitati G, et al. Central neuronal changes in recurrent visceral pain[J]. Int J Clin Pharmacol Res,1997,17(2-3):63-66.
    [196]Ustinova E E, Gutkin D W, Pezzone M A. Sensitization of pelvic nerve afferents and mast cell infiltration in the urinary bladder following chronic colonic irritation is mediated by neuropeptides[J]. Am J Physiol Renal Physiol,2007,292(1):F123-F130.
    [197]Ustinova E E, Fraser M O, Pezzone M A. Colonic irritation in the rat sensitizes urinary bladder afferents to mechanical and chemical stimuli:an afferent origin of pelvic organ cross-sensitization[J]. Am J Physiol Renal Physiol,2006,290(6):F1478-F1487.
    [198]Qin C, Malykhina A P, Akbarali H I, et al. Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon[J]. Gastroenterology,2005,129(6):1967-1978.
    [199]Peng H Y, Chen G D, Tung K C, et al. Colon mustard oil instillation induced cross-organ reflex sensitization on the pelvic-urethra reflex activity in rats[J]. Pain,2009,142(1-2):75-88.
    [200]Peng H Y, Cheng Y W, Lee S D, et al. Glutamate-mediated spinal reflex potentiation involves ERK 1/2 phosphorylation in anesthetized rats[J]. Neuropharmacology,2008,54(4):686-698.
    [201]Peng H Y, Chang H M, Chang S Y, et al. Orexin-A modulates glutamatergic NMDA-dependent spinal reflex potentiation via inhibition of NR2B subunit[J]. Am J Physiol Endocrinol Metab,2008,295(1):E117-E129.
    [202]Peng H Y, Huang P C, Liao J M, et al. Estrous cycle variation of TRPVl-mediated cross-organ sensitization between uterus and NMDA-dependent pelvic-urethra reflex activity[J]. Am J Physiol Endocrinol Metab,2008,295(3):E559-E568.
    [203]Peng H Y, Chang H M, Lee S D, et al. TRPV1 mediates the uterine capsaicin-induced NMDA NR2B-dependent cross-organ reflex sensitization in anesthetized rats[J]. Am J Physiol Renal Physiol,2008,295(5):F1324-F1335.
    [204]Woolf C J, Thompson S W. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states[J]. Pain,1991,44(3):293-299.
    [205]Rice A S, Mcmahon S B. Pre-emptive intrathecal administration of an NMDA receptor antagonist (AP-5) prevents hyper-reflexia in a model of persistent visceral pain[J]. Pain,1994,57(3):335-340.
    [206]Gaudreau G A, Plourde V. Involvement of N-methyl-d-aspartate (NMDA) receptors in a rat model of visceral hypersensitivity[J]. Behav Brain Res,2004,150(1-2):185-189.
    [207]Zhou Q, Nicholas V G. NMDA Receptors and Colitis:Basic Science and Clinical lmplications[J]. Rev Analg,2008,10(1):33-43.
    [208]李为民,崔可密,周娟,等.脊髓N-甲基-D-天冬氨酸受体在大鼠慢性内脏痛中的作用[J].中华麻醉学杂志,2008,28(5):471-472.
    [209]林春,林国威,郑伟,等NMDA受体NR2B亚单位在慢性内脏痛觉敏化中的作用[J].中国药理学通报,2008,24(8):1015-1018.
    [210]Zhou Q, Price D D, Caudle R M, et al. Spinal NMDA NR1 subunit expression following transient TNBS colitis[J]. Brain Res,2009,1279:109-120.
    [211]Rodella L, Rezzani R, Gioia M, et al. Expression of Fos immunoreactivity in the rat supraspinal regions following noxious visceral stimulation.[J]. Brain Res Bull,1998,47(4):357-366.
    [212]Dunckley P, Wise R G, Fairhurst M, et al. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging.[J]. J Neurosci,2005,25(32):7333-7341.
    [213]Westlund K N, Vera-Portocarrero L P, Zhang L, et al. fMRI of supraspinal areas after morphine and one week pancreatic inflammation in rats.[J]. Neuroimage,2009,44(1):23-34.
    [214]Tattersall J E, Cervero F, Lumb B M. Effects of reversible spinalization on the visceral input to viscerosomatic neurons in the lower thoracic spinal cord of the cat.[J]. J Neurophysiol,1986,56(3):785-796.
    [215]Ness T J, Gebhart G F. Quantitative comparison of inhibition of visceral and cutaneous spinal nociceptive transmission from the midbrain and medulla in the rat.[J]. J Neurophysiol,1987,58(4):850-865.
    [216]Vera-Portocarrero L P, Xie J Y, Kowal J, et al. Descending facilitation from the rostral ventromedial medulla maintains visceral pain in rats with experimental pancreatitis.[J]. Gastroenterology,2006,130(7):2155-2164.
    [217]Vanegas H, Schaible H G. Descending control of persistent pain:inhibitory or facilitatory?[J]. Brain Res Brain Res Rev,2004,46(3):295-309.
    [218]Randich A, Mebane H, Deberry J J, et al. Rostral ventral medulla modulation of the visceromotor reflex evoked by urinary bladder distension in female rats.[J]. J Pain,2008,9(10):920-926.
    [219]Baik E J, Jeong Y, Nam T S, et al. Mechanism of transmission and modulation of renal pain in cats; effect of nucleus raphe magnus stimulation on renal pain.[J]. Yonsei Med J,1995,36(4):348-360.
    [220]Vera-Portocarrero L P, Ossipov M H, King T, et al. Reversal of inflammatory and noninflammatory visceral pain by central or peripheral actions of sumatriptan.[J]. Gastroenterology,2008,135(4):1369-1378.
    [221]Suzuki R, Morcuende S, Webber M, et al. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways.[J]. Nat Neurosci,2002,5(12):1319-1326.
    [222]Suzuki R, Rygh L J, Dickenson A H. Bad news from the brain:descending 5-HT pathways that control spinal pain processing.[J]. Trends Pharmacol Sci,2004,25(12):613-617.
    [223]Wei F, Dubner R, Ren K. Nucleus reticularis gigantocellularis and nucleus raphe magnus in the brain stem exert opposite effects on behavioral hyperalgesia and spinal Fos protein expression after peripheral inflammation.[J]. Pain,1999,80(1-2):127-141.
    [224]Terayama R, Dubner R, Ren K. The roles of NMDA receptor activation and nucleus reticularis gigantocellularis in the time-dependent changes in descending inhibition after inflammation.[J]. Pain,2002,97(1-2):171-181.
    [225]Beitz A J. The sites of origin brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus.[J]. J Neurosci,1982,2(7):829-842.
    [226]Lumb B M, Morrison J F. Electrophysiological evidence for an excitatory projection from ventromedial forebrain structures on to raphe- and reticulo-spinal neurones in the rat.[J]. Brain Res,1986,380(1):162-166.
    [227]Urban M O, Gebhart G F. Supraspinal contributions to hyperalgesia.[J]. Proc Natl Acad Sci U S A,1999,96(14):7687-7692.
    [228]Fields H L, Heinricher M M, Mason P. Neurotransmitters in nociceptive modulatory circuits.[J]. Annu Rev Neurosci,1991,14:219-245.
    [229]Ellrich J, Ulucan C, Schnell C. Are 'neutral cells' in the rostral ventro-medial medulla subtypes of on- and off-cells?[J]. Neurosci Res,2000,38(4):419-423.
    [230]Ness T J, Gebhart G F. Characterization of neuronal responses to noxious visceral and somatic stimuli in the medial lumbosacral spinal cord of the rat.[J]. J Neurophysiol,1987,57(6):1867-1892.
    [231]Brink T S, Mason P. Raphe magnus neurons respond to noxious colorectal distension.[J]. J Neurophysiol,2003,89(5):2506-2515.
    [232]Brink T S, Mason P. Role for raphe magnus neuronal responses in the behavioral reactions to colorectal distension.[J]. J Neurophysiol,2004,92(4):2302-2311.
    [233]Meller S T, Gebhart G F. Nitric oxide (NO) and nociceptive processing in the spinal cord.[J]. Pain,1993,52(2):127-136.
    [234]Porreca F, Burgess S E, Gardell L R, et al. Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor.[J]. J Neurosci,2001,21(14):5281-5288.
    [235]Kellstein D E, Price D D, Mayer D J. Cholecystokinin and its antagonist lorglumide respectively attenuate and facilitate morphine-induced inhibition of C-fiber evoked discharges of dorsal horn nociceptive neurons.[J]. Brain Res,1991,540(1-2):302-306.
    [236]Friedrich A E, Gebhart G F. Modulation of visceral hyperalgesia by morphine and cholecystokinin from the rat rostroventral medial medulla.[J]. Pain,2003,104(1-2):93-101.
    [237]Ren K, Dubner R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF-TrkB signaling and NMDA receptors.[J]. Mol Neurobiol,2007.35(3):224-235.
    [238]Coutinho S V, Plotsky P M, Sablad M, et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat.[J]. Am J Physiol Gastrointest Liver Physiol,2002,282(2):G307-G316.
    [239]Chalon P, Vita N, Kaghad M, et al. Molecular cloning of a levocabastine-sensitive neurotensin binding site.[J]. FEBS Lett,1996,386(2-3):91-94.
    [240]Behbehani M M. Physiological mechanisms of the analgesic effect of neurotensin.[J]. Ann N Y Acad Sci,1992,668:253-265.
    [241]Urban M O, Smith D J. Role of neurotensin in the nucleus raphe magnus in opioid-induced antinociception from the periaqueductal gray.[J]. J Pharmacol Exp Ther,1993,265(2):580-586.
    [242]Urban M O, Coutinho S V, Gebhart G F. Biphasic modulation of visceral nociception by neurotensin in rat rostral ventromedial medulla.[J]. J Pharmacol Exp Ther,1999,290(l):207-213.
    [243]Ren K, Dubner R. Enhanced descending modulation of nociception in rats with persistent hindpaw inflammation.[J]. J Neurophysiol,1996,76(5):3025-3037.
    [244]Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists.[J]. Proc Natl Acad Sci U S A,2004,101(12):4274-4279.
    [245]Leung C G, Mason P. Physiological survey of medullary raphe and magnocellular reticular neurons in the anesthetized rat.[J]. J Neurophysiol,1998,80(4):1630-1646.
    [246]Sengupta J N, Gebhart G F. Characterization of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat.[J]. J Neurophysiol,1994,71(6):2046-2060.
    [247]Traub R J, Pechman P, Iadarola M J, et al Fos-like proteins in the lumbosacral spinal cord following noxious and non-noxious colorectal distention in the rat.[J]. Pain,1992,49(3):393-403.
    [248]Chandler M J, Oh U T, Hobbs S F, et al. Responses of feline raphespinal neurons to urinary bladder distension.[J]. J Auton Nerv Syst,1994,47(3):213-224.
    [249]Sanoja R, Tortorici V, Fernandez C, et al. Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia.[J]. Eur J Pain,2010,14(2):120-121.
    [250]Brink T S, Hellman K M, Lambert A M, et al. Raphe magnus neurons help protect reactions to visceral pain from interruption by cutaneous pain.[J]. J Neurophysiol,2006,96(6):3423-3432.
    [251]Hurley R W, Hammond D L. The analgesic effects of supraspinal mu and delta opioid receptor agonists are potentiated during persistent inflammation.[J]. J Neurosci,2000,20(3):1249-1259.
    [252]Hurley R W, Hammond D L. Contribution of endogenous enkephalins to the enhanced analgesic effects of supraspinal mu opioid receptor agonists after inflammatory injury.[J]. J Neurosci,2001,21(7):2536-2545.
    [253]Tsui P, Leung M C. Comparison of the effectiveness between manual acupuncture and electro-acupuncture on patients with tennis elbow.[J]. Acupunct Electrother Res,2002,27(2):107-117.
    [254]Yuan B, Pang T, Liu X. [Response properties of SI cortical neurons to electro-acupuncture and manual acupuncture in the rat][J]. Zhen Ci Yan Jiu,1991,16(2):79-86.
    [255]Chesterton L S, Barlas P, Foster N E, et al. Sensory stimulation (TENS):effects of parameter manipulation on mechanical pain thresholds in healthy human subjects.[J]. Pain,2002,99(1-2):253-262.
    [256]Omura Y. Electrical parameters for safe and effective electro-acupuncture and transcutaneous electrical stimulation:threshold potentials for tingling, muscle contraction and pain; and how to prevent adverse effects of electro-therapy. Part 1.[J]. Acupunct Electrother Res,1985,10(4):335-337.
    [257]Lao L, Zhang R X, Zhang G, et al. A parametric study of electroacupuncture on persistent hyperalgesia and Fos protein expression in rats.[J]. Brain Res,2004,1020(1-2):18-29.
    [258]Huang C, Hu Z P, Long H, et al. Attenuation of mechanical but not thermal hyperalgesia by electroacupuncture with the involvement of opioids in rat model of chronic inflammatory pain.[J]. Brain Res Bull,2004,63(2):99-103.
    [259]Kim H W, Roh D H, Yoon S Y, et al. The anti-inflammatory effects of low- and high-frequency electroacupuncture are mediated by peripheral opioids in a mouse air pouch inflammation model.[J]. J Altern Complement Med,2006,12(1):39-44.
    [260]Romita V V, Suk A, Henry J L. Parametric studies on electroacupuncture-like stimulation in a rat model:effects of intensity, frequency, and duration of stimulation on evoked antinociception[J]. Brain Res Bull,1997,42(4):289-296.
    [261]Stener-Victorin E, Kobayashi R, Kurosawa M. Ovarian blood flow responses to electro-acupuncture stimulation at different frequencies and intensities in anaesthetized rats.[J]. Auton Neurosci,2003,108(1-2):50-56.
    [262]Somers D L, Clemente F R. Transcutaneous electrical nerve stimulation for the management of neuropathic pain:the effects of frequency and electrode position on prevention of allodynia in a rat model of complex regional pain syndrome type Ⅱ.[J]. Phys Ther,2006,86(5):698-709.
    [263]Lin T B, Fu T C, Chen C F, et al. Low and high frequency electroacupuncture at Hoku elicits a distinct mechanism to activate sympathetic nervous system in anesthetized rats.[J]. Neurosci Lett,1998,247(2-3):155-158.
    [264]Wang S M, Lin E C, Maranets I, et al. The impact of asynchronous electroacupuncture stimulation duration on cold thermal pain threshold.[J]. Anesth Analg,2009,109(3):932-935.
    [265]Kwon Y B, Ham T W, Kim H W, et al. Water soluble fraction (<10 kDa) from bee venom reduces visceral pain behavior through spinal alpha 2-adrenergic activity in mice.[J]. Pharmacol Biochem Behav,2005,80(1):181-187.
    [266]Son D J, Lee J W, Lee Y H, et al. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds.[J]. Pharmacol Ther,2007,115(2):246-270.
    [267]Kwon Y B, Kang M S, Han H J, et al. Visceral antinociception produced by bee venom stimulation of the Zhongwan acupuncture point in mice:role of alpha(2) adrenoceptors.[J]. Neurosci Lett,2001,308(2):133-137.
    [268]Jovanovic-Ignjatic Z, Rakovic D. A review of current research in microwave resonance therapy: novel opportunities in medical treatment.[J]. Acupunct Electrother Res,1999,24(2):105-125.
    [269]Bagatskaya E V, Gura E V, Limansky Y P. Analgesia Induced by Microwave Irradiation of an Acupuncture Point in Mice with Visceral Pain:Role of the Cerebral Opioid System[J]. NEUROPHYSIOLOGY,2008,40(5-6):358-362.
    [270]Irnich D, Behrens N, Molzen H, et al. Randomised trial of acupuncture compared with conventional massage and "sham" laser acupuncture for treatment of chronic neck pain.[J]. BMJ,2001,322(7302):1574-1578.
    [271]Glazov G, Schattner P, Lopez D, et al. Laser acupuncture for chronic non-specific low back pain: a controlled clinical trial.[J]. Acupunct Med,2009,27(3):94-100.
    [272]Allais G, De Lorenzo C, Quirico P E, et al. Non-pharmacological approaches to chronic headaches:transcutaneous electrical nerve stimulation, lasertherapy and acupuncture in transformed migraine treatment.[J]. Neurol Sci.2003,24 Suppl 2:S138-S142.
    [273]Gottschling S, Meyer S, Gribova I, et al. Laser acupuncture in children with headache:a double-blind, randomized, bicenter, placebo-controlled trial.[J]. Pain,2008,137(2):405-412.
    [274]Kempf D, Berger D, Ausfeld-Hafter B. [Laser needle acupuncture in women with dysmenorrhoea:a randomised controlled double blind pilot trial][J]. Forsch Komplementmed,2009,16(1):6-12.
    [275]Zhou E H, Liu H R, Wu H G, et al. Suspended moxibustion relieves chronic visceral hyperalgesia via serotonin pathway in the colon[J]. NEUROSCIENCE LETTERS,2009,451 (2):144-147.
    [276]Rong P J, Zhu B, Huang Q F, et al. Acupuncture inhibition on neuronal activity of spinal dorsal horn induced by noxious colorectal distention in rat.[J]. World J Gastroenterol,2005,11(7):1011-1017.
    [277]Christianson J A, Traub R J, Davis B M. Differences in spinal distribution and neurochemical phenotype of colonic afferents in mouse and rat.[J]. J Comp Neurol,2006,494(2):246-259.
    [278]Xu G Y, Winston J H, Chen J D. Electroacupuncture attenuates visceral hyperalgesia and inhibits the enhanced excitability of colon specific sensory neurons in a rat model of irritable bowel syndrome[J]. Neurogastroenterol Motil,2009,21(12):1125-1302.
    [279]Huang Z, Liu N, Zhong S, et al. [The role of nucleus tractus solitarii (NTS) in acupuncture inhibition of visceral-somatic reflex (VSR)][J]. Zhen Ci Yan Jiu,1991,16(1):43-47.
    [280]Liu J H, Li J, Yan J, et al. Expression of c-fos in the nucleus of the solitary tract following electroacupuncture at facial acupoints and gastric distension in rats[J]. Neurosci Lett,2004,366(2):215-219.
    [281]Zhang J L, Zhang S P, Zhang H Q. Effect of electroacupuncture on thalamic neuronal response to visceral nociception.[J]. Eur J Pain,2009,13(4):366-372.
    [282]闫丽萍,马骋,项晓人,等.电针对大鼠丘后脑内侧核痛敏社经元放电的影响[J].中国中医药科技,2003,10(3):129-130.
    [283]Sumiya E, Kawakita K. Inhibitory effects of acupuncture manipulation and focal electrical stimulation of the nucleus submedius on a viscerosomatic reflex in anesthetized rats[J]. JAPANESE JOURNAL OF PHYSIOLOGY,1997,47(1):121-130.
    [284]Shu J, Li K Y, Huang D K. The central effect of electro-acupuncture analgesia on visceral pain of rats:a study using the [3H] 2-deoxyglucose method[J]. Acupunct Electrother Res,1994,19(2-3):107-117.
    [285]Bagatskaya E V, Gura E V, Limansky Y P. Analgesia Induced by Microwave Irradiation of an Acupuncture Point in Mice with Visceral Pain:Role of the Cerebral Opioid System[J]. NEUROPHYSIOLOGY,2008,40(5-6):358-362.
    [286]Iwa M, Strickland C, Nakade Y, et al. Electroacupuncture reduces rectal distension-induced blood pressure changes in conscious dogs[J]. DIGESTIVE DISEASES AND SCIENCES,2005,50(7):1264-1270.
    [287]Kim H Y, Hahm D H, Chae Y, et al. Acupuncture at GV01 relieves somatic pain referred by colitis in rats[J]. JOURNAL OF PHYSIOLOGICAL SCIENCES,2007,57(4):253-258.
    [288]Xu G Y, Winston J H, Chen J D. Electroacupuncture attenuates visceral hyperalgesia and inhibits the enhanced excitability of colon specific sensory neurons in a rat model of irritable bowel syndrome.[J]. Neurogastroenterol Motil,2009.
    [289]Chen J, Song G Q, Yin J Y, et al. Electroacupuncture improves impaired gastric motility and slow waves induced by rectal distension in dogs[J]. AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY,2008,295(3):G614-G620.
    [290]Tian X Y, Bian Z X, Hu X G, et al. Electro-acupuncture attenuates stress-induced defecation in rats with chronic visceral hypersensitivity via serotonergic pathway[J]. BRAIN RESEARCH,2006,1088:101-108.
    [291]Liu H R, Wang X M, Zhou E H, et al. Acupuncture at Both ST25 and ST37 Improves the Pain Threshold of Chronic Visceral Hypersensitivity Rats[J]. NEUROCHEMICAL RESEARCH,2009,34(11):1914-1918.
    [292]Zhou E H, Liu H R, Wu H G, et al. Herb-partition moxibustion relieves chronic visceral hyperalgesia and 5-HT concentration in colon mucosa of rats[J]. NEUROLOGICAL RESEARCH,2009,31 (7):734-737.
    [293]Kuo Y L, Chiu J H, Lin J G, et al. Localization of cholecystokinin and vasoactive intestinal peptide in lower biliary tract in cats following electroacupuncture on right Qimen (LR14) and Riyue (GB 24):an immunohistochemistry study.[J]. Acupunct Electrother Res,2005,30(1-2):15-25.
    [294]Iwa M, Nakade Y, Pappas T N. et al. Electroacupuncture improves restraint stress-induced delay of gastric emptying via central glutaminergic pathways in conscious rats.[J]. Neurosci Lett,2006,399(1-2):6-10.
    [295]Wu H G, Liu H R, Zhang Z A, et al. Electro-acupuncture relieves visceral sensitivity and decreases hypothalamic corticotropin-releasing hormone levels in a rat model of irritable bowel syndrome.[J]. Neurosci Lett,2009.
    [296]蔡佰元,黄显奋.甲氧氯普胺加强电针镇内脏痛及其中枢机制[J].针刺研究,1994,19(1):66-70.
    [297]曹福元,陈国斌,殷光甫,等.电针对大鼠内脏痛结肠壁、背根节和脊髓内一氧化氮合酶 的影响[J].针刺研究,2006.31(1):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700